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Abstract: In this paper we show how the distance functions generated by neighbor-
hood sequences provides flexibility in image processing algorithms and image database
retrieval. Accordingly, we present methods for indexing and segmenting color images,
where we use digital distance functions generated by neighborhood sequences to mea-
sure distance between colors. Moreover, we explain the usability of neighborhood se-
quences within the field of image database retrieval, to find similar images from a
database for a given query image. Our approach considers special distance functions to
measure the distance between feature vectors extracted from the images, which allows
more flexible queries for the users.
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1 Introduction

Since the first proposal of Rosenfeld and Pfaltz on mixing the 4- and 8- neigh-

borhoods for better approximation properties [Rosenfeld and Pfaltz, 1968] the

investigation of theory of neighborhood sequences grows rapidly [Hajdu et al.,

2004] [Hajdu et al., 2005c] [Das et al., 1987] [Hajdu et al., 2005a] [Nagy, 2003]

[Fazekas et al., 2002] [Hajdu et al., 2005b] [Hajdu and Hajdu, 2004] [Hajdu et al.,

2003] [Fazekas, 1999] [Fazekas et al., 2005]. However, the actual applicability of

these theories has not yet been revealed. In this paper, we summarize some

former practical results regarding measuring distance using neighborhood se-

quences [Hajdu et al., 2004] [Hajdu et al., 2003], and show how new application

schemes can be derived from them also in another field.
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To begin with showing applicability, we begin with recalling some methods

for indexing and segmenting color images using neighborhood sequences [Hajdu

et al., 2004] [Hajdu et al., 2003]. The proposed procedures are based on well-

known algorithms, but now we use digital distance functions generated by neigh-

borhood sequences to measure distance between colors. The application of such

distance functions is quite natural and descriptive, since the color coordinates

of the pixels are non-negative integers. An additional interesting property of

neighborhood sequences is, that they do not generate metric in general, so we

can obtain many distance functions in this way. We describe our methods for

RGB images in details, but other image representations also could be considered.

Moreover, the proposed methods can be applied in arbitrary dimensions without

any difficulties.

Image database retrieval is a developing field with growing interest [Santini,

2001] [Lew, 2001] [Chang, 1997] [Chang and Lee, 1991] [Carson et al., 1999] [El-

masri and Navathe, 1994] [El-Kwae and Kabuka, 2000] [Grosky, 1990]. In case of

a query image, many features (color, texture, distribution of segments, etc.) can

be considered to find similar images in a database. A usual procedure is to extract

similarity values and compose similarity vectors according to these features.

Then some measurement is applied to calculate the norm of the similarity vectors

(that is the distance between the query image and the images in the database).

Such a norm can be the weighted Euclidean one applied e.g. in Oracle9i. In this

paper we propose a new method to calculate the norm of the similarity vectors.

Our approach is based on neighborhood sequences, and we will show that for

some purposes it allows more flexible queries for the users to make than the

classic methods.

2 Neighborhood Sequences

In this chapter, we recall the basic concepts and properties of neighborhood

sequences (NS). For more details, see [Danielsson, 1993] [Das et al., 1987] [Fa-

zekas, 1999] [Fazekas et al., 2002] [Hajdu and Hajdu, 2004] [Hajdu et al., 2005a]

[Hajdu et al., 2003] [Kiselman, 1996] [Rosenfeld and Pfaltz, 1968] [Yamashita

and Ibaraki, 1986].

In [Rosenfeld and Pfaltz, 1968] Rosenfeld and Pfalz introduced the concepts

of octagonal distances by mixing the 4- and 8-neighborhood relations in 2D.

