
Membrane Computing and Graphical Operating Systems

Benedek Nagy

(University of Debrecen, Hungary

Rovira i Virgili University, Tarragona, Spain

nbenedek@inf.unideb.hu)

László Szegedi

(University of Debrecen, Hungary

sl0021@stud.unideb.hu)

Abstract: In this paper a comparison is provided between the membrane computing
systems and the graphical interfaces of operating systems. A membrane computing
system is a computing model using massive parallelism inspired by the functioning of
living cells. The graphical schemes of these computing devices look like the windows of
a graphical operating system representing programs running parallel on the computer.
Both similarities and differences of membrane-systems and graphical operating systems
are detailed as well as some possible simulation methods.

Key Words: Membrane Computing, Operating Systems, Graphical Interfaces, Graph-
ical Operating Systems, Parallel Computing

Category: D.4, F.1.1, F.4.2, H.5.2, I.6

1 Introduction

In the last century, the development of computing systems, both hardware and

software, has sped up tremendously. To use a computer a so-called operating

system is needed which provides access to the architecture by giving an extended

or virtual machine to the user that can be easily programmed and used. Other

main functions of operating systems are to use and to manage the physical

resources. In the last 20 years almost all operating systems have had graphical

shells. This helped a lot to have user-friendly computers and nowadays everybody

can use computers not only specialists. In our approach we regard graphical

operating systems as the running programs/processes and their relation.

Over the last decade, molecular computing has been a very active field of

research. The great promise of performing computations at a molecular level

is that the small size of the computational units potentially allows for mas-

sive parallelism in the computations. Thus, computations that are intractable

in sequential modes of computation can be performed (at least in theory) in

polynomial or even linear time.

Membrane computing is an area of molecular computing initiated by Gheo-

rghe Paun [Paun 2000b]. A membrane system (also called P system) is a comput-

ing model which abstracts from the way living cells process chemical compounds

Journal of Universal Computer Science, vol. 12, no. 9 (2006), 1312-1331
submitted: 31/12/05, accepted: 12/5/06, appeared: 28/9/06 J.UCS

in their compartmental structure. A membrane structure defines regions where

objects evolve according to given rules. From this basic structure, many differ-

ent computational devices can be defined, according to the objects used (strings,

symbols), the types of rules one allows and the way the generated language or

the result of the computation is defined. By using the rules in a nondeterministic,

maximally parallel manner, one gets transitions between the system configura-

tions. A sequence of transitions is a computation. With a halting computation

we can associate a result, in the form of the objects present in a given membrane

in the halting configuration, or the objects expelled from the system during the

computation. Various ways of controlling the transfer of objects from a region

to another one and of applying the rules, as well as (using so-called active mem-

branes:) possibilities to dissolve, divide or create membranes were considered.

Gheorghe Paun’s book [Paun (2002)] is a good introduction to the most impor-

tant types of membrane systems. Many of these variants lead to computationally

universal systems, while several variants are able to (at least theoretically) solve

NP-complete problems in polynomial (often, linear) time, by making use of an

exponential space ([Paun and Dassow 1999b]).

Membrane systems using catalysts, evolution rules, priorities, cooperative

rules, symport, antiport, electrical charges, dissolutions, creating and/or divid-

ing membranes are considered in the literature (see [P systems]). Using active

membranes one can dynamically play with the structure of the system. With

more membranes one can easily organize the derivation process because the

membranes can have various rule sets, the creation and division of membranes

allow to perform independent computations in parallel way.

In the next section a formal definition of membrane systems is provided.

Section 3 is about operating systems and their graphical interfaces. In Section 4

we give the similarities and the differences between graphical operating systems

and membrane computing models. Some simulations and several examples are

also shown. We finish our article by a summary and conclusions.

2 Membrane Computing

In this section we give a description of the formalism of the membrane structure

and computing with an example.

First, the concept of multi-set is recalled. The multisets are sets that may

contain more than one copy of the same element. For instance {a, b, b, c, a, b}

is a multiset. One can describe a multiset by listing its elements with their

multiplicities in a string. Our example can be written as aabbbc, or equivalently

a2b3c.

The membrane system defined in the following way (based on [Paun (2002)],

[Paun 2000b] and [Paun and Rozenberg 2002b]) uses priority relations on evo-

lution rules, and the membrane dissolving and creating capability.

1313Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

A membrane system (or a P system) is a construct

Π = (V, T, C,H, µ, ωi1 , . . . , ωin
, (Rh1

, ρh1
), . . . , (Rhm

, ρhm
))

where

– V is an alphabet, its elements are called objects, we refer the empty word by

λ;

– T ⊆ V is the output alphabet : the objects can occur in the output (solution);

– C ⊆ V − T is the set of the catalysts: they are special objects, no rule can

change their number;

– H is a given set of m labels, H = {h1, h2, . . . , hm};

– µ is a membrane structure consisting of n membranes, with membranes

labelled by the elements of H, additional (integer) indices are allowed to

have unique addresses (an address is a label with an optional index);

– An evolution rule is a pair (u, v), which we will usually write in the form

u→ v, where u is a string over V and v = v′ or v = v′δ, where v′ is a string

over {a, aout, ainj
|a ∈ V, j ∈ H}, and δ is a special symbol not in V ;

– Rhi
, hi ∈ H are finite sets of evolution rules over V , each Rhi

is associated

with the region having label hi;

– ρhi
is a partial order relation over Rhi

called a priority relation (on the rules

of Rhi
).

