
The Design of the YAP Compiler: An Optimizing

Compiler for Logic Programming Languages

Anderson Faustino da Silva

(Federal University of Rio de Janeiro, Brazil

faustino@cos.ufrj.br)

Vitor Santos Costa

(Federal University of Rio de Janeiro, Brazil

vitor@cos.ufrj.br)

Abstract: Several techniques for implementing Prolog in a efficient manner have been
devised since the original interpreter, many of them aimed at achieving more speed.
There are two main approaches to efficient Prolog implementation: (1) compilers to
bytecode and then interpreting it (emulators) or (2) compilers to native code. Emu-
lators have smaller load/compilation time and are a good solution for their simplicity
when speed is not a priority. Compilers are more complex than emulators, and the
difference is much more acute if some form of code analysis is performed as part of the
compilation, which impacts development time. Generation of low level code promises
faster programs at the expense of using more resources during the compilation phase.
In our work besides using an mixed execution mode, we design an optimizing compiler
that using type feedback profiling, dynamic compilation and dynamic deoptimization
for improving the performance of logic programming languages.

Key Words: Dynamic compilation, Just-in-Time compiler, compiler optimizations

Category: C.4, D.3.4

1 Introduction

Programming language designers have always searched for programming lan-

guages and features that ease the programming process and improve programmer

productivity. One promising approach is logic programming. Logic programming

languages provide programmers with powerful techniques for writing programs

quickly and easily.

Prolog (PROgramming in LOGic) [Sterling and Shapiro 1986] is a logic pro-

gramming language based on a subset of first order logic [Wikipedia 2006]. Some

constructions of first order logic have been removed to allow competitive perfor-

mance, and some extra-logical features have been added such as: flow control,

input/output, and meta-programming. Prolog works by querying a database of

facts and rules. The language is thus declarative in nature. You tell the sys-

tem how to recognize the answer and the system searches for the answer. This

makes Prolog both easier and harder than other languages. Easier because there

is tremendous leverage obtained from the declarative approach, harder because

some commonly used programming schemes are not supported.

Journal of Universal Computer Science, vol. 12, no. 7 (2006), 764-787
submitted: 28/1/06, accepted: 6/4/06, appeared: 28/7/06  J.UCS

Several techniques for implementing Prolog have been devised since the orig-

inal interpreter [Colmerauer 1993]. There are two main approaches to efficient

Prolog implementation: (1) compiling to bytecode and then interpreting it (em-

ulators) [SICStus 2006, YAP 2006] or (2) compilers to native code. This sec-

ond approach can be divided into two categories. One solution is for the com-

piler to generate machine code directly [Roy and Despain 1992, SICStus 2006,

Marien 1993, Taylor 1991, Diaz and Codognet 2001]. An alternative is to gen-

erate code for a language, such as C, for which compilers are readily available

[Morales et al 2004].

Each solution has its advantages and disadvantages. Generating low level

code promises faster programs at the expense of using more resources during

compilation. Emulators have smaller load/compilation time and are a good so-

lution for their simplicity when speed is not a priority; executing the same Prolog

code in different architectures boils down to recompiling the interpreter. Com-

pilers are more complex than emulators, and the difference is much more acute

if some form of code analysis is performed as part of the compilation, which

impacts development time. In this work we propose a solution that combines

advantages of the two approaches.

The different approaches are useful in different situations and for different

parts of a program. The emulator approach can be very useful during devel-

opment, and for non-performance bound portions of programs. On the other

hand, some fragments of code should be optimized at all levels. In this case,

the standard optimizations of imperative language compilers (such as: global

register allocation [?], code motion [Knoop et al 1994a], instruction reordering

[Goodman and Hsu 1988], and others [Muchnick 1997]) become important for

improving performance in Prolog compilers.

Aggressive compiler optimizations can reduce the overhead impose by Prolog

language features. However, the long compilation times introduced by optimiz-

ing compilers delay the programming environment’s responses to changes in the

program. Furthermore, optimization also conflicts with source-level debugging.

Thus, programmers have to choose between abstraction and efficiency, and be-

tween responsive programming environments and efficiency.

This work shows how to reconcile these seemingly contradictory goals by

using dynamic optimization performing optimizations lazily. Three techniques

work together to achieve high performance and high responsiveness in Prolog

programs:

1. Type feedback achieves high performance by allowing the compiler to com-

pile only the executed path based on information extracted from the runtime

system.

