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Abstract: Design patterns have been developed to cope with the vast space of possible
different designs within object-oriented systems. One of those classic patterns is the
Visitor Pattern, used for representing an operation to be performed on the elements of
an object structure. In general, the order in which the objects are visited is crucial. We
present a mapping from the Visitor Pattern to a context free grammar that defines the
set of all such visit sequences, a given Visitor can perform. The language defined by
this grammar is the language of the Visitor Design Pattern and the mapping encodes
knowledge about the class hierarchy and the implementation of the accept methods of
a Visitor Design Pattern. It is general enough to model complications that occur when
traversing arbitrary object structures, and also properly represents cases such as lack
of a common base class, multiple inheritance, and inheritance from concrete classes.
Due to its particular design, the grammar can also be used as precise documentation
for a Visitor Design Pattern.

Key Words: context free grammar, visitor pattern, visitor language, method invoca-
tion sequence, essential aspect
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1 Introduction

Design patterns have been developed to cope with the vast space of possible

different designs within object-oriented systems. Naming the patterns created a

terminology that is used for describing such systems. From our work on opti-

mizing the use of high-level abstractions in applications it has become apparent

that ruminations on programming languages and libraries often lead to the well-

known insight, to which a whole chapter is devoted in [1] “Library design is

Language Design” and “Language design is library design”.

When we are faced with a library, an abstraction in a library, or in particular a

design pattern - rarely, if ever, we can specify a “language” that would material-

ize as an indicator of a deepening understanding of the design of the abstraction.

Such a language should represent the essential aspect of the pattern. If we can

define such a language, we can claim that “pattern design is language design”.

Consequently, this would mean that whenever we create and use a pattern, we

implicitly also create a language. And it could also contribute to the discussion,

whether it is worthwhile to invent new languages. If we can understand pattern

design as language design, it becomes permissible to say that pattern designers
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are also language designers. And then it is eligible to say that many such lan-

guages have been developed in recent years; and have been accepted and did

survive in form of patterns.

Our contribution is the definition of such a language for one of the classic design

patterns presented in [2]. The pattern of interest is the Visitor Design Pattern.

The essential aspect of this pattern is that it defines a traversal on an object

structure and “visits” each node of that structure in some defined order. Such a

structure can be potentially infinite, and the visited objects do not have to have

a common base class.

The declared purpose of our contribution is the precise documentation of a Vis-

itor. Whereas it is commonplace to generate visitor code from AST grammars,

we formalize a way to extract a grammar from code in which the Visitor Pat-

tern can be identified. The proposed mapping from a Visitor to a grammar is

a contribution to the field of documenting Visitors, and opens the possibility of

applying the technique to other types of Design Patterns. To allow the appli-

cation of the presented approach to data structures in general, the formalism

handles complications that occur when traversing arbitrary object structures,

such as lack of a common base class, multiple inheritance, and inheritance from

concrete classes. The mapping encodes knowledge about the class hierarchy and

the implementation of the accept methods of a Visitor.

We present how to map the invocation of the visit methods of a Visitor Pattern

into a context-free grammar that generates all the sequences of visit method

invocations, thus providing a high-level view of all possible visiting sequences

that can be performed by the Visitor. We shall call the language generated

by that grammar the language of the Visitor Design Pattern, or short Visitor

Language. A word of the language corresponds to the sequence in which the

nodes of the object structure are visited, i.e. a terminal represents the invocation

of a visit method; and the set of all those words, the language, represents all

possible visit sequences that may be performed given any object structure for

which the Visitor is implemented to perform on.

The definition of the Visitor Language is an attempt to building a bridge between

grammar-oriented approaches and software design. There exists a broad range

of contributions to the field of grammar-based specification of object-structures

and automatic generation of Visitors [3–12]. A direct correspondence of gram-

mars and the special case of object-oriented abstract syntax trees has also been

discussed in [13] by Appel. Whereas these approaches are based on a grammar

and generate the interfaces and implementation of the object structure and a

Visitor, we define the language for an existing Visitor Pattern, literally going into

the opposite direction. This is motivated by our work on abstract aware analysis

for automatic recognition of abstractions and generation of documentation and

annotations. Generating a grammar permits arguing that we also find “hidden”
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Listing 1: Abstract C++ class Visitor and inheriting class MyVisitor.