– We extend the evolution rules mentioned above with the following modifica-

tion which describes the creation of new membrane regions: u→ v, where v

can contain substrings in the form (w)inĵ
(w ∈ V ∗, j ∈ H); during the appli-

cation a new membrane will come into existence; the created new membrane

gets label j with a new index, the objects of w get in this new membrane

and, of course, the rule set Rj applies to it with priority ρj .

– ωij
, ij ∈ H × (N∪λ) are strings which represent multisets over V associated

with the regions i1, i2, . . . , in of µ.

δ has a special function: for each region where a rule containing δ was used,

the membrane enclosing this region is removed, and consequently the objects

of this region will belong now to the region that was enclosing the dissolved

membrane. Obviously, if the membrane of this region was also dissolved, then

the objects “travel” even further up. Since the skin membrane is never dissolved,

there is a limit to this travel. Note that the evolution rules in each region are

1314 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

associated with this region, and so, if the region disappears because the mem-

brane enclosing the region is dissolved, then the associated evolution rules also

disappear.

The (n+ 1)-tuple (µ, ωi1 , . . . , ωin
) constitutes the initial configuration of Π.

Since we have the possibility of dissolving and creating membranes, the system

may enter a configuration which will include only some of the initial membranes

and/or some new membranes.

Thus, any sequence (µ′, ω′

i1
, . . . , ω′

ik
) with a membrane structure µ′ obtained

by removing and/or adding membranes to µ (of course, the skin membrane is

not removed), with ω′

ij
strings over V , 1 6 j 6 k, where ij ∈ H × (N ∪ {λ}) is

called a configuration of Π. Note that not every configuration may be reachable

through an evolution of the system. Also, note that if a membrane is present in

two configurations, then it will have the same label, because labels are associated

with membranes (and never manipulated during an evolution of the system).

A rule u → v of a membrane is active if all objects of its left-hand-side u

are given in the membrane in at least the requested multiplicities, and if there

are some objects in v indexed by inj , then there is a child-membrane labelled

by j for each appeared label j. For two configurations C1 = (µ′, ω′

i1
, . . . , ω′

ik
),

C2 = (µ′′, ω′′

j1
, . . . , ω′′

jl
) of Π we write C1 ⇒ C2, and we say that we have a

transition from C1 to C2, if we can pass from C1 to C2 by using multisets of the

evolution rules of Ri1 , . . . , Rik
in the regions i1, . . . , ik, respectively. In most of

the models the rules are used in a nondeterministic, maximally parallel manner,

in the following sense. The multiset of the evolved objects must be maximal in

each region, i.e. there cannot be a multiset of non-evolving objects which form the

left-hand-side of a rule of that region. The priority relation plays an important

role as well: if a rule with higher priority can be applied than it must be applied

instead of the rule with lower priority. A rule can be applied in several instances

at the same time. A lower priority rule can be applied if there is not enough

object left to use the higher priority rule. Note that it is possible that there is no

applicable rule in a region; in this case that region is waiting (inactive). Using a

rule u→ v in the region i, copies of the objects as specified by u are “consumed”

(removed), and the result of using the rule is determined by v.

A sequence of transitions between configurations of a given P system Π is

called a computation with respect to Π. A computation is successful if and

only if it halts, that is, there is no rule applicable to the objects present in the

last configuration in any of the regions (i.e. all regions are inactive). The result

(output) of a successful computation can be defined in various ways. There can

be an output membrane and the result can be the cardinality or the Parikh

vector of its content at the halting configuration. In other cases the result can

be obtained from the multiset of objects from Π sent out of the system during

the computation.

1315Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

A membrane structure is pictorially represented by an Euler-Venn diagram

(like the one in Fig. 1.). It can also be represented by a tree, or by a corre-

sponding string of matching parentheses. Note, that in our examples we will

use integer labels H = {1, 2, . . . ,m}. The membrane structure from Fig. 1.

([Paun and Rozenberg 2002b]) can be represented by the following parentheses

expression:

[1[2]2[3]3[4[5]5[6[8]8[9]9]6[7]7]4]1.

Figure 1: A membrane structure

Let us see an example how a membrane system works.