2. Adaptive optimization achieves high responsiveness without sacrificing

765da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

performance by using a emulator to interpret initial code while automatically

compiling heavily used parts of the program with an optimizing compiler.

3. Dynamic deoptimization shields the programmer from the complexity of

debugging optimized code by transparently recreating non-optimized code as

needed. No matter whether a program is optimized or not, it can always be

stopped, inspected, and single-stepped. Compared to previous approaches,

deoptimization allows more debugging while placing fewer restrictions on the

optimizations that can be performed.

In YAPc we propose precisely such an approach: we implemented a com-

pilation from Prolog to native code, using dynamic compilation. Our starting

point is develop a dynamic optimizing compiler, essentially an high-performance

emulator-based system. Its system will be an evolution of the YAP emulator.

This facilitates mixing emulated and native code. In our system we implement

the techniques enumerated above, and we go beyond the WAM [Warren 1983]

to improve the execution speed.

With better performance yet good interactive behavior, these techniques

make high-performance possible both for pure logic languages and for appli-

cation domains requiring higher ultimate performance.

Our immediate goal is to build an efficient, usable implementation of Pro-

log. However, we are not willing to compromise Prolog’s language semantic and

other expressive features. We want to preserve the illusion of the system di-

rectly executing the program as the programmer wrote it, with no user-visible

optimizations. This constraint has several consequences:

– The programmer must be free to edit any clause in the system.

– The programmer must be able to understand the execution of the program

and any errors in the program solely in terms of the source code and the

source language constructs. This requirement on the debugging and moni-

toring interface to the system disallows any internal optimizations that would

shatter the illusion of the implementation directly executing the source pro-

gram as written. Programmers should be unaware of how their programs get

interpreted or compiled.

– The programmer should be isolated even from the mere fact that the pro-

grams are getting compiled at all. No explicit commands to compile a clause

or program should ever be given, even after programming changes. The pro-

grammer just runs the program. This illusion of hiding the compiler would

break down if the programmer were distracted by mysterious pauses due to

compilation, analysis, or optimization. Ideally any pauses incurred by the

implementation of the system would be imperceptible, such as on the order

766 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

of a fraction of a second when in interactive use. Longer running batch pro-

grams can be interrupted by longer pauses, as long as the total time of the

program is not slowed so much that the programmer becomes aware of the

pauses.

Within these constraints on the user-visible semantics of the system, our

main objective is excellent run-time performance. We wish to make Prolog with

similar powerful features competitive in performance with traditional imperative

languages such as C and Pascal. If these performance goals are met, many pro-

grammers may be able to switch from traditional languages to logic languages

and begin to reap the benefits afforded by logic programming.

Other goals are secondary to the constraint of a source-level execution model

and the goal of rapid execution. In particular, run-time and compile-time space

overheads are less of a concern than run-time speed. Modern computer platforms,

especially workstations, are typically equipped with a large amount of physical

main memory, and this amount is increasing at a rapid rate. We therefore are

willing to use more space than would a straightforward implementation in order

to meet our execution speed goals.

Of course, we do not only wish to implement Prolog efficiently, but also a

larger class of logic languages. Fortunately, the techniques used are not specific

to the Prolog language. They were applied in languages such as SELF, C++ and

Java. In our work we demonstrated how this techniques can be used in logic

languages.

The rest of this paper is organized as follows. The section 2 presents the brief

description about Prolog language. The section 3 describes how some implemen-

tation beyond the WAM to achieve high performance. The section 4 presents

our optimizing compiler. And the section 5 summarizes ours conclusions.

2 The Prolog Language

Prolog [Sterling and Shapiro 1986] is a general-purpose language based on the

Horn clause subset of first-order predicate calculus [Wikipedia 2006]. Execution

of a Prolog program is effectively an application of theorem proving by first-order

resolution. Fundamental concepts are unification, tail recursion, and backtrack-

ing. Prolog is a rich collection of data structures in the language and human

reasoning, and a powerful notation for encoding end-user applications. It has its

logical and declarative aspects, compactness, and inherent modularity. And, it

is used in many artificial intelligence programs and in computational linguistics,

especially natural language processing. Its syntax and semantics are considered

very simple and clear.