class Visitor { class MyVisitor : public Visitor {
public : public :

virtual void visitB(B∗)=0; void visitB(B∗ obj) { cout << "b" << endl; }
virtual void visitC(C∗)=0; void visitC(C∗ obj) { cout << "c" << endl; }
virtual void visitD(D∗)=0; void visitD(D∗ obj) { cout << "d" << endl; }
virtual void visitE(E∗)=0; void visitE(E∗ obj) { cout << "e" << endl; }

}; };

languages in software. In particular, it is the recent attempt of going towards the

discipline Grammarware [14] that fuels our endeavour of generating a grammar

for existing patterns such that patterns can be understood as languages. It also

permits making the argument in the other direction, that is, what could have

been saved in development if grammars would have been used to specify and

generate the code. At least, it documents a Visitor Design Pattern such that the

traversal it can perform, is precisely documented for users.

Since the understanding and appreciation of a language is fundamentally con-

nected to its design and how “easy” it is for users to learn, apply, and use,

we also consider the design of our grammar as an important ingredient for its

appeal. The design of the grammar is as critical as the design of the software

pattern that we are mapping from. We are going to define a grammar that is

as appealing and easy to read as the original pattern. Actually, we attempt to

go beyond that. It should be easier to read, permitting to focus on the essential

aspect of the Visitor Pattern only, formalizing only the relevant information that

constitutes a Visitor Pattern. But we do not present a new formalism, or a new

extended form of a grammar. The grammar we use is a context free grammar,

with only two specific forms of productions such that each form of production

represents distinct properties of the Visitor Pattern.

In the following section we present our running example that will serve in ex-

plaining several properties and details of the mapping in later sections as well. In

the example we also present the corresponding formal grammar as defined by our

mapping. The details on how this grammar is obtained in general is discussed

in subsequent sections.

1.1 Example

The Visitor Pattern is used for representing an operation to be performed on

the elements of an object structure. A Visitor essentially does a depth-first-walk

of an object structure, executing an “action” method, usually called visit, at

each object. It is a frequently used pattern in libraries that implement object

structures.
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Listing 2: C++ class interfaces of traversed object structure.

class A { class D {
public : public :

virtual void accept(Visitor& v)=0; D(){}
}; virtual void accept(Visitor& v);

};
class B : public A {
public : class E : public D {

B(A∗ next0,D∗ data0) public :
:next(next0),data(data0) {} E():D(){}

virtual void accept(Visitor& v); virtual void accept(Visitor& v);
private : };

A∗ next;
D∗ data;

};

class C : public A {
public :

C(){}
void virtual accept(Visitor& v);

};

Listing 3: Implementation of accept methods of object structure.

void B::accept(Visitor& v) { void D::accept(Visitor& v) {
v.visitB( this ); v.visitD( this );
next−>accept(v); }
data−>accept(v);

} void E::accept(Visitor& v) {
v.visitE( this );

void C::accept(Visitor& v) { }
v.visitC( this );

}

The example code in Listing 2 shows the interfaces of our example classes. We use

a minimal artificial example that is designed to ease the demonstration of formal

properties of the mapping. Although small, the example includes two properties

that require particular attention. One property is that the class hierarchy that

is used for the object structure, does not have a common base class from which

all other classes inherit. And the second one being that we also have a class

inheriting from a concrete class. The latter second case for example, is not present

in the approach taken by Appel in [13] for a grammar based definition of an

abstract syntax tree (AST). For ASTs Appel’s design results in a good design

of the tree, where concrete classes only exist as leaf nodes in the class hierarchy.

But since we present a mapping for the general case, and do not want to suggest
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Figure 1: Visualization of a concrete object structure and its traversal with the

given example Visitor. Each arrow head corresponds to a visit of the respective

node, denoted vX , where X is the type of the object. The visit method invocation

sequence for this concrete object structure is v4
B

v1
C

v2
E

v1
D

v1
E
∈ L(G1).

to change the design in any way, we need to incorporate such cases as well.

We have one abstract base class, A, and two concrete classes, B and C inheriting

from class A. And we have another second class hierarchy, with class D as root

class of the hierarchy, and one class E inheriting from D. Both classes, D and E,

are concrete classes.

