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Abstract: The seminal algorithm developed by Ron Cytron, Jeanne Ferrante and
colleagues in 1989 for the placement of ¢-nodes in a control flow graph is still widely
used in commercial compilers. Placing ¢-nodes is necessary when converting a program
representation to Static Single Assignment (SSA) form. This paper shows that if a
variable z is defined in a set of basic blocks A(x), then the iterated join set of A(x)
can be decomposed into the computation of the iterated join set of a disjoint collection
of subsets of A(x). We use this result to show that some join set computations are
redundant. We measured the number of redundant computations in the Open Research
Compiler (ORC) in a selection of SPEC 2000 benchmarks.
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1 Introduction

Static Single Assignment (SSA) form has been used to facilitate the implemen-
tation of optimizations such as full and partial redundancy elimination, and
constant propagation. The conversion of non-SSA code into SSA form has been
extensively studied. The algorithm most commonly used in production compilers
for this conversion into SSA is still the one described by Cytron et al. [9].
Given two distinct paths in a control flow graph, a join node is the first
node, on a topological traversal, that belongs to the two paths. The conversion
to SSA renames the variables in a program in such a way that in SSA each
variable appears only once in the left hand side of any assignment. A difficulty
appears when a variable x appears in the left hand side in distinct paths, and
then it appears in the right hand side on or after a join node as illustrated by the
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(a) Original Program.

3 = ¢(x1, x2)
coo=g3

(b) Program in SSA form.

Figure 1: Example of the use of ¢-function in a join node.

example in Figure 1(a). The question is which value of = should be used on or
after the join node. The solution is to add a statement at the join node that uses
a special function called a ¢-function [9]. Conceptually the ¢-function “knows”
which path the program took to get to the join node. Figure 1 illustrates the
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transformation into SSA. The set of join nodes where ¢-functions for a variable x
must be inserted is called the join set of x, J(X). The insertion of the additional
assignment to z at a join node may itself cause new join nodes to be added to
J(X), therefore we must consider the iterated join set for z, J*(X), which is the
limit of the sequence obtained by insertions of ¢-functions for x in join nodes of
x.

Citron el al’s algorithm determines the set of Control Flow Graph (CFG)
vertices where a ¢-function must be inserted for a variable x using the iterated
join set J*(X), where X is the set of vertices in the original CFG that contains
a definition of x.! Computing the iterated join set for a variable z is expensive
because it requires the computation of the iterated dominance frontier for the
set of vertices that define = (see Theorem 1 in Section 3). A trivial observation is
that if two variables z and y are defined in the same set of vertices, the vertices
that require a ¢-function for z and y are the same.

In this paper we revisit Cytron et al.’s ¢-placement algorithm. Let A(y) be
the set of vertices that define y, and A(x) be the set of vertices that define z.
We show that if A(y) is a subset of A(x), then the iterated join set for y can
be reused when computing the iterated join set for z. In order to show that
reusing partial join sets is sound, we have to prove that if X is decomposed
into disjoint multi subsets, X = X; U Xo U ... U X, then the iterated join set
of X is equal to the union of the iterated join sets of the subsets, J7(X) =
J+(X1) @] J+(X2) U...uU J+(Xn)

An empirical study, presented in Section 5, finds dominance frontier com-
putations that can be eliminated through the use of this theoretical result in
a selection of SPEC 2000 CINT benchmarks. Eliminating dominance frontier
computations is relevant because computing the dominance frontier is the most
time consuming portion of the SSA conversion algorithm. The remainder of this
paper is organized as follows. Section 2 presents an example to motivate the
partitioning of join sets and the proofs presented in Section 3. The theoretical
results are then used to argue, in Section 4, that some join set computations are
redundant. Related work is discussed in Section 6.

2 Motivating Example

Consider the fragment of a control flow graph in Figure 2. The set of ver-
tices that make an assignment to a variable z is called A(z). In this example

1 A vertex defines a variable z if = appears in the left-hand side of any statement in
the vertex.
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Figure 2: Example of sets of assignments for two variables, x and y

A(J?) = {Bl,BQ,Bg,B4,B5} and A(y) = {Bl7BQ,B5}. Clearly, A(y) C A(l‘)
A(z) can be split into two subsets: Aj(z) = A(y) = {Bi,B2,Bs} and
Ag(x) = A(x)—A(y) = {Bs, Bs}. The iterated join sets of A(y) and A4 (z) are the
same. The question is: can the iterated join set of A(z), J*(A(z)) be expressed
as the union of the iterated join set of A;(z) and As(z), or JT (A1 (z) U Az(x))?
In Section 3 we show that the answer is yes. Therefore if J*(A(y)) is computed
first, then we only need to compute J*(Az(z)) to obtain J*(A(z)). Cytron et
al.’s algorithm is a worklist algorithm. Using the result of this paper, the size of
this worklist can be reduced, thus resulting in fewer computations.