In a dynamically typed language such Prolog, variables may contain objects

of any type at runtime. Hence, it must be possible to determine the type of an

767da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

object at run-time by inspection. Terms can be represented as tagged words: a

word contains a tag field and a value field. The tag field contains the type of

the term, namely: atom, number, list, or structure. The value field is used for

different purposes depending on the type. It can contain the value of integers, the

address of unbound variables, compound terms (list or structures), and it ensures

that each atom has a value different from all other atoms. Unbound variables are

implemented as self-referential pointers, i.e., they point to themselves. When two

variables are unified, one of them is modified to point to the other. Therefore it

may be necessary to follow a chain of pointers to access a variable’s value. This

is called dereferencing the variable.

This language feature provide a more expressive mechanism for describing

and manipulating data structures. Widespread use of this feature greatly in-

creases the frequency of procedure calls or the number of branches over tradi-

tional programming styles using concrete data types. With dynamic data types,

each manipulation is conceptually a procedure call that invokes the handler of

one concrete type. A system with heavy use of dynamic data types imposes a

significant overhead.

To eliminate the run-time cost of abstraction, implementations can expand

the body of a called procedure in place of the procedure call; this technique is

known as procedure integration or inlining [Zhao and Amaral 2003]. When an

operation on an abstract data type is invoked, the compiler can expand the

implementation of the operation for that abstract data type in-line, eliminating

the procedure call. With aggressive use of inlining, the overhead of abstract data

types can be virtually eliminated, removing a performance barrier that might

discourage the use of an important program structuring tool. Besides, the several

branches can be easier eliminated using the data type information.

3 Improving the Performance of Prolog Programs

Prolog implementations have made great progress in execution efficiency with the

development of the WAM [Warren 1983, Ait-Kaci 1991]. However, to improve

the execution speed it is necessary to go beyond the WAM. This section discusses

how several implementations beyond the WAM to achieve higher performance.

Basically, four approaches were proposed: (1) to reduce instruction granularity,

(2) to exploit determinism, (3) to specialize unification, and (4) to use dataflow

analysis.

The WAM is an elegant mapping of Prolog to a sequential machine. Most

instructions specialize the general unification algorithm. Even so, these instruc-

tions can be quite complex, so that several optimizations are not possible.

One can reduce instruction granularity in three steps [Komatsu et al 1986,

Tamura 1986]. The first step is to compile Prolog into WAM. In the second step

768 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

the intermediate code is translated into a directed graph. Each WAM instruction

becomes a subgraph containing simple operations such as case selection on tags,

jumps, assignments, and dereferencing. This graph can be optimized through

rewrite rules. Finally, in the third step the intermediate code is translated into

some program which is sent to its high-quality optimizing compiler, or the system

can generate machine code directly.

The majority of predicates written by human programmers are intended to

give only one solution, ie, they are deterministic. However, too often they are

compiled in an inefficient manner using indexing to choose the correct clause,

when they are really just case statements. This is inefficient since backtracking

requires saving the machine state and restoring it repeatedly.

Significant improvements over the WAM are obtained by avoiding backtrack-

ing deterministic predicates. The WAM itself has indices on only the first argu-

ment and saves all registers in choice points. Turk [Turk 1986] was one of the

first work describing several optimizations that reduce the time necessary to

restore machine state when backtracking.

SICStus Prolog [SICStus 2006, Nassen 2001] system reduces the overhead

from backtracking support by creating choice points in two parts: first, it save

only a small part of the machine state, postponing saving the remainder until

the point in the clause where it can be determined that the head unification and

simple tests succeeded.

Several systems have generalized the first argument indexing of the WAM.

BIM Prolog [Marien 1993] can index on any argument when given appropriate

declarations. SEPIA [Meier et al 1989] incorporates heuristics to decide which

predicate arguments are important for deterministic selection. It uses the first

“indexable” argument of a predicate. If there are several possibilities it first uses

the argument where it is more likely that fewer clauses will be selected.

We propose type-feedback profiling for YAPc. The key idea of type feedback

is to extract type information from the runtime system and feed it back to the

compiler. To obtain the type profile, the standard clause dispatch mechanism

has to be extended to record the desired information, e.g., we keep a table of all

predicates invoked and of how. Based on this profiling, the compiler can decided

what to compile.

The WAM unification instructions (get and unify) are complex. They op-

erate in two modes (read mode and write mode) depending on the type of the

object being unified, they dereference their arguments, and they trail variable

bindings. The profiling information is designed to keep sufficient context to be

able to compile unification directly into simpler instructions.

Significant improvements over the WAM are possible for unification. Turk

[Turk 1986] describes several optimizations related to compilation of unification,

to reduce the overhead of explicitly maintaining a read/write mode bit and re-

769da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

move some superfluous dereferencing and tag checking. Marien [Marien 1988] de-

scribes a method to compile write mode unification that uses a minimal number

of memory operations and avoids all superfluous dereferencing and tag checking.