If we create a data structure with the objects of type A to E, we can use a Visitor

to traverse that data structure and specify a visit method for each concrete

object, see Listing 1. The other part of the Visitor Pattern is the accept methods

shown in Listing 2 and Listing 3. We shall show that we can create a formal

grammar that defines the set of all sequences of visit methods that can be invoked

by a Visitor. The formal grammar for the example Visitor in Listing 2 and

Listing 3 is

G1 = (N1, T1, P1, A) with N1 = {A, B, C, D, E}, T1 = {vB , vC , vD, vE},

P1 = {A → B, A → C, B → vB A D, C → vC , D → vD , D → E, E → vE}

where N1 is the set of nonterminals, representing the abstract and concrete

classes used for defining the object structure. The set of terminals is T1 where

we use the notation that vX represents a call of the visit method for class X .

Grammar G1 generates the language

L(G1) = {xnyzn | x = vB , y = vC , z ∈ {vD, vE}, n ≥ 1},

a deterministic context free language. This is the set of all sequences of visit
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Listing 4: Alternative implementation of the accept method of class B.

void B::accept(Visitor& v) {
v.visitB(this );
data−>accept(v); /∗ declared type of data is D∗ ∗/
next−>accept(v); /∗ declared type of next is A∗ ∗/

}

methods that can be called, if the example Visitor is used by invoking the accept

method of an object referred by a variable with declared type A. In the above

example, the visit methods are implemented, see Listing 1, such that MyVisitor

prints a lower caps letter of the class to which the visit method corresponds to.

Hence, the visit method for class B, visitB, prints ’b’ to stdout. We use that

to illustrate our pattern mapping by example. The sequence of invoked visit

methods is reflected in the output of the example code as well, and the set of all

possible outputs of our Visitor is {xnyzn | x = b, y = c, z ∈ {d, e}, n ≥ 1}.

Please note that n ≥ 1. For our language definition we assume that traversing the

object structure does not cause errors such as dereferencing of null pointers or

exceptions. Here this means that at least a concrete object of type B, one object

of type D or E, and one of type C must exist. In general, we assume that the

Visitor succeeds traversing a given object structure. Otherwise we would need

to consider the set of all prefixes of all words which would render the language

rather useless. We shall discuss that aspect, sub languages, and variations of the

classic pattern in Section 2.5.

One traversal of a concrete object structure corresponds to one word in the

Visitor Language. In Fig. 1 a concrete object structure with nine objects is

shown. Starting at the root node, the sequence of visit method invocations for

this concrete structure and the given Visitor is v4
B

v1
C

v2
E

v1
D

v1
E

. This sequence is

a word of the Visitor Language L(G1). The set of all visit method invocation

sequences that can be performed by the given Visitor is the language defined by

grammar G.

Now let us also determine the Visitor Language with an alternative implemen-

tation of one of the accept methods of this Visitor. We use this variation to

demonstrate that the Visitor Language is different, dependent on the imple-

mentation of accept methods. Let us reverse the two invocations of the accept

methods in class B’s accept method as shown in Listing 4. Mapping this alter-

native Visitor to a grammar gives us a new grammar, G2, where only the set of

productions is different to G.

G2 = (N1, T1, P2, A), with P2 = P1 − {B → vB A D} + {B → vB D A}
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The difference, representing the fact that the accept method of class B is imple-

mented differently, is that we have now the production B → vB D A instead of

B → vB A D. Consequently, the language is also different,

L(G2) = {(xy)nz | x = vB , y ∈ {vD, vE}, z = vC , n ≥ 1},

a regular language. We can write it as regular expression (vB(vD | vE))+vC ,

where ’+’ denotes that there exists at least one occurrence of the regular ex-

pression in brackets, and ’|’ that we have either vD or vE as terminal at this

position. Thus, the language classes of our Visitor Language can be different,

ranging from regular languages to context free languages.

In Section 2 we present a formal definition for the mapping from a Visitor Pattern

to a grammar. In Section 3 we discuss various applications of our approach,

followed by a comparison with the related work in Section 4. Eventually we

conclude in Section 5 that our mapping permits understanding design pattern

design as language design.