Example 1. Π is formally given by

Π1 = (V, T, C,Hµ, ω1, ω2, ω3, ω4, (R1, ρ1), (R2, ρ2), (R3, ρ3), (R4, ρ4))

where

– V = {a, b, b′, c, f};

– T = {c};

– C = ∅;

– H = {1, 2, 3, 4};

– µ = [1[2[3]3[4]4]2]1;

1316 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

– ω1 = λ,R1 = ∅, ρ1 = ∅,

ω2 = λ,R2 = {b′ → b, b → bcin4
cin4

, r1 : fff → aaf, r2 : f → aδ},

ρ2 = {r1 > r2},

ω3 = af,R3 = {a→ ab′, a→ b′δ, f → fff}, ρ3 = ∅,

ω4 = λ,R4 = ∅, ρ4 = ∅.

Let membrane 4 be the output membrane.

Because no object is present in membrane 1,2 and 4, the computation starts

only in membrane 3, using the objects a, f . Using the first and the third evolution

rules of this membrane in a parallel manner after n − 1 steps (n > 1) we get

n − 1 occurrences of b′ and 3n−1 occurrences of f . In any moment, we can use

a→ b′δ instead of a→ ab′. When we have n instances of b′ and 3n instances of

f we dissolve membrane 3. The obtained configuration is the following:

– µ = [1[2[4]4]2]1;

– ω1 = λ,R1 = ∅, ρ1 = ∅,

ω2 = b′nf3
n

, R2 = {b′ → b, b → bcin4
cin4

, r1 : fff → aaf, r2 : f → aδ},

ρ2 = {r1 > r2},

ω4 = λ,R4 = ∅, ρ4 = ∅.

The rules of the former membrane labelled with 3 are lost, and now the

rules of membrane 2 are active. Because of the priority relation we have to use

fff → aaf as much as possible. In one step we get bn from b′n and the number

of occurrences of f is divided by three. In the next step 2n occurrences of c are

introduced in membrane 4, and at the same time the number of f occurrences

is divided again by three.

We can continue, at each step further 2n occurrences of c are introduced in

the output membrane. This can be done in n steps: n − 1 step when the rule

fff → aaf is used and finally one step when using f → aδ. Now membrane 2

is dissolved, its rules are removed. The obtained configuration is the following:

– µ = [1[4]4]1;

– ω1 = a3
n

bn, R1 = ∅, ρ1 = ∅,

ω4 = c2n2

R4 = ∅, ρ4 = ∅.

Consequently, defining the output as the number of objects in region 4 at

the halting configuration we get

N(Π) = {2n2|n > 1}.

This is a generative system, it starts from a unique initial configuration and

it non-deterministically collects in its output membrane different values of 2n2,

n > 1.

1317Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

3 A Brief Introduction into Graphical Operating Systems

3.1 Some of the Main Concepts of Operating Systems

The operating system controls the resources of the computer and makes it acces-

sible to the users. It enables the users to run programs, controls the peripherals

connected to the computer (drivers, terminals, printers, etc.), and maintains a

file system to the storage of data, programs and documents

([Silberschatz, Galvin and Gagne (2004)], [Tanenbaum and Woodhull (1999)]

and [Kernighan and Pike (1987)]).

The concept of process plays an important role in every operating system.

A process is nothing else but an executing program. In the process model every

program (including the operating system itself) consists of sequential processes,

every process having an own virtual CPU.

These processes build a hierarchical tree structure, just like the files in the

file system. The root of the tree is the core of the operating system, and all the

nodes (children) are the processes which stem from the operating system. Each

process (but the core) has a parent, and all the processes can have children. In

the Linux operating system the process called init is the first real process of

the system, its process-id is 1, it is the root of the tree. All the other processes

are the descendants of init (see, for instance, [Stones, Matthew and Cox (2000),

Robbins (2004)] and [Bányász and Levendovszky (2003)] for more details).

Computer systems can run more processes abreast. In most cases the number

of processes is higher than the number of processors. To run the processes more

or less abreast, the operating system has to switch between processes getting

the processor. So, a process can be in different stages while running. It can be

running (in that given moment it is using the CPU), it can be ready to run (it is

stopped temporarily, to let another process to run), or it can be blocked (it can’t

run until a certain event does not ensue). There are different types of schedul-

ing algorithms detailed for example in [Bányász and Levendovszky (2003)] and

[Tanenbaum and Woodhull (1999)], but dealing with them is not the concern of

this paper.

The windows we use in graphical operating systems represent the processes

running on the system, which are important for the user (some other processes

running behind are important for the administrators and programmers or for the

system itself, but not for average users). On the screen we can’t clearly see the

tree structure built by the processes: the windows are not necessary embedded

in each other, but sometimes it is very important to know which window was

started from which window (just a very simple example: it is important to know

to which editor the “file opening” window belongs in case two or more editors

are open).

1318 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

3.2 Graphical Interfaces

A graphical user interface (GUI) is a method of interacting with a computer

through the direct manipulation of graphical images. It provides a user friendly

communication between the computer system and the user.

Graphical interfaces have two kinds of devices: controlling devices (for ex-

ample the mouse) and visualizing devices (for example the surface of a media

player).

