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Abstract: For exact examination of human information processing ability we elaborated an 
information-theory-based model and a new measuring method. Starting from the theoretical 
background of the well-known Hick–Hyman law and analysing the data acquired during the 
Soyuz–Salyut space missions, an important fact was derived. When examining the model by 
reducing the H(X) input entropy of the stimulus signals (symbols) and approaching to the 0 bit 
there was an interesting effect: through the reduction of H(X) input entropy towards zero the 
ratio of (processed information)/(input entropy) was increasing and its value approached to 1, 
while at non-zero entropy this ratio was less than 1. Therefore a phase-change-like effect 
occurred below H(X) = 1 bit. Consequently the zero bit measurement could not be involved into 
the determination of Information Processing Ability (IPA) while the traditional measurements 
were performed only at two distinct values of entropy: at 0 bit and at a not too high H(X) value 
(e.g. 2 bits/symbol). 

Keywords: visual information processing, information processing ability, phase transition, 
artificial neural networks, associative memory 

Categories: H.1.0, H.1.1, J.2, J.3, J.7 

1 Introduction  

Based on biomedical investigations of pilots’ information processing ability and 
performance on an aircraft simulator the principles of measuring and evaluation of 
pre-flight, in-flight and post flight IPA and the concepts of the reaction time and 
cortical time spent on processing 1 bit of information have been elaborated. The 
method and the BALATON psycho-calculator device were first tested during pre-, in- 
and post-flight periods of real space flight in the Soviet-Hungarian joint mission, in 
1979-80 [Hideg, 85]. Later on successful experiments were performed on the 

Journal of Universal Computer Science, vol. 12, no. 9 (2006), 1345-1357
submitted: 31/12/05, accepted: 12/5/06, appeared: 28/9/06  J.UCS



Salyut−6 and Salyut−7 in the Soviet−Mongolian and Soviet−Romanian space 
missions. The results were published [Hideg, 82], [Remes, 83] and the relevant 
databases were constructed and ground-based experiments were carried out for 
reference. The classification of these databases was as follows: military fighter pilots 
(various groups of age, according to aircraft types and risk factors); airman staff, 
individuals working at commanders’ observation posts, civilians, members of 
different expeditions (sportsmen and women), candidates for flight. For the results see 
[Nechaev, 85]. 

In the relevant psychological literature, Steven W. Keele [Boff, 86] summarizes 
the most important theoretical results concerning decision time. The applied 
mathematical models define the reaction time according to the Hick−Hyman law. 

The problems connected with the law of Hick-Hyman are highlighted by S. Keele 
as follows: In the years since the Hick−Hyman law was formulated, psychologists 
investigating decision processes have come less and less to invoke formal information 
measurement. Information measurement has not been theoretically fruitful for 
understanding decision processes. Nonetheless, as a strictly empirical generalisation, 
the Hick−Hyman law still has important practical utility in drawing together under 
one formulation the effects of number of choice, probability of alternatives and speed-
accuracy trade-off. 

Our aim is to increase the safety of man-machine interaction and make more 
effective the work with exact examination of human information processing ability. 
For this reason we have elaborated an information-theory-based model and a 
measuring method, which provides reliable data. 

The main features of the new method are the careful statistical design of stimulus 
signal set and the introduction of inter-stimulus time (depending on the previous 
reaction time and on a random variable). Experimental results show good match with 
the predictions of our mathematical model described in this paper. 