2 Mapping the Visitor Pattern to a Formal Grammar

In this section we shall define a mapping between the Visitor Design Pattern to

a formal grammar such that the grammar generates the set of all visit sequences

that the visitor can successfully perform. With “successfully” we mean that the

Visitor does not fail because of errors in the object structure.

The mapping consists of two parts. First, we need to determine the relevant

information of the implementations of all accept methods of a Visitor Pattern.

Second, we shall determine the relevant information of the class hierarchy.

2.1 Accept Methods

The relevant information of the implementation of an accept method of a class,

A, is

i The name of the class, A,

ii The name of the visit method that is invoked for class A, denoted vA,

iii The order in which other accept methods are invoked by the accept method

of class A. We shall map the declared types of the variables on which the

accept methods are invoked to a sequence of grammar symbols, denoted

A1 . . . An.

Let the set of classes with accept methods of the (same) classic Visitor Pattern

be C. We define the set of productions, Pa, mapped from the accept methods as
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Pa = {A0 → vA A1 . . . An | Ai ∈ C, is concrete(A0), n ≥ 0, 0 ≤ i ≤ n}

On the left-hand-side of a production we have a nonterminal representing the

name of the class, A0. For Pa we only consider concrete classes for the left-hand-

side with the predicate is concrete holding only for classes with an implemen-

tation of an accept method. The right-hand-side has as first grammar symbol

a terminal, vA, which represents the invoked visit method for class A; the visit

method is usually called visit followed by a class name. This terminal is fol-

lowed by a possibly empty list of nonterminals A1 . . . An, each representing the

declared type of the variable on which the accept method is invoked. If n is not

fixed, we denote this using the notation from regular right part grammars, as

A∗

i
. This is the case for containers of objects which can be of arbitrary size. It

is used for the Composite Pattern.

For example, let us apply this mapping to the accept method of class B in

Listing 3. As relevant information we obtain B (i), vB (ii), and the list A,D (iii).

Hence, we define the production B → vB A D. For the other three classes C, D,

E we obtain C → vC , D → vD , E → vE .

Thus, the left-hand-side corresponds to the name of the class with the accept

method in question. The right-hand-side corresponds to the implementation of

the accept method, i.e., in which order the visit method and the accept methods

of other classes are invoked. The order of the other classes is represented by

the order of the grammar symbols that correspond to the declared types of the

variables on which the accept methods are invoked.

We can now define a grammar, Ga, that represents the language generated by

the above mapping of accept methods. Let Na be the set of all nonterminals

existing in Pa either on the left-hand-side or right-hand-side and let Ta be the

set of all terminals v on the right-hand-side in any production in Pa. Let the

start symbol of our grammar be a nonterminal corresponding to a class with an

accept method, Sa.

Ga = (Na, Ta, Pa, Sa)

An interesting property of grammar Ga is that it is in Greibach Normal Form

[15]; this form is often used as basis for formal proofs on grammars. Here it

defines the set of all visit-sequences that can be generated by calling the accept

method of an object in an object structure. In the next section we extend this

grammar with productions representing the case that the Visitor is invoked on

a variable with declared type of some abstract base class.
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2.2 Class Hierarchy

The classes of an object structure do not necessarily have to have a common

base class. This is case is represented in our running example in Listing 2 with

class D not being in the class hierarchy of classes A, B, and C.

It remains to define the productions mapped from the class hierarchy, to complete

the grammar of the Visitor Language. Let the predicate is base class(A, B)

hold, if class A is a (direct) base class of class B and class A has an accept

method declared. We define the set of chain productions, Pc, for classes with an

accept method of the (same) Visitor as

Pc = {A → B | is base class(A, B), A ∈ C, B ∈ C}

For example, for our Visitor Pattern in Listing 2 we obtain as corresponding set

of chain productions {A → B, A → C, D → E}. These productions correspond

to the inheritance in the class hierarchy where the accept method of the Visitor

Pattern in question is inherited.