3 Join-Set Partitioning

The objective of this paper is to improve the conversion of intermediate code to
static single-assignment form within a procedure. The notation G(V, E) refers
to a CFG whose vertices V' represent the procedure’s basic blocks. An edge
(Bi, Bj) € E represents the possibility that control may be transfered from B;
to Bj at runtime. A time-intensive phase of an SSA conversion algorithm is
the determination the minimum set of nodes that requires a ¢-function for each
variable z in the code, or S4(x). A variable that is defined more than once in
the original code requires a ¢-function in each node joining paths that contain
definitions of x. The problem is compounded by the fact that a ¢-function is
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itself a definition of x. Therefore the algorithm that computes the join set for a
variable has to iterate until no more join nodes are found.

Definition 1 Given a control flow graph G(V, E) with a distinct start vertex
B, € V. If every path from Bs to B; € V goes through B; € V, then B;
dominates of B;. Every vertex dominates itself. If B; dominates B; and B; # B;,
then Bi strictly dominates B;.

Definition 2 Consider a node B; € V. The dominance frontier of B;, DF(B;),
is the set of all nodes B; € V such that B; dominates a predecessor of B;, but
B, does not strictly dominate B, itself [9].

When constructing the SSA form, if a variable x has multiple definitions, the
SSA-conversion algorithm determines all join nodes where a ¢-function for « has
to be inserted in a single pass. Therefore sets of nodes have to be analysed [9].
Let X be a set of CFG nodes that contain definitions of a variable x. Then,

DF(X)= |J DF(B)) (1)
B;eX
Definition 3 Given a set of CFG nodes X, the iterated dominance frontier of
X, DF*(X), is the limit of the following sequence [9]:

DF, = DF(X) 2)
DFiy = DF(X UDF)) (3)

The primary ¢-placement method still used in many compilers was presented
by Cytron et al. in 1989 [9], and further elaborated on in 1991 [10]. This method
uses dominance frontiers to determine where the ¢-functions should be placed.
The relationship between dominance frontiers and ¢-functions is established by
Theorem 1 [10].

Theorem 1 The set of nodes that need ¢-functions for any variable x is the
iterated dominance frontier DF T (A(x)). Equivalently,

J(A(z)) = DFT (A(x)) (4)

Our goal is to prove that if X = X; U Xo, then the join set of X is the
union of the join set of X7 and the join set of X5 (see Theorem 4). However,
some preliminary results are necessary. Theorem 2 establishes that if the subsets
form a partition of X, then the dominance frontier of the union is equal to the
union of the dominance frontiers. Theorem 3 establishes a similar result for the
iterated dominance frontier.
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Theorem 2 Let X be a subset of nodes in V such that X = X1 U X9 and
X1 N Xo=0. Then,

DF(X1)UDF(X3) = DF(X1 U X5) (5)
Proof: By Equation 1, we know that:

DF(X)= |J DF(B))
B;eX

Thus,

DF(X,)UDF(X3)= |J DF(B)U | DF(B:)

B;eXy B;eX2
= U DF(B;)
BiE(XlLJXQ)
= DF(X; UX>)

d

Theorem 3 Let X be a subset of nodes in V such that X = X1 U Xy and
X1 N Xo=0. Then,

DFZ(Xl) @] DFl(XQ) = DFl(Xl @] XQ) (6)
where DF; is an element of the sequence that defines DF T,

Proof: The proof is by induction.
Base case: If ¢ = 1, from Definition 3 we know that DFy; = DF(X). Hence:

DF(X1)UDFi(X2) = DF(X1) UDF(X>)
From Theorem 2, we have:
DF(X1)UDF(X3) = DF(X1 U X3)
Thus,
DF(X1)UDF(X3) = DF(X7 UXs) = DF (X1 UX>)

Inductive case: Assume that DF;(X;) U DF;(X2) = DF;(X1 U X3) for i = k.
Let ¢ = k4 1. From Definition 3 we know that DF;y;(X) = DF(X U DF;(X)).
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Then:

DFy1(X1) U DFys1 (Xa) = DF(X1 U DFy(X1)) U DF(Xs U DF(X2))
— DF(X1) U DF(DFy(X1))
U DF(X2) U DF(DFy (X))
— DF(X, U X2) U DF(DFy(X; U X))
— DF(X; U X2 UDFy(X; UXs)
=DF 1 (X1 U X>)

a

Theorem 4 Let X be a subset of nodes in V such that X = X1 U X5 and
X1 N Xo=0. Then,