In our approach the way of the communication initiated by the computer is

more important than the control role of the user, therefore we underlie mostly

the appearance of the screen.

Palo Alto Research Center (PARC) invented the first graphical computer in

1973. Its most striking feature was its display, which featured full raster-based,

bitmapped graphics at a resolution of 606 by 808. Apple Computer was founded

in a garage in 1976. Apple’s Lisa computer was transformed by the influx of

PARC people. Apple changed its research direction to GUIs. Lisa interface (see

Fig. 2, left) was the first to have the idea that icons could represent all files in

the filesystem, which could then be browsed through using a hierarchal directory

structure where each directory opened in a new window ([Wichary]).

Figure 2: Screenshot of Lisa (left) and GEOS (right)

A competing product Windows (see Fig. 3, where sreenshots of some ver-

sions are shown) was released in 1985, it was in color and had all the usual GUI

trappings, such as scrollbars, window control widgets, and menus, although in-

stead of a single menu bar as on the Lisa, each application had its own menu

bar attached to it, just below the title bar. On various other platforms graphical

interfaces of operating systems appeared in the middle of 80s as well, such as

GEOS on Commodore 64 (Fig. 2, right) and AmigaOS on Amiga, TOS on Atari

ST, Open Look for Solaris on SUN, Irix on Unix by Silicon Graphics.

1319Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

Figure 3: Screenshots of Win 3.1, Windows 95, Windows 2000 and Windows XP

Just before the end of the 1980s, new GUIs started appearing on Unix work-

stations. These GUIs ran on top of a networked windowing architecture known

as X, which would later be the foundation for GUIs on Linux. X Window was

developed at the MIT in the frame of the Athena-project, in 1984. Linux and

other operating systems (BSD, OS/2) use this interface, too. Nowadays the most

popular graphical interfaces for Linux are the KDE and the Gnome (see Fig. 4).

Recently the Microsoft develops the design of Windows Vista (Longhorn), while

the Apple uses Mac OS X Tiger.

The most important concept is the concept of the window. Every window

represents a (running) process. A window is a rectangular area of the screen.

A windowing system implements graphical primitives, effectively providing an

abstraction of the graphics hardware. A window system enables the user to work

with several programs at the same time. Most window systems allow windows

to overlap, and provide means for the user to perform standard operations with

a window, such as moving/resizing it, sending it to the foreground/background,

1320 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

Figure 4: Screenshots of Linux operating system with graphical interfaces KDE

and GNOME.

etc. Each window has a name (usually written at the top of the window) that

corresponds the name of the program/process and/or the name of the folder/file.

The Apple Macintosh and Microsoft Windows platforms have a vendor-

controlled, fixed set of ways to control how windows display on a screen, and

how the user may interact with them. In the X Window System the user can

choose between various window managers.

The user can also interact with the computer by some other tools.

A check box is a graphical user interface element which indicates a two-way

choice edited by the user.

Dialog boxes are special windows which are used by computer programs or

by the operating system to display information to the user, or to get a response if

needed. They form a dialog between the computer and the user - either informing

the user of something, or requesting input from the user, or both.

Most computer functions in a GUI are represented by a function icon. Icons

are small graphics visualizing devices; they provide a way to deal very easily

with these devices, we can copy, delete, run, open, etc. them very easily. Placing

the cursor on the icon, and clicking (or double-clicking) a mouse, track-ball or

other button usually starts the function or program.

4 Comparison of Graphical Operating Systems and

Membrane Computing Systems

In this section we detail our results. We show several analogies between the

appearance and work of an operating system and the graphical representation of

the membrane computing system. We also present some important differences.

1321Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

4.1 Similarities between Operating Systems and Membrane

Computations

We can consider the membranes in the construct Π defined above as the pro-

cesses in the operating systems (windows in the graphical form). Each membrane

has its own evolution rules, dealing with the objects it gets or it has.

As we mentioned, every process has an own virtual CPU, theoretically the

processes run in a parallel way. Similarly, in a membrane computing system each

of the regions performs its own computation in a parallel way. The cell itself:

the outer membrane corresponds to the operating system itself (i.e. the process

init) or to the screen when the graphical form is considered.

There are two main concepts in both P-systems and graphical operating

systems; they are the state and the step. It is clear that the membrane structure

µ with the multisets (given, for instance by ωis) of objects describes the state of

a P-system. Similarly the actual values of variables etc. describe the state of a

program; all variables of all running programs give the state of the system. The

state of the system can more or less be seen on the screen, all programs show

the important information in the windows corresponding to them. The possible

steps are given by the evolution rules in P-systems, and by the instructions

in programs. In both cases there is a tree hierarchy of the elements: tree of

membrane-regions and tree of running processes/program windows. The roots of

these trees are: the outer membrane (i.e. the cell) and the screen. In membrane

computing systems the movement of multisets of objects (i.e. molecules, etc.)

corresponds to the flow of the information in graphical operating systems: the

objects can pass through the membranes, and they can effect membranes to

compute or generate something. In both kinds of systems direct communication

is allowed between pairs of a parent (region/program window) and its child

(region/program window).