2.3 Complete Grammar

The complete Grammar, G, is composed from the defined mapping of the accept

methods and the classes with an accept method in the class hierarchy. Let Nc

be the set of all nonterminals on any side of the productions in Pc. Note that Pc

has no productions with terminals. Then we define the complete grammar as

G = (Na ∪ Nc, Ta, Pa ∪ Pc, Sc)

The set of nonterminals, N = Na ∪ Nc, consists of the union of nonterminals of

the productions generated from the relevant information in the accept methods

and classes with accept methods of the class hierarchy. The terminals, Ta, are

those defined in the mapping of the accept methods only. The productions are,

similar as the nonterminals, the union of Pa and Pc. The start symbol can be

any nonterminal corresponding to a class with an accept method to generate the

set of visit sequences of the accept method of that class. The set of productions

as defined above, allows to derive any possible visit sequence by choosing the

appropriate start symbol.

The grammar therefore only has two kinds of productions of the form

1. N0 → N1 (corresponds to inheritance)

2. N0 → vN N1 . . . Nn with n ≥ 0. (corresponds to accept methods)

which permits defining the language of a Visitor Design Pattern.
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Relevant information of running example Mapped Productions

B::accept(...) {

visitB(...);

next->accept(...); :next is of declared type A∗

data->accept(...);...} :data is of declared type D∗ B → vB A D

C::accept(...){ visitC(...) ... } C → vC

D::accept(...){ visitD(...) ... } D → vD

E::accept(...){ visitE(...) ... } E → vE

class A { accept(...); ...}

class B : public A { accept(...); ...} A → B

class C : public A { accept(...); ...} A → C

class D { accept(...); ...}

class E : public D { accept(...); ...} D → E

Figure 2: Table showing how the presented mapping is applied to the running

example. Only that information of the source code is shown that is relevant for

mapping the Visitor to grammar G1. The first block of rows in column two shows

the productions for Pa of P1, the second block of rows the productions for Pc of

P1.

Eventually we show in Fig. 2 for our running example from Listing 2 and List-

ing 3 how we obtain the grammar presented in the introduction with the above

definition. In the first column only that portion of the source code is shown that

is relevant for the mapping. It is the accept methods, and the inheritance hier-

archy for those classes. Note that class D is a base class but also a concrete class

in the object structure and therefore both kinds of productions exist with D on

the left-hand-side.

2.4 Readability and Direct Correspondence

The readability and direct correspondence to the implementation of the Visitor

Pattern is important such that the grammar can be used for documenting an

existing Visitor. The automatic grammar generation for an existing Visitor we

shall discuss in the next section. Here we shall highlight the expressiveness of

our defined formal grammar.

The grammar has only two kinds of productions, chain productions and produc-

tions starting with a terminal. Each kind represents exactly one property of the

Visitor Pattern.
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2.4.1 Chain Productions.

A chain production is of the form A → B where A is a base class of B. It

represents inheritance (with the arrow going into the opposite direction as in

the UML notation for class hierarchies). This production exists in the grammar

because there exists an accept method in class A and it is inherited by B. If

multiple classes inherit from A we have multiple chain productions.

In particular, all is-a relationships that are relevant to the Visitor Pattern are

represented by such chain rules. Note that this permits representing multiple

inheritance as well.

2.4.2 Productions with a Terminal.

The second kind of productions is of the form A → vA A1 . . . An. The number

of this kind of productions is exactly the number of concrete classes that are

relevant to the Visitor Pattern. Such a production never represents inheritance; it

can be understood as a has-a relationship if we wish to have the object structure

design in mind and the accept methods always directly reflect that class A has

members of type A1 . . . An.

From such a production we know that there exists a concrete class A, that the

visit method vA is invoked in the accept method of class A, and that the traversal

proceeds by traversing objects of type A1 to An, in the specified order. The order

in which the visit and accept methods are called is directly reflected in the order

of the grammar symbols on the right-hand-side of the production.

2.4.3 Language and Start Symbol of the Grammar.

Because the terminal vX directly corresponds to an invocation of a visit method,

the language generated by the grammar is the set of all traversals, or in other

words, the set of all sequences of invocations of the visit methods. A word of the

language directly corresponds to a traversal.

The start symbol of the grammar corresponds to the declared type of the variable

that holds the reference to the first object being traversed. Any nonterminal

of the grammar can be chosen as start symbol because every nonterminal on

the left-hand-side directly corresponds to a class of that name with an accept

method.