JHX) = JH (X)) uJT (X)) (7)

Proof: Since G is a finite graph, DF (X ) must be finite. We know from Defini-
tion 3 that DFT(X) is the limit of a sequence of elements DF;(X ). Equivalently,

DF*(X) = lim DF;(X)

where ¢ is a constant. Recall from Theorem 1 that DF T (X) = J*(X). Now
JH(X1)UJT(X2) = DFY(X1) UDF*(Xy)
= lim DFi(X1) U lim DFi(X>)
= lim [DF;(X1) U DF(X2)]
= lim DF}(X1 U X5)
— lim DFy(X)
i—c
= DF*(X)
= JH(X)

a

The next section shows that the result of Theorem 4 can be used in practice
to eliminate the computation of redundant iterated dominance frontiers and
iterated join sets.
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4 Some Join-Set Computations are Redundant

Let  and y be variables in a program. Let A(z) and A(y) be the set of all
vertices in V' that contain a definition of x and y, respectively. If A(z) = A(y),
then JT(A(z)) = JT(A(y)). And we only need to compute one join set for both
variables.

Moreover, if A(y) C A(z), then Jt(A(y)) C Jt(A(z)). Recall that
Jt(A(z)) = Sg(x), the minimum set of nodes where ¢-functions are required
when constructing the SSA form of a program. If one set of assignment nodes
is a subset of another, two join set computations are still required. The inter-
section of the two sets (i.e., the smaller set) will be calculated. However, the
second computation (i.e., the remainder of the larger set) will be smaller than
the original.

The majority of the time in Cytron et al.’s worklist algorithm is spent iterat-
ing over the worklist W, and every variable has a worklist associated with it. In
particular, the worklist for variable v is initialized to A(v). Then, each element
B; € W is removed from W, and a ¢-function is inserted in every B; € DF(B;).
As well, each B; that now contains a ¢-function is also inserted in W, and the
process continues.

Consider one approach for the case A(y) C A(z), where A(x) is split into
two smaller sets, A(x1) = A(y) and A(z2) = A(z) — A(y). This set division is
possible since Theorem 4 determined that J(A(x)) = J " (A(x1)) U J T (A(z2)).
Processing for A(xz1) can be performed as normal. Consider here A(z3). The
list of nodes that require a ¢-function because of A(zz) will have to be com-
puted separately as a worklist for . However, savings still exists, as A(z1) and
A(y) are combined, and the worklist for A(xs) requires fewer iterations since

Azg) < A(x).

5 Saving Oportunities in Selected Benchmarks

An initial analysis of individual SPEC CINT2000 benchmarks [8] reveals the
opportunities for join set computation optimization. All measurements in this
section were performed in the Open Research Compiler for SSA translation level
1 (refer to Table 1) and optimization level O2 for baseline results [14].

The second column of Table 2 presents the number of worklists processed
for the conversion into SSA of each one of the benchmarks. The column labeled
A(z) C A(y) presents the number of variable pairs z and y for which we can use
the results presented in this paper to avoid redundant join set computations.
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Translation leve1|| Where the SSA removal is performed |

1 after extended block optimizer preprocessing

after first pass of control flow optimization

after if-conversion

after second pass of control flow optimization

after extended block optimization

S| O =W N

after global scheduling

Table 1: Description of SSA translation levels in the Open Research Compiler
(ORC)

Total number Percentage Percentage
Benchmark]|| of worklists [|A(z) C A(y)| of work |[A(z) = A(y)|of worklist
processed saved avoided

164.gzip 2787 220 7.89 89 3.19
181.mcf 246 ol 20.73 22 8.94
197.parser 17567 698 3.97 526 2.99
254.gap 115686 3555 3.07 1928 1.67
255.vortex 37372 1294 3.46 751 2.01
256.bzip2 12089 348 2.88 177 1.46

| Average || 30958 || 1028 332 [ 582 [ 1.88 |

Table 2: Opportunities for eliminating redundant join set computations in SPEC
CINT2000 benchmarks

The percentage of work saved is the number of worklist computations that will
be either avoided or reduced because of this finding.