2 Phenomenological model 

It is necessary to take into consideration the recently accepted and used neurone-
dynamic models for the correct description [Amari, 80]. When processing visual 
information, a temporally increasing potential distribution caused by external signals 
occurs in the pre-synaptic cell space (receptors). The temporal formation of the 
stimulus can be characterised by the activation time ta which is an average time 
between the occurrence of the stimulus and the time when the average of the potential 
distribution rises above the activation level. The pre-synaptic pattern creates the post-
synaptic potential distribution in the post-synaptic cell space (in the cortex) via the 
synapses. Gradually it converges to a potential distribution characterising an element 
of the previously fixed pattern set as the cortical processing time tc increases. After 
this time, determined by the subject’s tactics, the classification of the external signals 
is carried out by comparing the two potential distributions. The time needed for the 
physical reaction is represented by the parameter tb. The full reaction time (CCRT) is 
the sum of the three time data: tr = ta+ tb+ tc. The simple reaction time, or sensory-
motor reaction time SMRT is the sum of the activation time and the physical reaction 
time (ta+ tb). This sum is not easy to separate. 
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The concept of IPA was introduced for the quantitative description of the above-
mentioned process in the cortex. IPA is the ratio of the processed information Ip, and 
the mean time (cortical time tc) spent on decision-making: 

 [ ] bit
= ,      .

s
p

c

I
IPA IPA

t
=  (2.1) 

Measurement of IPA was based on the formula 

 +  ,p
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I
t t

IPA
=  (2.2) 

the so-called Hick−Hyman law, where: 
ts the sensory-motor reaction time (SMRT), 
tr the complex (choice) reaction time (CCRT), 
Ip the quantity of processed information, 
IPA the so-called information processing ability, characterising the subject's 

actual psychic condition concerning decision-making. 
The tasks can be characterised by the simultaneous, optimal performance of two 

cross requirements depending on events, according to a decision scheme. On the basis 
of conscious decision, the action (motoric response) should be carried out  

 at the lowest possible percentage of error, 
 at the highest possible speed. 
Let the cortical time be a monotone increasing function of the tactical parameter 

�, and input entropy H, since the more reliable decision is to be made and the more 
complex problems are to be solved the more time is required. The simplest form of 
the tc(�, H) function fulfilling the above-mentioned requirements is 

 ( , ) .ct H Hτ τ= ⋅  (2.3) 
Let the processed information be a finite, monotone increasing function of the 

tactical parameter since longer time, i.e. safer tactics results in a better classification. 
If the subject chooses tactics of highest possible speed, there is no information 
processing. The information processed is equal to the input entropy if having the 
lowest speed: 

 ( ) ( )=0 0,                = .p pI I Hτ τ= ∞ =  (2.4) 

Let the transmission speed (bit/sec) be introduced as 

 ( ) ( )
( )= .p

c

I
R

t

τ
τ

τ
 (2.5) 

So let the transmission speed R(�), be a non-negative, continuous, differentiable 
function having one maximum. At the two extreme tactics, it has the values 

 ( ) ( )=0 0,                = 0.R Rτ τ= ∞ =  (2.6) 

Under these conditions, it follows that 

 
0

0.pdI

d ττ =

� �
=� �

� �
 (2.7) 

Experiments show that there is an optimal tactics (it depends on the input 
entropy H) if the transmission speed is maximum: 

 ( ) ( ) ( )= = max .optC H R Rτ τ� �� �  (2.8) 
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This maximum transmission speed is called as channel capacity. We suppose that 
in a small (a couple of bits/symbol) range of input entropy the channel capacity can be 
considered as constant, i.e. the entropy-dependence of C(H) is negligible. Let this 
constant be called as maximum speed of information processing (MSIP). It 
characterises the information processing ability of the subject using optimal tactics. 
According to the model above, and to experience, human brain is a highly non-linear 
system and, during its operation, it has no steady state. It keeps a dynamic balance 
that occurs in our model in such a way that the actual tactic fluctuate around the 
working point � = �opt(H). Thus the tactical parameter is a stochastic variable, which 
implies that the measured values Ip and tr are also stochastic variables. Based on the 
ideas above, the Hick−Hyman law can be modified as follows. The processed 
information Ip and the average reaction time tr calculated on groups of signals are 
stochastic variables which are in a non-linear connection with each other through the 
tactical parameter. There is a value �opt(H) for the parameter �(H) for each input 
entropy H(X) to which 

 ( )( ) ( )( )1
= + ,r opt s p optt H t I H

MSIP
τ τ⋅  (2.9) 

where 
 ( ) ( )( )=max = .optMSIP R R Hτ τ� �� �  (2.10) 