2.5 Variations of the Classic Pattern

Variations of the Visitor Pattern can be represented as well. In a post-order

traversal, vX is the last grammar element on the right-hand-side. For an exten-

sion of the Visitor Pattern, such as performing a preVisitX and a postVisitX,

we have two (distinct) terminals on the right-hand-side, vX and v′
X

.
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Listing 5: Alternative implementation of a variation of the Visitor Pat-

tern with preVisit and postVisit methods in class B’s accept method.

void B::accept(Visitor& v) {
v.preVisitB(this ); /∗ first visit of node with type B ∗/
next−>accept(v); /∗ declared type of next is A∗ ∗/
data−>accept(v); /∗ declared type of data is D∗ ∗/
v.postVisitB(this ); /∗ second visit of node with type B ∗/

}

Listing 6: Alternative implementation of a variation of the Visitor Pat-

tern with a null pointer check in class B’s accept method.

void B::accept(Visitor& v) {
v.visitB(this );
next−>accept(v);
if ( data 6=0 ) { /∗ check whether data points to an object ∗/

data−>accept(v);
}

}

The corresponding production for the alternative implementation in Listing 5 is

B → vB A D v′B

We shall discuss a concrete example of this variation from our own work in Sec-

tion 3.1. This variation of the Visitor Pattern is also utilized in [8] for computa-

tion of inherited attributes (pre-visit) and synthesized attributes (post-visit).

Another variation of the classic Visitor Pattern is the use of null pointers and hav-

ing accept methods check whether a pointer is null. This fact can be represented

by making the corresponding grammar symbol optional on the right-hand-side

of a production. In Listing 6 such an alternative implementation is shown for

our running example’s accept method of class B. Written as regular right part

grammar, the corresponding production to this alternative implementation is

B → vB A (D | ε)

The Visitor Language for our running example in section 1.1 with this alternative

implementation of class B’s accept method, is the language vn
B

v1
C

(vD | vE)m,

where n ≥ m, n ≥ 1, m ≥ 0.

If conditions are used to decide the order of the traversal, the language might

actually be context sensitive. For that case we suggest extending the grammar

to an attribute grammar for specifying the additional constraints in semantic

actions but this requires further investigation in future work.
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3 Applications

In this section we show in which fields the presented approach, using a mapping

from a Visitor to a grammar, has already been applied in our own work. We also

wish to make clear that the mapping can be fully automated by using existing

source-infrastructures such as ROSE [16].

3.1 Grammar as Documentation of the Visitor Pattern

In ROSE we provide beside the classic Visitor also some variations of the Visitor

Pattern that have proven suitable for advanced computations on the AST. We

give a short example of the textual representation of the grammar that we use

in ROSE for documenting the Pre-Post AST Visitor, a Visitor that visits a node

twice, in a pre order traversal and a post order traversal (this variation of the

classic pattern is also called before/after Visitor). The grammar is generated

following the mapping presented in Section 2 and has been added to the ROSE

reference manual. The entire class hierarchy of the ROSE C++ AST consists of

246 classes. The above mentioned Visitor is designed to visit only a subset of

these, 171 in total. The information stored in non-visited nodes of the AST is

available via access functions, which can be considered as accessing pre-defined

attributes (such as type information, modifiers, etc.). Therefore a comprehen-

sive and precise documentation of the Visitor is necessary – and the presented

grammar has proven useful for that purpose. The ROSE AST has one common

base class and uses inheritance from concrete classes.

In Fig. 3 we show a grammar fragment, generated as documentation for the

ROSE Pre-Post AST Visitor. The terminals of the grammar are the names of

the visit methods, for each node there are two visit methods, the preVisit and

postVisit method. The prefix “Sg” of class names is used for historical reasons,

because the ROSE AST is based on the Sage++ AST and “Sg” is an abbreviation

for Sage. Note that we use the Kleene star ’*’ for specifying an arbitrary number

of SgStatement node visits after pre-visiting a SgBlock node. Here the Kleene

star actually represents an (internal) iteration on a C++STL container.

For example, if a user wants to know what sequence of visit methods the Visitor

can perform when called on an AST object of type SgScopeStatement, he can see

that SgScopeStatement is a virtual (abstract) class with a declared pure virtual

accept method. Other classes, SgBlock, SgIfStatement, etc. inherit because

chain productions exist with nonterminal SgScopeStatement on the left-hand-

side. A SgBlock node is a concrete node because we have terminals representing

preVisit and postVisit on the right-hand-side of the production with SgBlock

on the left-hand-side. In case of inheritance from concrete classes, both kinds of

productions exist with the same nonterminal on the left-hand-side.
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SgStatement : SgScopeStatement

| SgDeclarationStatement

. . .