In [Yamashita and Ibaraki, 1986] Yamashita and Ibaraki introduced the concept

of general periodic NS in Z
n, which was generalized further to non-necessarily

periodic sequences in [Fazekas et al., 2002].
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2.1 General Neighborhood Sequences

Let n ∈ N and two points p, q ∈ Z
n. Pri(p) indicates the ith coordinate of point

p. Further let m ∈ N, 0 ≤ m ≤ n. The points p and q are m-neighbors if the

following two conditions hold:

– |Pri(p) − Pri(q)| ≤ 1 for all 1 ≤ i ≤ n

–
∑n

i=1 |Pri(p) − Pri(q)| ≤ m

The sequence B = {b(i)}∞i=1, where b(i) ∈ {1, . . . , n} for all i ∈ N are called an

n-dimensional neighborhood sequence. That is the ith element of the sequence

prescribes that we can move to b(i)-neighbors at the ith step.

If there exists l ∈ N so that b(i + l) = b(i) for all i ∈ N, then B is called a

periodic neighborhood sequence with period l. The brief notation of a periodic

B neighborhood sequence with period l is B = {b(1)b(2) . . . b(l)}. For example

B = {112} means the sequence {112112112 . . .}. In case the period length is 1, B

is called a constant neighborhood sequence. The set of nD periodic neighborhood

sequences is denoted by Sn.

If we can obtain a periodic neighborhood sequence from a B ∈ Sn omitting

its first finitely many elements, then we call B an ultimately periodic neighbor-

hood sequence, and denote it by B ∈ UPn. The brief notation of an ultimately

periodic neighborhood sequence is B = {b(1) . . . b(k)b(k + 1) . . . b(l)}. That is if

we remove the first k element of B, we obtain a periodic neighborhood sequence

with period length l − k. More details on ultimately periodic sequences can be

found in [Hajdu et al., 2005a].

In this paper we will only use neighborhood sequences for our purposes in

3D case. Our approach in image processing and also in database retrieval can

be extended in arbitrary dimension.

2.2 Distance Measurement

Let p and q be two points in Z
n and B ∈ Sn. The sequence of points p =

p0, p1, . . . pm = q, where pi−1 and pi are b(i)-neighbors, are called B-path from

p to q with length of m. The shortest B-path is the B-distance between p and

q, denoted by d(p, q;B).

In [Fazekas et al., 2002] an algorithm is given for calculating the distance by

neighborhood sequences. It can be summarized as follows.

1. Let x = (x1, x2, . . . xn) the nonascending ordering of |Pri(p)−Pri(q)| for all

1 ≤ i ≤ n.

2. In every step the first b(i) elements of x should be decremented by 1.

3. x should be resorted nonascendingly.
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4. Steps from 2 to 4 should be repeated until every items in x are 0.

The distance functions generated by neighborhood sequences are not metrics

in general. This is the triangular-inequality (d(p, q;B) ≤ d(p, r;B) + d(r, q;B)

with p, q, r ∈ Z
n, B ∈ Sn) does not always hold as it is shown in Example 1.

Example 1. Let p = (0, 0), r = (1, 1), q = (2, 2) ∈ Z
2 and B = {21} ∈ S2 2D

periodic neighborhood sequence. Then d(p, r;B) = d(r, q;B) = 1, because 2-

neighborhood steps are used. On the other hand, q can be reached from p in

three steps, that is (d(p, r;B) = 3) [see Fig. 1].

(2,2)

(1,1)

(0,0)

(a)

(2,2)

(1,1)

(0,0)

(b)

(2,2)

(1,1)

(0,0)

(c)

Figure 1: Example for the neighborhood sequence is not a metric; (a) d(p, r;B) =

1, (b) d(r, q;B) = 1, (c) d(p, q;B) = 3.

With the following result of [Nagy, 2003] we can decide whether the distance

related to B is a metric on the nD digital space, or not [Fazekas et al., 2005].

Theorem 1. [Nagy, 2003] Let A ∈ Sn, and for every i ∈ Z
+ and j ∈ {1, . . . , n}

put A(j)(i) = min(A(i), j). Then d(A) is a metric if and only if

k
∑

i=1

A(j)(i) ≤

k+t−1
∑

i=t

A(j)(i)

for any k, t ∈ Z
+.