The number of variable pairs for which A(z) = A(y) is also shown in Table 2.
The numbers reported in this column are also included in the A(z) C A(y) col-
umn. The last column of Table 2 shows the percentage of worklists that can
be eliminated altogether because of identical assignment sets. In this situa-
tion the worklist algorithm only needs to iterate for one of the two variables,
W = A(xz) = A(y). For every B; € W and B; € DF(B;), two ¢-functions are
added in Bj, one each for x and y. Performing the ¢-function insertion in this
manner eliminates an entire worklist iteration, and thus an entire join set com-
putation, along with cutting down on accesses to the dominance frontier data
structure. In practice, ¢-functions are placed via a function call in the modified
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Benchmark Aw) € A(y) Aver.age (fiiffe]jence in Average
size of subsets percentage saved
164.gzip 131 6.79 38.38
181.mcf 29 3.45 42.99
197.parser 172 2.65 52.10
254.gap 1627 4.34 45.35
255.vortex 543 5.00 53.14
256.bzip2 171 5.65 41.33
Average || 4455 5.58 45.55 |

Table 3: Instances where one join set is a subset of another join set in SPEC
CINT2000 benchmarks

ORC SSA implementation in the code generator. Therefore, further savings can
be achieved by removing that function call.

Table 3 gives the number of instances for the case A(y) C A(z), along with
the average difference between the size of the sets. This case is less attractive
than the A(z) = A(y) situation since it requires more work. However, if A(x2)
is much smaller than A(z), then the benefits could be significant. The third
column of Table 3 indicates that the difference between the set sizes is small,
and an average savings of 45% of the worklist computations, for these cases, can
be realized.

Checking the relationships between these sets requires some extra calcula-
tion, but much of the work is facilitated through existing data structures in the
SSA code. The one-time expense incurred to build correspondences between in-
dividual sets should be worth the benefits achieved through minimizing join set
computations.

6 Related Work

The theoretical results presented in Section 3 were first published in French’s
M.Sc. thesis [12].

Cytron and Ferrante developed an algorithm to produce a pruned SSA form[7].
InprunedSSAthenumberof¢-functionsplacedisreducedbecauseag-function
forzisplacedatajoinnodeonlyifrisusedwithinorafterthejoinnode,i.e.,
zisliveattheentrypointofthejoinnode.In[11],CytronandFerrante present
a method that avoids computing all the dominance frontiers by ordering the
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dominance frontier relation based on the position of the nodes in the dominator
tree.

Briggs et al. [3] developed a semi-pruned SSA form that takes advantage
of the observation that the life range of many names in a program is restricted
to a single basic block. Thus, by computing the set of names that are live-in
to some basic block, they are able to simplify the live analysis required for the
computation of pruned SSA. Using this technique will result in a better trade-off
between the precision of the ¢-function placement and the time required for the
analysis.

Sreedhar and Gao defined a ¢-placement algorithm that does not require
the computation of individual dominance frontiers [15]. This algorithm uses a
DJ-graph which is a modification of the traditional dominator tree to compute
the dominance frontiers on an as-needed basis.

Bilardi and Pingali’s ¢-placement algorithm was introduced in 1995 [13] and
revisited in 2003 in an extensive comparative study of SSA construction tech-
niques [1, 2]. This algorithm uses an augmented dominator tree (ADT) with a
parameter (3 to control a space-time trade-off. Intuitively the trade-off is between
precomputing all dominance frontiers, precomputing some, or computing them
only on-demand. This ADT algorithm should subsume both Cytron et al.’s and
Sreedhar-Gao’s algorithms because they can be described as ADT with a fixed
0 value.

Several techniques have been proposed for translating out of SSA form. This
translation requires the insertion of copies to ensure correctness when the ¢-
functions are removed. The problem can be formulated as minimizing the number
of SSA-translation copy instructions executed at runtime. Sreedhar et al. present
three methods to compute this translation [16]. Budimli¢ et al. perform copy
folding during the translation to eliminate the need for a separate copy coalescing
phase [4].

7 Conclusion

This paper presents profs that given two disjoint set of vertices in a control flow
graph, A;(z) and Ax(z), the iterated join set of their union, J* (A (z)U As(x)),
is equal the union of the individual iterated join sets, J*(A;(z)) U JT(Az(x)).
This is a general flow analysis result. Then it showed that this property can be
used to eliminate redundant iterated join set computations in a conversion to
SSA algorithm. Finally it presented evidence that opportunities to realize such
savings do indeed appear in industry-standard benchmarks in a robust compiler.
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The contribution made in this paper is relevant because Cytron and Fer-
rante’s algorithm is implemented in several commercial compilers. The modifi-
cation required to obtain savings is trivial, and industry-standard benchmarks
present opportunities to realize computational savings. Moreover similar savings
should be realizable in recent SSAs formulations for predicated programs [5, 6,
17].
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