;

SgScopeStatement : SgBlock

| SgIfStatement

| SgForStatement

. . .

;

SgBlock : preVisitSgBlock

SgStatement ∗

postVisitSgBlock

;

SgIfStatement : preVisitSgIfStatement

SgStatement SgBlock SgBlock

postVisitSgIfStatement

;

. . .

Figure 3: Grammar fragment example from the generated Visitor documentation

in ROSE for the Pre-Post Visitor.

3.2 Grammar-Based Interoperability of Tools

We briefly describe an application going towards the Grammarware discipline

as described in [14], based on our presented Visitor grammar. The Program

Analysis Generator (PAG) [17] requires an abstract grammar as input, so called

syn files. The abstract grammar specifies the Abstract Syntax Trees on which

the generated program analyzer operates on.

When we integrated PAG into the C++ source-to-source infrastructure ROSE

[16], we first generated the documentation for the AST Visitor. Here the clas-

sic Visitor was of interest. It travarsed the same subset of AST nodes as the

above mentioned Pre-Post Visitor. This grammar was also input to another

tool, called GRATO, to transform the grammar, by also pruning all control-

flow related symbols, into another grammar, representing the abstract grammar

(without control-flow relevant information) as required by PAG. Hence, the doc-

umentation of the Visitor also served as input format for generating an adapted

grammar, as required by another tool, PAG.

PAG is used to specify program analyses based on abstract interpretation, which

we use with ROSE for analyzing source code and detecting more advanced vari-
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ations of Visitors in existing source code. Therefore, we can automate the detec-

tion of the Visitor Pattern and generate a grammar as presented, defining the

Visitor Language. The details of the abstraction aware analysis are beyond the

scope of this paper.

4 Related Work

The visitor pattern has been intensively studied, mostly from the perspective of

specifying a traversal on an object structure and generating the implementation

of the object structure and a Visitor for performing the traversal. All those

approaches incorporate the use of a grammar at some point. The documentation

generation for Design Patterns has also been addressed in [11, 18]

Recently, the most general approach has been defined by Klint et al. in [14].

They propose to incorporate the use of grammars at all levels in development

and comprise grammar and all grammar-dependent software in the so called

discipline Grammarware. In this discipline our presented grammar could be un-

derstood as a base-line grammar within the grammar life-cycle. This is, also from

our perspective, the ideal case, to start with a grammar, and by transforming

and extending that grammar we can generate other components of the software

system. If the software already exists, and our approach is motivated by that

setting, we need to create a grammar from existing source code. The same au-

thors have also contributed in the field of semi-automatic grammar recovery [19]

but focus on existing parsers and generating a concrete grammar.

A very general approach to the specification of traversals is presented by Lieber-

herr et al. in [5]. This approach supports structure-shy specification of traversals.

Only those aspects are specified as constraints that are considered relevant to

the traversal and the generator ensures that those constraints are met. This ap-

proach supports changes to the object structure, which is a general problem of

the Visitor Pattern. Our approach does not attempt to contribute to the problem

of changes to the object structure, our contribution is in the field of generating

documentation for Visitors and presenting a grammar that can be automatically

obtained from an existing Visitor implementation with our C++ infrastructure

ROSE [16]. An approach for specifying recursive traversals is presented in [6].

It is based on traversal specifications that allow specifying traversals that can

revisit the same node and also to dynamically control the behaviour of the traver-

sal. In particular, it also permits calling other traversals within a traversal. This

permits combining different traversals and abstractions of those. Visser has also

contributed in this field by proposing Visitor combination for similar reasons in

[4]. This work has been developed into a full framework, the JJTraveler [7], to-

gether with Arie van Deursen. In our approach we can express that by combining

different grammars into one grammar. For example, instead of considering only
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one Visitor we can consider a set of Visitors and all their accept methods. This

gives us a single language for a set of combined Visitors.