Membranes can create new membranes - like program-windows can start/

open up new (sub)program-windows. In particular, these new membranes are

independent from their parent membranes: they have their own evolution rules,

objects, etc. Just like the new windows in the graphical interfaces, which are rep-

resentations of new processes. Window managers are also responsible for icons,

which (just like the links) represent possible new windows (files or programs),

which can be started by clicking on the icons (or the links). This fact is similar to

the way new membranes are born in P-systems (the objects sent in correspond

to the value of a parameter).

The labels of the membranes are unique just like the process-ids of the pro-

cesses in the Unix operating system: we can refer with these labels to the mem-

branes in evolution rules of other membranes (for instance sending a “message”

in).

We assume the existence of a global clock in membrane systems just as in the

1322 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

case of classical computers. Both systems - membrane computing and classical

operating system - work with a discrete time scale. A discrete clock globally

regulates the computation, the running processes in the same or in different

regions can be synchronized in an intuitive manner.

In some membrane computations (like the one presented in Example 1) some

of the regions are waiting for the termination of the computing one. This phe-

nomenon is closely related to the sequential execution of a program (in an op-

erating system).

Just like processes, membranes are dynamic entities. Both can change per-

manently, the process is running particular commands one after another, and

the membrane performs evolution rules, and this way its state is changing.

Each window can be closed by terminating the program it represents. Usually

a subprogram closes if it has finished its computation. This function of the

windows looks like the evolution rule in a membrane which contains a δ sign

after the arrow: this evolution rule terminates the membrane and it can give the

(computed) answer to the parent one.

Evolution rules function like the steps of a program. Using catalysts and

priority relations we can simulate for instance, conditional statements and loops.

A loop is considered in the next example.

Example 2.

Π2 = (V, T, C,Hµ, ω1, ω2, (R1, ρ1), (R2, ρ2))

where

– V = {a} ∪ V ′;

– H={1,2 };

– µ = [1[2]2]1;

– ω1 = λ,R1 = Γ1,

ω2 = av, (v ∈ (V ′)∗), R2 = Γ2 ∪ {r1 : a → aa, r2 : a2
n

→ δ}, with r1 < r2,

where Γ2 is over V ′ and n is an arbitrary fixed positive integer.

Membrane 2 functions like a loop: it computes something (by the rules of Γ2),

and n denotes the number of evolution steps before membrane 2 is dissolved.

After n steps the objects in membrane 2 will get into membrane 1 giving the

result of the loop.

There is a very simple way to use catalysts to implement a condition. The

number of catalysts of a region directs the parallelism inside the region: it gives

a maximum of the number of application of the given rule at the same time. In

a simulation of traditional programming they can be used to implement condi-

tional statements in the following way.

1323Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

Suppose that a region has some instances of the object a and it has a (given)

number of catalyst c. Having ca→ ca > a→ bout among the rules of the region,

it is clear that the object b will be sent out only if the number of a’s is larger

than the number of c’s.

Priority relation may also be used to implement choices. The following ex-

ample shows a multiple choice by using the number of objects b.

Example 3.

Π3 = (V, T, C,Hµ, ω1, ω2, ω3, (R1, ρ1), (R2, ρ2), (R3, ρ3))

where

– V = {b, c, d} ∪ V ′;

– H = {1, 2, 3};

– µ = [1[2]2[3]3]1;

– ω1 = cd,R1 = {c → c, c → bc, d → d, d → db, d → dbb, r1 : cb → cin2
, r2 :

bd→ din3
, r3 : bbb→ λ}, ρ1 = {r1 < r2 < r3},

ω2 = λ,R2 = Γ2,

ω3 = λ,R3 = Γ3.

This membrane works like the “case of” in the most programming languages.

It depends on the number of b objects (up to 3), which inner (or even neither of

them) membrane will start by getting an object.

We note here, that a next configuration of a P-system can be computed in

at most linear time of the number of objects.

4.2 Differences between Graphical Operating Systems and

Membrane Computing Systems

In this section we show some essential differences of these systems. The global

time is used in a sequential deterministic manner in computers, while in a (max-

imal) parallel, non-deterministic manner in membrane computing. (Note here,

that in many applications of P-systems a very limited number of regions work

in the same time (see, for instance Example 1), therefore a deterministic sys-

tem with a random generator can effectively simulate some membrane computa-

tions). The other very important difference is that in P-systems after planning

the model and starting the computation there is no way to dynamically con-

trol it. In (graphical) operating systems the user almost always can control the

programs and windows. Now we give some more details.

1324 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

Most operating systems are multitask systems, the processes are separated

tasks with their own rights, and they run parallel with each other. On the other

hand, most of the personal computers have only one processor. This is why the

operating system can perform only one operation in one step, and this is why

processes have to wait in a priority queue.

In contrast to this, membrane system can work in a massive parallel manner.