Van Roy [Roy 1989] introduces in this work a simplified notation and extending

it for read mode unification, but the scheme suffers from a large code size expan-

sion. The Aquarius system [Roy 1990] modifies this technique to limit the code

size expansion at a slight execution time cost. Meier [Meier 1990] has developed

a technique that generalizes Marien’s idea for both read and write mode and

achieves a linear code size, also with a slight execution time cost.

Beer [Beer 1998] suggested the use of a simplified representation of Prolog

variables for which binding is much faster. His work introduces several new tags

for this representation, which he calls uninitialized variables, and keeps track of

them at run-time. He shows that both dereferencing and trailing are reduced

significantly.

To reduce the overhead of unification our system applies several optimizations

to unification. We use two version of unify function, one in read mode and other

in write mode.

Traditionally, global analysis of logic programs is used to derive information

to improve program execution. Both type and control information can be de-

rived and used to increase speed and reduce code size. The analysis algorithms

studied so far are all instances of a general method called abstract interpretation

[Cousot 1992]. The idea is to execute the program over a simpler domain. If a

small set of conditions are satisfied, this execution terminates and its results

provide a correct approximation of information about the original program.

Warren [Warren et al 1988] was the first to study the practicality of global

dataflow analysis in logic programming. He described two dataflow analyzers:

(1) MA3, the MCC And-parallel Analyzer and Annotator, and (2) Ms, an ex-

perimental analysis scheme developed for SBProlog. MA3 derives aliasing and

ground types and keeps track of the structure of compound terms, while Ms de-

rives ground and nonvariable types. His paper demonstrate that both dataflow

analyzers are effective in deriving types and do not increase compilation time by

too much. Marien [Marien and Demoen 1989], Van Roy [Roy 1990], and more

recently Morales [Morales et al 2004] also obtain similar results.

Analysis results in both code size reduction and speed increase. However,

the the effects of analysis on code size and speed are fundamentally different.

Derived types allow both tests and the code that handles other types to be

removed. Tests are usually fast. The code to handle all possible outcomes of the

tests can be very large. Besides, deriving types that have a logical meaning is not

sufficient. Performance increases significantly when the analysis is able to derive

types that have only an operational meaning, such as dereference (reference

chains), trailing, and aliasing-related types (uninitialized variables).

770 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

Unfortunately, global analysis has not scaled well to larger, very complex,

Prolog applications. Such applications can be rather hard to understand stat-

ically. Type-feedback profiling seems rather useful in the context as it guides

the selection of executable paths from the execution dynamics. YAPc will com-

pile only relevant paths, and interpret the remaining code. YAPc will rely on

the signicant body experience of the global analysis community to derive which

information is most usefui.

4 The Design of the Optimizing Compiler

Based on the idea of using the type feedback information, we have developed a

new optimizing compiler for Prolog. The compiler’s design goals were twofold:

– High compilation speed. Since the runtime system uses dynamic com-

pilation, the compiler should be as fast as possible in order to minimize

compilation pauses. We avoided costly global analyzes and tried to restrict

ourselves to algorithms whose time complexity is at most linear in the size

of the source program.

– High performance for large programs. The second design goal was to

surpass the performance of the previous compiler’s logic programs, and es-

pecially to provide good performance for large applications. In addition, per-

formance should be reasonably stable: minor changes in the source program

should not significantly affect performance.

Dynamically-typed logic programming languages historically have run much

slower than traditional statically-typed programming languages. This perfor-

mance gap is attributable largely to the lack of representation-level type informa-

tion in the dynamically-typed languages. This representation-level information

about an variable is embodied in the cell in a cell-based system.

If the compiler could infer the cell at compile-time, it could eliminate much of

the run-time overhead associated with dynamic typing. In a dynamically-typed

language, the compiler must insert extra run-time type-checking code around

type-safe primitives. If the compiler could infer the type of the arguments to the

type-checking primitive, then it could perform the type checks at compile-time

rather than run-time.

In logic programming language, the compiler must insert extra run-time code

to implement dynamic binding of data type to target variable based on the run-

time argument type of an predicate. If the compiler could infer the type of

an argument, then it could determine the data type at compile-time instead

of run-time, and it can replace the extra run-time code by code’s executable

path only. This code would subsequently be amenable to further optimizations

771da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

such as copy propagation [Bacon et al 1994], sparse conditional constant propa-

gation [Wegman and Zadeck 1991], dead code elimination [Knoop et al 1994b],

code motion [Knoop et al 1994a], loop versioning [Bacon et al 1994] and others.