These aspects can be summarised in the following simple phenomenological 
model. The P(X|Y) conditional probability matrix, characterising statistically the 
relation of the X input signals and Y responses, could comprise two components: the E 
(diagonal) identity matrix corresponding to deterministic decisions and the U 
homogenous matrix involving full randomness: 

 [ ]( )= 1- ( ) + ( ) ,
U

P Y X f E f
n

τ τ⋅ ⋅  (2.11) 

where 
E the identity matrix consisting of n x n elements, 
U the homogenous matrix consisting of n x n elements (each element is 

identical), 
n the number of elements in the signal set (and also that of the responses), 
f(�) the heuristic tactical function having the following constraints: 

(a) f(� = 0) = 1, 
(b) f(�) is strictly monotone decreasing, 
(c) lim f(�) = 0, if � tends to infinity, 
(d) it has a T parameter with the dimension of time/information. 

(The matrix construction in (2.11) is based on the theorem of full probability). For a 
tactical function satisfying the requirements (a) – (d), we can choose the easily 
applicable 

 ( )
2

2
 
Tf e
τ

τ
−
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Gauss-function, where T is the tactical constant. The finite probability distribution of 
an X signal set having n stimulus signals is: 

 ( ){ }= 1- , ,  ,  ... , .
-1 -1 -1
p p p

P X p
n n n

� �
	 

� �

 (2.13) 
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If p = (n-1)/n, by changing the p value, the probability distribution of the signal 
series (thus, its entropy, too) can be continuously varied. The entropy of the signal set 
under (2.13) is: 

 ( ) ( ) ( )2 2=- 1- log 1 + log .
-1
p

H p p p p
n

� �⋅ − ⋅� �� �
 (2.14) 

Based on (2.11) and (2.13) the P(X, Y) probability matrix of the simultaneous 
events is: 
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The probability distribution of responses is as follows: 
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where 
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The probability of errors and the accuracy: 
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 (2.18) 

Finally, the processed information is [Reza, 61]: 

 ( ) ( )
( ) ( )2

1 1

,
, log

n n
i j

p i j
i j i j

p x y
I p x y

p x p y= =

= ⋅
⋅  (2.19) 

3 Results and important features of our model 

The numerical evaluation of the mathematical model above was performed by 
MAPLE V for Windows. The processed information can be calculated on the basis 
(2.19) and (2.15): 
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The transmission speed R(�), can be calculated with equations (2.5), (2.3) and 
(3.1), and we get a function (see Figure 1). 

Figure 1: The transmission speed function of tactical parameter (�) in our model. 

The optimal work-point �opt can be determined by =0
opt

dR
d ττ

, following a 

numerical analysis, the MSIP = R(�opt) maximum transmission speed (channel 

capacity) was plotted as a function of input entropy (Figure 2.). 
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Figure 2: The optimal transmission speed (MSIP) function of input entropy. 
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We can find few important facts from study of accuracy of information 
processing. The accuracy of information processing at optimum working point is 
independent of T individual characteristic parameter and shows an interesting 
dependence of H(X) input entropy: the accuracy approaches to 100%, when H(X) 
approaches to 0 bit and approaches under 70% when the input entropy is increasing 
(H(X) >> 1 bit). 

 

 

Figure 3: The optimal transmission speed (MSIP) function of input entropy. 

Moreover, information theory distinguishes between the concepts of a priori and 
a posteriori information [Reza, 61]. The a priori entropy is determined by the 
generation of the signal sequence (so it is independent of the subject's consciousness). 
The a posteriori entropy is a quantity generated during the perception of the signal 
sequence in the subject’s consciousness and the tactic (�) is fitting to a posteriori 
entropy, so the subject changes its tactic below H(X)=1 bit. 