As we mentioned above, the processes of an operating system can be in dif-

ferent stages. Because of the massive parallelism in the membrane system there’s

no need for these kind of stages. Every membrane does its own job, more or less

independently of the others. Of course it can happen that a membrane is waiting

for another membrane’s output, just like a process in the state interruptible in

Linux.

In the case when a membrane is waiting for an external event, we don’t need

to store it’s state anywhere. The “memory” of the membrane system is stored

in its own state by the multisets of symbols.

The membranes (and their evolution rules, too) function parallel and inde-

pendent from each other, they don’t have to rival for resources. There is no

scheduling algorithm or scheduler in a membrane system; the synchronizing of

the regions must be done by the objects and careful design. It is very important

in real parallel computations (when the computation goes on in several regions

in the same time) to know when the expected result(s) can appear in the parent

region. We must plan when and how the objects will appear, for instance, syn-

chronization is needed for the children membranes giving back some objects for

further calculations (see Example 4).

Example 4.

Π4 = (V, T, C,H, µ, ω1, ω2, ω3, ω4, (R1, ρ1), (R2, ρ2), (R3, ρ3), (R4, ρ4))

where

– V = {a, b, c, d} ∪ V ′;

– µ = [1[2]2[3]3[4]4]1;

– ω1 = λ,R1 = {abc→ din2
din3

din4
},

ω2 ∈ (V \ {a, d})∗, R2 = Γ2 ∪ {d→ δ, } ∪ {v → aout},

ω3 ∈ (V \ {b, d})∗, R3 = Γ3 ∪ {d→ δ} ∪ {w → bout},

ω4 ∈ (V \ {c, d})∗, R4 = Γ4 ∪ {d→ δ} ∪ {x→ cout}.

where v, w and x are strings meaning that the (sub)computation finished in

the given membrane.

1325Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

Membrane 1 sends dissolving messages (objects d) only if all the 3 children

finished their own computation.

In the present models we cannot control the function of the membrane system

with outer devices. We have no checkbox, no dialog window or any other kind of

window to communicate with the user. We code it to the evolution rules by plan-

ning the system carefully. We should care about all possible states may evolve

by the system, about the possible membrane structure with the communicating

symbols and the time they pass in/out.

The same difference appears between command line processing and program-

ming: in operating systems the user gives commands, while in P-systems an en-

coded program is running. In our opinion this difference can be resolved. One

can write a batch-like program which simulates the user opening and closing

programs. We also believe that an (“interactive”) variation of P-systems can

work such a way that a scientist/user has influence on the computation while it

is running.

In the end of this section we present one more difference which is connected to

the aim of use of these systems. Traditionally P-systems compute some problems,

the aim is to have a solution/answer by the halting of the system. An operating

system is stable, working well and useful if there is no halting (theoretically it

should work continuously). This difference does not confuse us. We can imagine

P-systems as (membrane-)computers producing something useful not only by

the stopping (membrane OS).

4.3 Simulating an Operating System with a Membrane

Computation

With special evolution rules one can simulate the most of the functions of a

graphical operating system with a membrane system. If one would like to sim-

ulate the function of an operating system running on a mainstream (one-CPU)

computer, it would be necessary to build into the membrane system a synchro-

nizing system like the following one.

Example 5.

Π5 = (V, T, C,H, µ, ω1, ω2, (R1, ρ1), (R2, ρ2))

as Fig. 5 shows.

In this example the membrane system produces no output. Membrane 1 is

running like an operating system which controls membrane 2. The clock signal

splits between the two membranes, only one of them is operating at each step.

1326 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

Figure 5: Synchronization in a membrane system

In P-systems direct communication can only happen between a child and

its parent (regarding the tree-form of the membrane structure). In operating

systems it can occur that information is exchanged between applications (pro-

grams), for instance by the clipboard one can put some data from a text-editor to

a table-editor. A possibility is to simulate these processes by P-systems to have

membrane-structure in arbitrary graph form. Now we do not want to make any

modification of the membrane systems already defined and described. To have

communication between further regions one can use special symbols. In the next

example a possible way of communication between non parent-child membranes

is shown.

Example 6.

Π6 = (V, T, C,Hµ, ω1, ω2, ω3, ω4, (R1, ρ1), . . . , (R4, ρ4))

where

– V = {a4} ∪ V ′;

– µ = [1[2[3]3]2[4]4]1;

– ω1, R1 = Γ1 ∪ {a4 → (a4)in4
},

ω2, R2 = Γ2 ∪ {a4 → (a4)out},

ω3, R3 = Γ3 ∪ {a4 → (a4)out},

ω4, R4 = Γ4.

where a4 can occur only on right-hand-side of rules of Γ1 ∪ Γ2 ∪ Γ3.

In this example a4 is a special object; only region 4 can deal with it other

regions may produce and must transfer it to the direction of the target (region

4). If Γ3 contains rules like a→ aa; an → a4 where n is an arbitrary fixed integer

(n > 2), and Γ4 contains a rule like a4a4 → a4 then this example will be just like

1327Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

the classical producer-consumer problem. From time to time membrane 3 can

produce objects a4 and sends them to membrane 4 which reduce their number.