We implemented these techniques in our optimizing compiler.

Clearly, the run-time performance of dynamically-typed logic programs could

be dramatically improved if the compiler could infer representation-level type in-

formation in the form of cells. On the surface, this would seem to imply that

statically-typed languages, with lots of type information available to the com-

piler, would have a huge advantage in performance over their dynamically-typed

counterparts.

In other languages, the type of a variable specifies the representation or im-

plementation of the contents of the variable. This static information corresponds

to knowing the exact class of the contents of the variable and hence supports the

optimizations described above that reduce the gap between dynamically-typed

languages and statically-typed languages.

The lack of static representation-level type information limits the run-time

performance of logic languages. Consequently, our compilation techniques will

strive to infer this missing representation-level type information, so that the

compiler can perform optimizations to eliminate the overhead of dynamic typing

and predicate orientation. Once these optimizations have been performed, the

task of compiling a dynamically-typed logic program reduces to the task of

compiling a traditional statically-typed program.

To optimize the Prolog program the compiler must prove that the argument

of a predicate has a single type, i.e., that the argument value is monomorphic.

In general, however, Prolog arguments are polymorphic: it may denote values

of different types at different times, and the same source code works fine for all

these types.

In most cases, however, the compiler’s task is not so easy: all predicate’s argu-

ments really own potentially polymorphic data type. Nevertheless, the compiler

can frequently optimize even polymorphic data types. The compiler includes

the technique type prediction that can transform some kinds of polymorphic

argument into monomorphic argument.

Since identifying and creating monomorphic sections of code can be fairly

time consuming, the Prolog compiler seeks to conserve its efforts. In particular,

the compiler attempts to compile only those parts of the Prolog program that

are actually executed. The compiler only performs optimizations on demand,

exploiting system’s dynamic compilation architecture. Additionally, many cases

that could arise in principle but rarely arise in practice, such as integer overflows

or illegally-typed arguments to primitives, are never actually compiled by the

Prolog compiler, thus saving a lot of compile time and compiled code space and

allowing better optimization of the parts of programs that are executed.

772 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

Figure 1 shows an overview of the optimizing compiler. The compiler is di-

vided into front-end and back-end. The front-end first realizes the parsing, that

only represent the WAM code into an abstract syntaxe tree (AST) reducing the

instruction granularity. After parsing, the compiler transforms the AST into a

SSA-based control-flow graph [Cytron et al 1991, Click and Paleczny 1995]. Us-

ing the type-feedback profiler the control-flow graph is minimized and some

SSA-based optimizations are applied. When the front-end finishes its execution,

the back-end initiates. It transforms the SSA-based representation into a low

level representation, and it applies some optimizations. Like the front-end, the

back-end uses type-feedback profiler to guide this phase. Following this step, the

back-end allocates registers and finally it generates native code. When the com-

piler finishes the compilation process, the native code is installed into runtime

system and is scheduled for execution.

The bulk of the compiler effort lies in between the two halves of a tradi-

tional compiler. This “middle half” of the compiler performs the representation-

level type analysis and region selection that bridges the semantic gap between

the high-level polymorphic program input to the compiler and the lower-level

monomorphic version of the program suitable for the optimizations performed

by a traditional compiler back-end.

Parser

Region Selector

Optimizer

SSA Transformer

Profiler

Type feedback

Optimizer

LIR Transformer

Code Generator

Register Allocator

WAM Code Native Code

F

R

O

N

T

E

N

D

B

A

C

K

E

N

D

* Code Scheduling

* Peephole
 Optimization

LIR = Low Level Intermediate Representation

* Copy Propagation
* Sparse Conditinal
 Constant
 Propagation

* Dead Code

* Loop Version
* Code Motion
 Elimination

Figure 1: The Optimizing Compiler’s Architecture

773da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

4.1 Dynamic Compilation

Our system uses dynamic compilation [Auslander et al 1996] not only to take

advantage of type feedback but also to determine which parts of an application

should be optimized in the first place. Figure 2 shows an overview of the dynamic

compilation process in our system.