Through the reduction of H(X) input entropy the Ip /H(X) processing ratio and the 
accuracy are increasing and its value approaches 1, while at non-zero entropy these 
values are less than 1 essentially. Therefore a phase-change-like transition occurs 
below H(X) = 1 bit – like as the physical phase-changes. Consequently we cannot 
involve the zero bit measurement into the determination of IPA, while the traditional 
measurements are performed only at two distinct values of entropy: at 0 bit and at a 
not too high H(X) value (e.g. 2 bits/symbol). Similarly through the increasing of H(X) 
input entropy (H(X)>>1 bit) the Ip /H(X) processing ratio and the accuracy approaches 
to an individual characteristic value, the subject changes the working method of 
information processing. We found that the most essential behaviour of our model is 
widely independent of the concrete choice of f(�) heuristic tactical function and other 
parameters on the analogy of the universality features of the critical-phenomenon in 
statistical physics. 

Depending on the quantity of the input information the signal processing in 
human brain has at least three different levels or working-phase, e.g.: 
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• Level of simple reactions (reflex): The input entropy (information) is 0 bit 
and there is no processing of signals in the cortex. This level is characterised 
by the time of simple reaction (SRT). 

• Level of quantitative information processing: It means a quasi-exact 
identification of signals having small entropy. There is signal processing and 
classification in the cortex. 

• Level of associative information processing: It is not possible to process the 
signals exactly since they have large amount of entropy and/or they are 
disturbed by noise. The simplest way of classification needs a different form: 
the pattern recognition approach for the identification of signals. 

On the basis of the phenomenological model above the PSYCHOKONDI 
measuring methodology was developed and patented ([Remes, 91], [Bagány, 91] and 
[Bagány, 95]). 

4 The measurement of human associative information processing 

In accordance with our model the third level of human information processing is the 
associative level. Clearly, the obvious goal in designing the measurement protocol for 
this level is to preserve the basic methodology described above in this paper. 
Moreover, it is necessary to generate signals of high entropy from signals of the basic 
measurement process. Our solution for these tasks is summarized below. 

The main question to be answered is a fundamental one: what is the suitable 
„etalon” for comparison of the measured data in investigating the human associative 
information processing? To recent knowledge of the authors, there is no such 
„etalon”, that is, we have no exact (mathematical) and subject-independent cognitive 
psycho-physiological model suitable for the comparison in question. 

Our proposition for solution of this problem is the application of an artificial 
neural network (ANN) for the same classification task working in parallel with the 
human operator investigated, and to quantify the classification process with a suitable 
and computable parameter of the ANN. Such a manner the data computed by the 
ANN can be considered as a basis for comparison of the information processing 
abilities of the subjects in case of high entropy stimulus signals (which needs – to our 
basic assumptions – human associative information processing). 

4.1 The application of the Hamming-network for the IPA measurement 

After investigating several artificial neural network architectures in this respect, we 
have concluded that the binary Hamming-MAXNET network (HMN) [Lippmann, 87] 
is the most suitable for our purposes because of its easy (analytical) training, large 
storing capacity [Hassoun, 96] [Meilijson, 95] and because of its optimality in Bayes-
sense when performing the classification task during recall [Lippmann, 87] [Hassoun, 
96]. Also, it is easy to acquire the stored pattern after the final decision. A single-
iteration version of the original network has been developed [Meilijson, 95] and the 
practical application of the Hamming-network is a recent topic [Ikeda, 01]. 

The basic goal of the HMN is to perform a 1-NN classification using the 
Hamming distance between the stored binary patterns and the input pattern (or the so 
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called key pattern). That is, the minimum value of Hamming distances is necessary 
for decision. 

However, in our case, the computations have to be performed by artificial 
neurons, that is, the basic operations are dot-product between the actual neuron’s 
synaptic weight-vector and the input vector, the subtraction of the synaptic threshold 
value and the application of the output function in order to compute the output 
„activity” value. Moreover, there is a special ANN (the MAXNET) for determining 
the maximum (instead of minimum) of components of the nonnegative input vector, 
so it is necessary to rearrange the basic 1-NN computations above. In order to achieve 
this goal, first we have to notice, that in case of finite binary vectors there is an upper 
bound of dmax for the maximum of the Hamming-distance (namely the dimension N of 
the vector), so the determination of the minimum is equivalent to the determination of 
the maximum of the difference between the dimension of N and the actual Hamming 
distance. Moreover, by changing over to {-1, +1}-type binary representation instead 
of {0, 1}, finally we get: 