2.3 Neighborhood Sequences for Retrieval Purposes

To prove the applicability of neighborhood sequences in image retrieval, we will

fix some common image features to determine image similarity. Namely, we will

focus on color, shape and texture. These features are usually described with

high dimensionality, from which scalar similarity values can be derived, and

thus a special 3D domain can be obtained. Using the quantitative information
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of the independent similarities of these features we make a common similarity

measurement by neighborhood sequences. For this approach, we use two special

families of the generalized 3D ultimately periodic sequences, introduced in [Haj-

du et al., 2005a]. Here, a neighborhood can contain a finite class of vectors (and

is not restricted to the direct neighbors).

Classic NS (CNS) The first family contains the following neighborhoods.

N1 = {O, (0, 0,±1), (0,±1, 0), (±1, 0, 0)},

N2 = N1 ∪ {(0,±1,±1), (±1, 0,±1), (±1,±1, 0)} and

N3 = N2 ∪ {(±1,±1,±1)}.

Note that these neighborhoods are based on the well known 6-, 18- and 26 neigh-

borhood, respectively. We denote this classic subset of neighborhood sequences

by CNS3 [see Fig. 2].

(a) (b) (c)

Figure 2: Neighborhoods used for CNS3; (a) N1, (b) N2, (c) N3.

Subspace NS (SNS) The next family of neighborhood sequences consist the

following neighborhoods:

Nx = {O, (±1, 0, 0)}, Ny = {O, (0,±1, 0)}, Nz = {O, (0, 0,±1)},

Nxy = Nx ∪ Ny ∪ {(±1,±1, 0)},

Nxz = Nx ∪ Nz ∪ {(±1, 0,±1)},

Nyz = Ny ∪ Nz ∪ {(0,±1,±1)} and

Nxyz = Nxy ∪ Nxz ∪ Nyz ∪ {(±1,±1,±1)}.

Each of these neighborhoods spans a 1D, 2D or 3D subspace of Z
3, respectively,

thus the set of the sequences generated by them is denoted by SNS3 [see Fig. 3].

With the sequences of these neighborhoods we can explicitly prescribe which

coordinate(s) are allowed to change at a step, while CNS3 sequences let as pre-

scribe the number of the changeable coordinates only. Note that CNS3⊂SNS3,

nor SNS3⊂CNS3 and Nxyz = N3.

Mixed NS (MNS) The third family of neighborhood sequences is the mix-

ture of the CNS3 and SNS3 so the allowed neighborhoods are the followings:
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(a) (b) (c)

(d) (e) (f)

Figure 3: Neighborhood used for SNS3; (a) Nx, (b) Ny, (c) Nz, (d) Nxy, (e) Nxz,

(f) Nyz (for Nxyz see [Fig. 2(c)].

N1, N2, N3, Nx, Ny, Nz, Nxy, Nxz, Nyz.

The set of the mixed sequences is denoted by MNS3. Note that the definition of

the three sets is extendable in arbitrary dimensions. Thus e.g. for the MNS case,

we can compose neighborhood sequences as N = {M1, ...,Mk,Mk + 1, ...,Ml}

where Mi ∈ {N1, N2, N3, Nx, Ny, Nz, Nxy, Nxz, Nyz}, i = 1, ..., l.

3 Distance Measurement in RGB Cube

Segmenting color images is primarily based on the comparison of the color of

the pixels. In image processing, we usually work with three color components as

red, green and blue. This is denoted by RGB color model. In our investigations

every component is an integer in [0, 255]. That is the 24-bit RGB cube, the

domain between black = (0, 0, 0) and white = (255, 255, 255). We consider the

points in this domain as colors. Thus we can measure distance between colors

by neighborhood sequences, see [Hajdu et al., 2003] [Hajdu et al., 2005b]. The

corresponding sequence has to be selected carefully to achieve the desired result.

3.1 Image Segmentation

We recall three segmentation methods from [Hajdu et al., 2004] [Hajdu et al.,

2003]:
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– fuzziness,

– region growing,

– clustering.