Optimized Code
When predicate

If executed often

is first invoked
If needed for debugging

An exception occours
or

Predicates Interpreted Code

Figure 2: The Dynamic Compilation Process

When a source predicate is invoked for the first time, it is interpreted by

the emulator. If it is executed often, it is compiled and optimized using type

feedback. Having a very fast compiler is essential to reduce compile pauses in an

interactive system using dynamic compilation. Sometimes, an optimized predi-

cate is reoptimized to take advantage of additional type information or to adapt

it to changes in the program’s type profile.

This system has to discover opportunities for compilation without program-

mer intervention. In particular, it has to decide:

– When to compile: how long to wait for type information to accumulate,

– What to compile: which compiled code would benefit most from the addi-

tional type information, and

– Which executable path: selecting only executable path deserving compilation.

The following subsections discuss each of these questions. The solutions pre-

sented here all employ simple heuristics, but nevertheless work well.

4.2 When to Compile

The system uses counters to detect compilation candidates. Each interpreted

predicate has its own counter. In its prologue code, the predicate increments the

counter and compares it to a limit. If the counter exceeds the limit, the compila-

tion system is invoked to decide which (if any) predicate should be compiled. If

774 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

the predicate overflowing its counter, it is not compiled, and its counter is reset

to zero.

Originally, counters were envisioned as a first step, to be used only until a

better solution was found. However, the trigger mechanism (“when”) is much less

important for good compilation results than the selection mechanism (“what”).

Since the simple counter-based approach has worked well [da Silva 2005], we did

not extensively investigate other mechanisms. However, there are some interest-

ing questions relating to invocation counter:

– Ideally, the system would compile those predicates where the optimization

cost is smaller than the benefits that accrue over future invocations of the

optimized predicate. Of course, the system does not know how often an pred-

icate will be executed in the future, but an rate-based measure also ignores

the past: an predicate that executes less often than the minimum execution

rate will never trigger an compilation, even if it is executed several times.

– The invocation limit should not be a constant, rather, it should depend on

the particular predicate. What the counters are really trying to measure is

how much execution time is wasted by running interpreted code. Thus, an

predicate that would benefit much from optimization should count faster

(or have a lower limit) than an predicate that would not benefit much from

optimization. Of course, it may be hard to estimate the performance impact

of optimization on an particular predicate.

– How should life times be adapted when executing on a faster (or slower)

machine? Suppose that the original life parameter was 10 seconds, but that

the system now executes on a new machine that is twice as fast. Should

the life parameter be changed, and if so, how? One could view that faster

machine as a system where real time runs half as fast, and thus reduce the

life to 5 seconds. However, one could also argue that the invocation rate limit

is absolute: if an predicate executes less than n times per second, it is not

worth optimizing.

– Similarly, should the life time be measured in real time, CPU time, or some

machine-specific unit. Intuitively, using real time seems wrong, since inter-

ference from other tasks or from the user would influence compilation. Using

CPU time has its own problems, too: for example, if most of the time is

spent in garbage collection or compilation, the life time is effectively short-

ened since interpreted predicates get less time to execute and increase their

invocation counters. On the other hand, this effect may be desirable: if not

much time is spent in compiled Prolog code, optimizing that code will not

increase performance by much.

775da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

4.3 What to Compile

When a counter overflows, the compilation system is invoked to decide which

predicate to compile (if any). A simple strategy would be to always compile

the predicate whose counter overflowed, since it obviously was invoked often.

However, this strategy would not always work well. For example, suppose that

the predicate overflowing its counter just returns a constant. Optimizing this

clause would not gain much; rather, this clause should be inlined into its caller.

In general, to find a good candidate for compilation, we need to walk up the call

chain and inspect the callers of the clause triggering the compilation.

4.3.1 Overview of the Compilation Process

The figure 3 shows an overview of the compilation process. Starting with the

predicate that overflowed its counter, the compilation system walks up the stack

to find a “good” candidate for compilation. Once an predicate is found, the

compiler is invoked to optimize it, and the interpreted version is discarded. If

no predicates are found the interpreter continues the execution. During the op-

timizing compilation, the compiler marks the restart point (i.e., the point where

execution will be resumed) and computes the contents of all live registers at

that point. If this computation is successful, the optimized predicate replaces

the corresponding interpreted predicate on the stack, possibly replacing several

interpreted activation records with a single optimized activation record. Then, if

the newly optimized predicate isn’t at the top of the stack, compilation continues

with then newly optimized clause’s callee. In this way, the system optimizes an

entire call chain from the top predicate down to the current execution point.