 ( ) 
−

=
�
�

�
�
�

�−−⋅=−=
1

0

,
max 22

,
N

i
i

ij
jj

N
x

p
pxdds , (4.1) 

where sj denotes the output value of the j-th neuron, dmax is the value of the dimension 
d(x, pj) denotes the actual Hamming distance between the key and the j-th stored 
pattern pi,j denotes the i-th component of the j-th neuron in the Hamming layer in  
{-1, +1} representation and xi denotes the i-th component of the key in  
{-1, +1} representation. So that, according the conventional ANN-terminology we get 
that the synaptic weight vector of the j-th neuron is wj = pj/2, and the value of the 
synaptic threshold is -N/2. The learning in this case means simply storing the ideal 
prototype vectors after halving them and setting up the universal synaptic threshold of 
-N/2. 

The Hamming-layer sets up the initial values for the MAXNET-iteration, while 
the MAXNET performs the final computations necessary for recall. That is, the third 
layer is the co called MAXNET, which is a full-connected lateral-inhibition-type 
network. The number of the neurons is the same as in the Hamming-layer (that is, the 
number of M of the stored patterns), the value of the weight of self-feedback is 1, and 
for the values of other weights 0 < ε < 1/M holds for every neurons of the MAXNET. 
The value of synaptic thresholds is 0. The output function is the so-called threshold-
logic-type. The operation of the MAXNET layer is given by the equations below: 

a) initial values from the Hamming-layer: 
 ( ) ( )jj sfy =0  (4.2) 

b) T iteration steps: 

 ( ) ( ) ( ) MkjTttytyfty
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�
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,001 ε  (4.3) 

c) output function of the MAXNET neurons: 
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 (4.4) 
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After convergence the output of only one neuron remains positive, and based on 
its index the recall is completed. The classification (or in other words the association) 
process can be characterized by the number of iterations necessary for convergence. 

The HMN is suitable for our purposes because the original (ideal, non-distorted) 
stimulus patterns can easily be stored in the Hamming-layer’s neuron’s weights, and 
when the key is a distorted version of one’s stored pattern, the recall process not only 
simulates the „time” (that is, the number of iterations) necessary for final decision, but 
it gives back the result of the decision in form of the stored ideal pattern as well. 
Therefore, the conditional probability matrix could also be set up and all the 
calculations necessary for computing the IPA could be completed. 

4.2 Simulation of the Hamming−−−−MAXNET network for the IPA 
measurement 

In order to simulate the behaviour of the HMN in the IPA measurement task, it is 
necessary to set up the network according to the basic PHYCHOKONDI protocol. 
The number of ideal patterns are 8, a particular pattern has been created by hand as a 
7 × 5 matrix of values from {-1, +1}, the value of the lateral inhibition has been set up 
as ε = 10-3, the stopping condition of the iteration is based on the value of the 
threshold of δ = 10-4. The iteration has been stopped, when all the outputs of the 
MAXNET’s neurons except only one are lower than this threshold. Obviously, it is 
possible to run into an infinite iteration process − this is exactly the case, when two or 
more neurons in the Hamming-layer have equal output values. This problem was 
investigated thoroughly, and it was concluded that this event occurs rarely 
[Floréen, 92], therefore we solved this problem by stopping the iteration after 
MAXITER = 1000 steps in our simulations, and by excluding these iteration values 
from calculation of the iteration average. 