An object-oriented view on attribute grammars that is similar to our grammar

was already presented by Koskimies [20] in 1991. He used two notions of nonter-

minals, so called superclass nonterminals and basic nonterminals. The concept

of superclass nonterminals and the use of chain productions to express the in-

heritance relation is the same as in our approach. But we do not use the concept

of basic nonterminals to specify the syntactic composition of basic language con-

structs. In contrast, in our grammar only the invocation of a visit method corre-

sponds to a terminal. A basic nonterminal on the left-hand-side of a production

and the so called slots in [20] correspond in our grammar to productions cor-

responding to implementations of accept methods. A similar approach was also

discussed by Grosch in [21], where he shows how with object-oriented attribute

grammars common parts of a specification can be “factored out”. Some tools

take the approach, such as Alexey Demakov’s TreeDL and Etienne Gagnon’s

SableCC, of using Visitors for actions but letting the user specify a tree struc-

ture with a grammar-like specification. These tools generate a class for each

node in the tree in order to ensure valid tree construction. These approaches

have in common that the grammar always requires being enriched with addi-

tional information about the details of the generated code. Our contribution in

this paper is to provide a mapping to a grammar that is clean of any additional

information but still carries enough information such that the essential informa-

tion of a mapped Visitor is present. Our approach aims at using grammars as

generated documentation for Visitors, but with properties, such that they might

be interesting to investigate Visitors also from a language perspective.

An interesting combined approach that also shares several aspects with our map-

ping, is the use of a JavaCC grammar in the Java Tree Builder (JTB), originally

developed by Jens Palsberg and Kevin Tao. A plain JavaCC grammar file serves

as input to JTB, and from that grammar an object-oriented AST and its creation

during parsing, following the design in [13], is generated. It also includes the gen-

eration of different depth-first Visitors. This provides a close relationship to our

mapping, but in the opposite direction and with a different grammar design of

the productions. It requires that the class hierarchy has one single root class and

does not use inheritance from concrete classes. In the context of ASTs this is

commonly considered a good design. Our approach aims at being applicable to

the documentation of Visitors that operate on arbitrary data structures. There-

fore our grammar can also represent the language of Visitors that are traversing

across different class hierarchies, i.e. allowing to traverse Composite Patterns,

and also inheritance from concrete classes can be represented. In particular, in

our grammar the traversal order is explicitly defined.
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5 Conclusions

We have presented a mapping from the Visitor Design Pattern to a formal gram-

mar. The grammar is a context free grammar and its design directly reflects the

essential aspect of the Visitor Pattern. It consists of only two kinds of produc-

tions. The chain productions correspond to the relevant inheritance relationships

of the class hierarchy where accept methods of the Visitor Pattern exist. The

second kind of productions represents the information, at which type of node

a visit method exists (left-hand-side) and in which order the remaining object

structure is traversed from that node type (right-hand-side).

The language generated by the grammar is the Visitor Language. A visit method

invocation is represented by a terminal in the grammar. A word of the language

represents one possible visit sequence. Thus, the set of all sequences of visit

method invocations that a Visitor Pattern can perform on an object structure,

is the Visitor Language. The essential aspect of the Visitor Pattern is the set of

such sequences that it defines for an object structure. This essential aspect is

represented by the Visitor Language.

Although it is well known that grammars can be used for engineering software

systems, as is also discussed in the context of recent Grammarware work in

[14], the application of design patterns is usually not understood as an implicit

language definition. With the presented mapping from the Visitor Design Pattern

to a formal grammar, we aim at making this correspondence more obvious and

easier to recognize. The grammar can be used as precise documentation of an

existing Visitor Design Pattern. This understanding may drag people, who are

not used to using grammars, towards Grammarware. Therefore, the readability

of the grammar is one of our main concerns.

This work is a contribution to understanding pattern design as language design,

applied to the classic Visitor Pattern which can be found in many libraries today.

We believe that a similar method can also be used for other Design Patterns, in

particular those that incorporate the use of other patterns in some systematic

way.

For the claim “Library Design is Language Design”, and our adapted version,

“Pattern Design is Language Design”, we have presented a mapping from the

Visitor Pattern to a grammar that generates such a language. Our hope is that

this contribution adds to a broader acceptance of using grammars by software

developers, beginning by using them for documenting Visitors, and that it may

permit to recognize, understand, and investigate further the many languages

that are implicitly defined in software systems.
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