If the interpreted predicate cannot be replaced on the stack, they are left to

finish their current activations, but subsequent invocations will use the new, op-

timized predicate. The main effect of failing to replace the interpreted predicate

is that additional recompilations may occur if the interpreted code continues to

execute for a while. For example, if the optimized predicate contains an loop but

cannot be placed on the stack immediately, the optimization system may later

try to replace just the loop body with optimized code.

4.3.2 Selecting the Predicate to be Compiled

The system selects the predicate to be compiled by examining several metrics.

For any clause c, the following values are defined:

– p.size is the size of p’s instructions.

– p.count is the number of times p was invoked.

– p.sends is the number of calls directly made from p.

776 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

growth
stack’s

An predicate
overflows its
invocation counter
and triggers the
compilation system.

The compilation
system walks up the
stack to determine
which predicate to
compile. Then, it
calls the optimizing
compiler to generate
the native code.

The compilation
system replaces the
old stack frames with
the frame of the native
code.

The compilation
system continues
until all of the
remaining stack is
optimizing.

Figure 3: The Compilation Process

– p.version records how many times p has been recompiled.

The search for a recompilee can be outlined as follows. Let trip be the

predicate tripping its counter, and recompilee be the current candidate for

compilation.

1. Start with recompilee = trip.

2. If recompilee has predicate in it body, choose the predicate’s lexically en-

closing predicate if it meets the conditions described above. This rule elimi-

nates predicates by inlining the predicate used into the predicate’s home. If

inlining succeeds, the predicate can usually be optimized away completely.

3. Otherwise, choose recompilee’s caller if it meets the conditions below. This

rule will walk up the stack until encountering an predicate that is either too

large or does not appear to cause many calls to be executed.

4. Repeat steps 2 and 3 until recompilee doesn’t change anymore.

Whenever the compilation system considers a new recompilee p, it will only

accept the new recompilee if it meets both of the following conditions:

– p.count > MinInvocations and p.version < MaxVersion. The first condi-

tion ensures that the predicate has been executed enough times to consider

its type information. The second prevents endless compilation of the same

predicate.

777da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

– p.sends > MinSends or p.size < SizeLimit or p is unoptimized. The first

condition accepts predicates executing many calls, and the other two accept

predicates that are likely to be combined with the callee through inlining.

The assumptions underlying these rules are that frequently executed predi-

cates are worth optimizing, and that inlining small predicates will lead to faster

execution. Although the rules are simple, they appear to work well in finding

the “hot spots” of applications.

The rules used by the compilation system for finding a “good” compilation

candidate in many aspects mirror the rules used by the compiler for choosing

“good” inlining and executable path opportunities. For example, the rule skip-

ping “tiny” predicates has an equivalent rule in the compiler that causes “tiny”

predicates to be inlined. Ideally, the compilation system should consult the com-

piler before every decision to walk upwards on the stack (i.e., towards a caller) to

make sure the compiler would inline that send. However, such a system is prob-

ably unrealistic: to make its inlining decisions, the compiler needs much more

context, such as the overall size of the caller when combined with other inlining

candidates. Therefore, compilation decisions in such a system would be expen-

sive, and this approach was therefore rejected. However, the compilation system

and the compiler do share a common structure in the our system. Essentially,

the compiler’s criteria for walking up the stack are a subset of the compiler’s

criteria for inlining.

After a compilation, the system also checks to see if compilation was effec-

tive, i.e., if it actually improved the code. If the previous and new compiled

clauses have exactly the same non-inlined calls, compilation did not really gain

anything, and thus the new clause is marked so it won’t be considered for future

compilations.

4.4 Which Executable Path

Programs often contain rarely or never executed paths. Compiling them can

cause adverse effects that reduce the effectiveness of code generated. For exam-

ple, on optimizing compiler can spend a lot of time applying aggressive opti-

mizations in rarely executed code. The problem is that the times we implicitly

assume procedures are the units for compilation. Procedure boundaries have

been a convenient way to partition the process of compilation, but it are not

necessarily a desirable unit to perform optimizations. If we can eliminate from

the compilation target those portions that are rarely or never executed, we can

focus the optimization efforts only on non-rare paths and this would make the

optimization process both faster and more effective.

In a dynamic compilation system, this technique is especially useful. First,

dynamic compilers can take advantage of runtime profile information from cur-

rently executing code and use this information for the region selection process.

778 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

Second, they are very sensitive to the compilation overhead, and this technique

can significantly improve the total compilation time and code size. Third, they

can avoid generating code outside the selected regions until the code is actually

executed at runtime.