Further, we give a tool to help user to select the most suitable neighborhood

sequence.

Fuzziness The procedure selects those pixels which are within a given dis-

tance k from one or more initially fixed seed colors. The implementation of this

method for a fixed distance function can be found in Adobe R© Photoshop R©,

where it is referred as Fuzziness option. [Fig. 4] shows that the result of the

fuzziness method highly depends on the chosen seed color(s), threshold and

neighborhood sequence.

(a) Original (b) (c) (d)

Figure 4: Fuzziness from the initial seed colors (� = (204, 56, 56), � =

(102, 153, 102), � = (204, 204, 102)); (a) Original, (b) B = {1}, (c) B = {1112},

(d) B = {311}, the threshold value is set to k = 40.

Region growing Using fuzziness method, it is not guaranteed that the re-

sulting regions are connected, see [Gonzalez and Woods, 1992]. To obtain con-

nected regions we can add the distance function used in fuzziness method to a

region growing method. With region growing method we get the connected pix-

els within distance k from the initially fixed seed points color [see Fig. 5]. The

connectedness can be satisfied by arbitrary neighborhood.

Clustering Our approach is based on an algorithm for indexing color im-

ages based on cluster analysis, see [Gonzalez and Woods, 1992]. In this method

the elements of the RGB cube are classified into clusters using a suitable dis-

tance measurement. We use neighborhood sequences as distance functions. For

k-means clustering results see [Fig. 6].

3.2 Help Tools

A quantitative analysis of the proposed clustering method can be obtained by

considering a suitable measure, like the specialization of the uniformity measure
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(a) Original (b) (c)

Figure 5: Region growing of a medical picture; (a) Original, (b) region growing

with B = {1}, (c) B = {3}; the bound for the color distance is k = 70 in both

cases.

(a) Original (b) (c)

Figure 6: Clustering into 6 colors (� � � � � �); (a) Original, (b) B = {12},

(c) B = {23}.

of Levine and Nazif, see [Levine and Nazif, 1985].

Fuzziness histogram We present a tool that is to give a guideline to help

with finding the optimal neighborhood sequences and threshold values for the

method introduced above. This type of histograms can be assigned to the fuzzi-

ness method, and might be useful especially in region growing. The kth column

of the histogram illustrates the amount of the pixels whose distance from the

seed color(s) is exactly k. The shape of the histograms highly depends on the cho-

sen neighborhood sequence. A “faster” neighborhood sequence results a shorter

histogram, but significant differences may occur in the modality, as well [see

Fig. 7].

The difference between two histograms can be measured by suitable his-

togram measures [Cha and Srihari, 2002].

Global histogram Another help tool may be the histogram, which is obtained

as follows. The kth column of the histogram indicates the number of the pixel

pairs of distance k. As the method depends only on the chosen neighborhood

sequence we refer this histogram as global histogram. Similarly to the fuzziness

histogram, distance measurements can be calculated. In the following example
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(a) (b) (c)

Figure 7: Fuzziness histograms for the marked initial seed color, using different

neighborhood sequences as distant functions; (a) Original image, (b) B = {1},

(c) B = {3}.

the obtained histogram nicely reflects the values in the period of the neighbor-

hood sequence [see Fig. 8]. In case of [Fig. 8c] we used the periodic neighborhood

sequence B with period length 50. The elements of B we can get as follows:

b(i) =

{

3 if 1 < i ≤ 10,

1 if 10 < i ≤ 50.

The brief notation of the formula above is B = {310140}. Fuzziness and global

histograms are produced similarly, but in the latter case the first node has no

particular importance.

(a) (b) (c)

Figure 8: Global histograms for using different neighborhood sequences as distant

functions (a) observed image, (b) B = {123}, (c) B = {310140}.