Operating systems can run several other programs (applications). They are

deterministic programs. A version of P-systems, deterministic P-systems have

this property. As we showed in the Examples 2 and 3 P-systems can simulate

the run of various structured programs.

An apparent difference is the following: in operating systems we only have

the outer window initially, while in P-systems we start with an initial structure

µ. This difference can be handled in the following recursive manner. Let Π be

the initial configuration of the membrane computing system we want to use.

Let k be the depth of the tree representing the structure of regions. If k = 1

then it is done. In other cases choose all the regions which are at the bottom

(k-th) level. Let a region labelled by j be a chosen membrane, then delete it

and give a new rule x → v to its parent, where (w)in
ĵ
is a subword of v (and

v contains membrane creating parts (w)in
k̂
for all of the sisters of the chosen

membrane), furthermore x is a new symbol object (not in the previous system,

and must be different for every deleted region), w gives the multiset of the initial

configuration of the chosen deleted membrane and v describes the multiset of

the objects at the initial configuration in the given membrane as well (in the

previous version). Change the multiset of objects to x at the given membrane in

the initial configuration. After removing all the regions at the deepest level and

changing their parents, modify every other region in the following way: Give a

new rule y → w, where y is a new symbol object and w is the initial multiset of

this region. Change the initial multiset to {y}.

If the resulted system has more than 1 regions repeat the procedure. Finally a

1-region P-system will be described (with some additional objects in the alphabet

and some additional rules) which develops the P-system we want in the first k

steps in a deterministic way. (So using P-systems one can build a tree linear

time by its depth. This phenomenon greatly increases the computing efficiency

of these systems.)

4.4 Simulating Membrane Computing with an Operating System

If we would like to have an efficient simulation of a membrane computation

with a (graphical) operating system (with a mainstream hardware), we would

have serious restrictions: we would have to use a fixed number of membranes

(processes), because of the fixed number of CPUs.

Deterministic computation with random value generation can simulate sev-

eral language generating P-systems. Usually a word (or a multiset) is generated

by a run. In Example 1, which generates the doubles of squares, in any time

only one membrane is working, so it can easily be simulated by an operat-

ing system running on a mainstream computer. The situation is the same at

1328 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

most of the language generating membrane systems. But in the case of SAT

and other hard problems the massive parallelism of the P-systems is used, so

we need more processes working at the same time. The massive parallelism

is used to efficiently attack hard (NP-complete, P-SPACE etc.) problems. We

have an exponential slow-down using a fixed number of CPUs in the simula-

tion. Having a membrane structure with limited number of regions an effective

simulation is possible with a computer. (In the case when the number of CPUs

and the number of regions are identical, a one-to-one correspondence can be

established between them.) We note here that several operating systems have

versions using several (i.e. up to 8, 32, 128) processors. Using active membranes

with (theoretically) not bounded number of regions an effective simulation needs

a dynamic system which can increase the number of processors. The so-called

GRID systems have this property (in practice, of course, up to a limit), as we re-

call briefly from [GRID computing]. Computational GRIDs enable the sharing,

selection, and aggregation of a wide variety of geographically distributed compu-

tational resources (such as supercomputers, compute clusters, storage systems,

data sources, instruments, people) and present them as a single, unified resource

for solving large-scale and data intensive computing applications (e.g, molecu-

lar modelling for drug design, brain activity analysis, and high energy physics).

This idea is analogous to the electric power network (grid) where power gen-

erators are distributed, but the users are able to access electric power without

bothering about the source of energy and its location. In these systems the

resources, such as the number of computers (processors) can dynamically be

changed according to the needs of the computation. There are special type of

programming techniques (that play similar role as a network operating system)

required by GRIDs ([Kacsuk et al. 2003b], [Kacsuk, Kónya and Stefán 2004c]).

Several newer variations, such as second generation GRID technology: Open

Grid Services Architecture, and semantic GRID are also developed.

GRID techniques is used in several computation in various fields of science

(Biology, Physics, Chemistry) where the same type of computation is needed

for several cases/instances. A well-known example for GRID computing is the

project SETI ([SETI@home]). The computation can go in a parallel way, because

the partial results does not depend on each other. Analogously, the computation-

with membranes has the same phenomenon: the computational processes in the

deepest levels cannot communicate with each-other, they are highly independent.

The server (as the outer membrane) collects the subresults and evaluate them.

So we believe that the connection between P-systems and GRID supercomputing

can be productive.

1329Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

5 Conclusions

We start this section by a short summary of our paper. Several analogies be-

tween P-systems and graphical operating systems are listed. The most important

common concept is parallelism.

Membrane Systems Graphical Operating Systems

membrane window (program)

evolution rules steps of a program

evolution rule with δ closing the window

objects information, data

global clock global clock

tree structure of membranes tree structure of windows (processes)

Now, some words about the conclusions and about the future work.