After setting up the network, the next step is to generate the stimulus patterns 
(signals), which are distorted versions of the ideal, stored patterns. After selecting an 
ideal pattern according to the basic measurement protocol, the components of the 
pattern vector are inverted at random using uniformly distributed, independent 
pseudo-random numbers. Given a fixed value of p, several key vectors (i.e. the 
distorted version of the selected stimulus pattern) have been generated (10 keys with 
0 < p ≤ 0.196 and 100 keys with 0 < p ≤ 0.401 respectively in experiments A and 
experiments B). The sequence of p values have been chosen so that the Shannon-
entropies of the generated keys form an arithmetic series, so the sequence in question 
was the following: 0.003, 0.007, 0.011, 0.015, 0.02, 0.026, 0.031, 0.037, 0.043, 0.05, 
0.057, 0.064, 0.071, 0.079, 0.088, 0.096, 0.105, 0.115, 0.125, 0.135, 0.146, 0.158, 
0.17, 0.183, 0.196, 0.211, 0.226, 0.243, 0.261, 0.281, 0.304, 0.329, 0.36, 0.401. At a 
given value of p not only the average iteration number has been computed as 
described above, but the relative frequency of correct classifications has also been 
determined as well. The results of our numerical experiments can be seen on Figure 4. 
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Figure 4: The average iteration numbers (left columns) and the relative frequencies 
of correct classifications (right columns) in experiment A (upper trace) and 
experiment B (lower trace) as a function of key’s entropy (given by the index in the 
above sequence of p values for simplicity). 

As it can be checked on the Figure 4, the average iteration number has an 
increasing tendency with increasing key entropies and in an acceptable range of key 
entropies there are no misclassifications. Therefore the HMN defined in this paper can 
be considered as an etalon when measuring the human associative information 
processing, so that the original PSYCHOKONDI measurement protocol can be 
extended for higher-entropy stimulus signals. 

5 Outlook 

Since the formal description of few neutral network models is identical to some 
models of statistical physics (for example the Hopfield model to the Ising spin glass), 
the field of neural network attracted many physicist to study the impact of phase 
transitions on the stability of neural networks. With this deep analogy we can 
understand better the activity of brain and information processing. For example 
[Hoshino, 96] has shown that the transition between the pattern itinerant state and 
pattern fixed state in neural networks may be induced by the self-organized 
infinitesimal synaptic changes if the dynamical state of the network is near the 
transition point. On the other hand, the early stages of mammalian visual processing 
has been successfully modelled and realised on silicon, using CNN chips [Gál, 04]. 
The paper has also described the straightforward predictions of models that have 
relevance to visual neuroscience. 
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6 Conclusions 

The model discussed in this paper gives the following basic features resulted from 
requirements and experiences. 
• The process has a statistically manageable stochastic nature: the tc cortical 

(decision) time is determined by the tactical parameter so tc is a random variable 
characterised by its mean value and standard deviation. 

• It has been proven that the Ip – tc function comes from theory above corresponds 
to the experimental results. Moreover the R = Ip /tc formula of transmission speed 
provides a qualitatively correct function to determine the optimal work point, i.e. 
channel capacity. 

• This channel capacity, defined as the maximum of transmission speed for a 
given T parameter, is approximately constant in the H(X) entropy range of few 
bits. Therefore the individual’s MSIP information processing ability 
(independent of entropy) can be determined. 

• Through the reduction of H(X) input entropy the Ip/H(X) processing ratio and the 
accuracy are increasing and its value approaches 1, while at non-zero entropy 
these values are less than 1 essentially. Therefore, a „phase-change” occurs 
below H(X) = 1 bit point − like as the physical phase-changes. Consequently we 
cannot involve the zero bit measurement into the determination of IPA, while the 
traditional measurements are performed only at two distinct values of entropy: at 
0 bit and at a not too high H(X) value (e.g. 2 bits). Similarly, through the 
increasing of H(X) input entropy (H(X) >> 1 bit) the Ip/H(X) processing ratio and 
the accuracy approaches to an individual characteristic value, the brain change 
the working method of information processing. 

• Based on the HMN simulations the last conclusion is that a possible method for 
measuring the human associative information processing ability is based on the 
Hamming-MAXNET network defined in the fourth section of this paper, the 
suitable number of iterations is in the order of 100 at each key-entropy value and 
the suitable interval for the p values is 0 < p ≤ 0.196. In case of human 
associative information processing, the verification of the HMN-based 
measurement method is the next task, that is, first it is necessary to conduct a 
series of measurements on human operators working on the same task in parallel 
with the HMN in case of stimulus signals of higher entropy. 
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