4 Neighborhood Sequences in Database Retrieval

To store and retrieve multimedia data form databases is an important investi-

gation area [Santini, 2001]. The result of the retrieval procedure highly depends

on the method how we compare two images. For image retrieval purposes we

will concider three features. These are color, shape and texture, denoted by c, s

and t, respectively. There are standard ways to assign similarity values to each
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of c, s, t features of the database images in case of a query image. The norm of

the difference vector of two feature vector can be referred as the distance of two

image represented by their feature vectors.

When comparing with an existing database system, we will assign the x, y

and z Cartesian coordinates to the c (color), s (shape), and t (texture) values, re-

spectively, for better understanding. Thus we will use the neighborhood notation

Nc, Ns, Nt instead of Nx, Ny, Nz and so on with the other SNS neighborhoods.

Thus we will have the following neighborhoods: N1, N2, N3, Nc, Ns, Nt, Nct,

Nst, Ncs, Ncst.

For example we want to select such images that are quite close in color and

texture to the input image. The most important features should be achieved

within the least steps, while non-important features should need more steps.

Applying these considerations, a possible neighborhood sequence answer is B1 =

{N3
ctN

40
s }. In this case we allow 3 steps in the c and t directions first, then s

can be changed for 40 steps. The periodicity of B1 guarantees that we do not

exclude vectors having larger values than 3 in either their c or t coordinates,

though, they will be reached only after applying more periods. See [Fig. 9] for

the matches ranked by their distance from O, the query image.

(a) Query (b) 39 (c) 44

(d) 44 (e) 44

Figure 9: Query result for B1 = {N3
ctN

40
s }; (a) query image, (b-e) retrieved

images and their norm.

Against Oracle [iMe, 2002] [Ora, 2000] we can formulate queries which include

time factor with permuting the elements of the sequence. [Fig. 10] shows the

result of the example of separating the c and s elements of the neighborhood
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sequences used above. The meaning of this change is: “selecting the images

that are close first in color then in texture and shape to the query image”.

The result can be seen in [Fig 10] and the resulting neighborhood sequence is

B2 = {N3
c N3

t N40
s }. We can use MNS3 neighborhood sequences if we do not know

which feature to prefer to get the best result. E.g. “we need the images which are

close in color or in texture”. The result can be seen in [Fig 11] and the resulting

neighborhood sequence is B3 = {N3
c N3

t N2
2 }.

(a) Query (b) 42 (c) 47

(d) 48 (e) 48

Figure 10: Query result for B2 = {N3
c N3

t N40
s }; (a) query image, (b-e) retrieved

images and their norm.

5 Conclusions

The most indexing and segmentation methods are based on the classical Eu-

clidean metric. In image processing and image retrieval it is often more suitable

to use not only metrical distance functions in Z
n. Distances generated by neigh-

borhood sequences nicely meet this condition. In this paper we presented some

tools that may help with choosing the most suitable neighborhood sequence.

In image database retrieval the distance functions generated by neighborhood

sequences give a novel approach to formulate more flexible queries. The technique

is not limited to image databases; it can be used in other retrieval applications

and with arbitrary features, as well.

We note that our aim is not to decide about the suitability of the similarity

vectors extracted by Oracle, and so a quantitative analysis (based on e.g. some
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(a) Query (b) 25 (c) 31

(d) 50 (e) 72

Figure 11: Query result for B3 = {N3
c N3

t N2
2 }; (a) query image, (b-e) retrieved

images and their norm.

precision/recall measures [Smeulders et al., 2000]) would not be reasonable here.

Moreover, as we recommend an approach for supporting new queries, no existing

database has been scored accordingly. If we would make such a scoring (which

exhausting work is out of our scope now), then the quantitative analysis would

become useless in the lack of a valid possibility for comparisons. Moreover, the

general freedom that our approach allows for phrasing queries, would make it

extremely difficult to set up a fixed, objective scoring of a database without

further restrictions.

In the paper we showed that neighborhood sequences are capable to be used

in different types of applications. Beside the theoretical results, they have true

practical use.
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