Membrane computing is one of the newest computing paradigms which devel-

ops very rapidly. P systems are models of dynamically changing systems which

are in communication (interaction) with their environments as well. The graph-

ical interfaces of the operating systems are the most important tools to bring

the computers close to millions of people. There are several similarities between

the way they work. Moreover their appearances in graphical form/representation

have some similarities. Based on these facts a comparison is detailed. We hope

that this comparison helps to develop/simulate P-systems in practical applica-

tions. GRID technology can be a strong candidate to develop “massive parallel

computers”. We also believe that a universal P-computer will need an operating

system which can simulate/service the tools needed by the user. Our paper gave

some hints in that direction as well.

Other comparisons between traditional and membrane computing devices are

left for future research, such as between structured programs, object oriented

program models and P-systems or operating systems and some other membrane

systems, for instance, accepting P systems like P automata (see, for instance,

[Csuhaj-Varjú and Vaszil 2003c]).

Acknowledgements

The authors would like to thank to Marcin Wichary for the permission of use

his collection of screenshots of various graphical operating systems.

Benedek Nagy acknowledges the financial support provided through the Eu-

ropean Community’s Human Potential Programme under contract HPRN-CT-

2002-00275, SegraVis. The work is partially supported by grants of the Hun-

1330 Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

garian National Foundation for Scientific Research (OTKA F043090 and OTKA

T049409).

The advice of the referees is also gratefully acknowledged.

References

[Bányász and Levendovszky (2003)] Bányász, G. and Levendovszky, T.: Linuxpro-
gramozás” (Linuxprogramming, in Hungarian); Szak Kiadó, Hungary (2003).

[Csuhaj-Varjú and Vaszil 2003c] Csuhaj-Varjú, E. and Vaszil, Gy.: “P automata”.
Paun, Gh., Salomaa A., Zandrom, C. (eds.): Membrane Computing. Lecture Notes
in Computer Science, 2597., Springer, Berlin (2003) 219-233.

[GRID computing] Grid Computing Information Centre at http://www.
gridcomputing.com/

[Kacsuk et al. 2003b] Kacsuk, P., Dózsa, G., Kovács, J., Lovas, R., Podhorszki, N.,
Balaton, Z. and Gombás, G.: “PGRADE: a Grid Programming Environment”; Jour-
nal of Grid Computing 1 (2003), pp. 171-197

[Kacsuk, Kónya and Stefán 2004c] Kacsuk, P., Kónya, B. and Stefán, P.: “Production
Grid Systems and Their Programming”; Lecture Notes in Computer Science, 3241,
Springer, (2004). p. 13.

[Kernighan and Pike (1987)] Kernighan, B. W. and Pike, R.: “The UNIX Program-
ming Environment”; Prentice-Hall Inc. (1984). Hungarian Edition: “A UNIX
operációs rendszer”; Müszaki Könyvkiadó, Budapest, Hungary (1987).

[P systems] The P systems web page at http://psystems.disco.unimib.it
[Paun and Dassow 1999b] Paun, Gh. and Dassow, J.: “On the Power of Membrane

Computing”; J.UCS (Journal of Universal Computer Science), 5, 2 (1999), 33-49.
[Paun 2000b] Paun, Gh.: “Computing with Membranes”; Journal of Computer and

System Sciences, 61, 1 (2000), 108-143. and Turku Center for Computer Science -
TUCS Report 208 (1998).

[Paun (2002)] Paun, Gh.: “Membrane Computing. An Introduction”; Springer-Verlag,
Berlin (2002).

[Paun and Rozenberg 2002b] Paun, Gh. and Rozenberg, G.: “A Guide To Membrane
Computing”; Theoretical Computer Science, 287 (2002) 73-100.

[Robbins (2004)] Robbins, A.: “Linux Programming by Example: The Fundamentals”;
Prentice Hall (2004).

[SETI@home] SETI@home: Scientific project for Search for Extraterrestrial Intelli-
gence (SETI) at http://setiathome.ssl.berkeley.edu/

[Silberschatz, Galvin and Gagne (2004)] Silberschatz, A., Galvin, P.B. and Gagne, G.:
“Operating System Concepts”; John Wiley & Sons (2004).

[Stones, Matthew and Cox (2000)] Stones, R., Matthew, N. and Cox, A.: “Beginning
Linux Programming”; Wrox (2000).

[Tanenbaum and Woodhull (1999)] Tanenbaum, A.S. and Woodhull, A.S.: “Operat-
ing Systems. Design and Implementation”, Second Edition; Hungarian Edition:
“Operációs rendszerek”, Panem-Prentice-Hall, Budapest, Hungary (1999).

[Wichary] GUIdebook: Graphical User Interface gallery, by Marcin Wichary at http:
//www.guidebookgallery.org

1331Nagy B., Szegedi L.: Membrane Computing and Graphical Operating Systems