In our work, we design a region-based compilation technique. We no longer

treat procedures as the unit of compilation, as in traditional procedure-based

compilation, and select only those portions that are identified as non-rare paths.

The term region refers to a new compilation unit, which results of the exclusion

of all rarely executed portions of these procedures.

The key components for the our approach are region selection, and partial

inlining. For region selection, we employ type feedback to identify executables

paths. This process and inlining can affect each other, in the sense that inlining

exposes another target for region selection, and the region selection process in

turn conserves the inlining budget. Thus the inlining process can be performed

for parts of a procedure, not for the entire body of the procedure.

For constructing the native code for one predicate, the optimizing compiler

only performs inlining of the procedure’s executable paths. Note that, besides

the compiler performs inlining of the predicates used into the predicate’s home, it

also performs inlining of functions that performing unification,and dereferencing.

The emulator’s complex code (figure 5) for executing the simple Prolog pro-

gram (figure 4) that calculating an number of Fibonacci’s serie, can be reduced to

few hardware instructions. The optimizing compiler can reduce this control-flow

graph as “what” compile has already decided and the type feedback informa-

tions are available. In our system this situation always occurs, because when

the program is initially interpreted the type feedback repository is constructed.

Before the compilation process to, the runtime system has already chose “what”

compile. This way, that runtime system invokes the optimizing compiler, it can

be provided with fresh informations. The optimizing compiler performs two steps

for reducing and optimizing the control-flow graph. In the first step, the graph

is reduced into the bold part. After this, the compiler performs some aggressive

optimizations, resulting in highly optimized code.

4.5 Adding Type Feedback to the Runtime System

The main implementation problems of languages that supporting some form of

late binding arise from the paucity of information statically available at compile

time. That is, the exact meaning of some operations cannot be determined stat-

ically but is dependent on dynamic (i.e., runtime) information. Therefore, it is

hard to optimize these late-bound operations statically, based on the program

text alone.

There are two approaches to solving this problem. The first one, dynamic

compilation [Plezbert and Cytron 1997] moves compilation to runtime where

779da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

Y is Y1 + Y2.
fib (X2, Y2),
X2 is X − 2,
fib (X1, Y1),
X1 is X − 1,
X > 2,

fib (X, Y) :−

fib (1, 0).
fib (2, 1).

Figure 4: Fibonacci Prolog Code

TRY TRUSTRETRY

ATOMFUNCTION LISTINTVAR

X1 = 1
X2 = 0

X1 = 2
X2 = 1

X > 2
X1 is X − 1
Y1 = X1
CALL FIB/2
X2 = Y2
X1 is X − 2
Y1 = X1
CALL FIB/2
X3 = Y2
X4 is X2 + X3

0 1 <>

Figure 5: Control-flow Graph for fib(10,X)

additional information is available and can be used to better optimize the late

bound operations. This is the approach taken by this work and several previ-

ous systems, SELF compiler [Chamblers 1992] [Holzle 1994], and Java compilers

[MicroSystems 2003, Paleczny et al 2001, Ciernick et al 2000, Suganuma 2000].

Different of SELF compiler, our work initially interprets the code and only

optimizes later, after it has become clear that the code is used often. It approach

is the same of the Java compilers, but these not perform type feedback-based

optimizations. Our approach makes it possible to generate better code than

“eager” systems because the compiler has even more information available.

If it is not possible to move compilation to runtime, one can use the second,

more conventional approach of moving the additional runtime information to the

780 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

compiler. Typically, the information is collected in a separate run and written to

a file, and the compiler is re-invoked using the additional information to generate

the final optimized program.

Type feedback [Holzle and Ungar 1994, Agesen and Holzle 1995] works with

either one of these approaches. For now, we will concentrate on the first ap-

proach. The key idea of type feedback is to extract type information from the

runtime system and feed it back to the compiler. To obtain the type profile,

the standard predicate dispatch mechanism has to be extended in some way to

record the desired information, e.g., by keeping a table of receiver types per call

site. Type feedback does not require techniques such as dynamic compilation

or adaptive recompilation. If anything, these techniques make it harder to opti-

mize programs: using dynamic compilation in an interactive system places high

demands on compilation speed and space efficiency. For these reasons, our imple-

mentation of type feedback has to cope with incomplete information (i.e., partial

type profiles and inexact invocation counts) and must refrain from performing

some optimizations to achieve good compilation speed.

This technique is often added to a conventional batch-style compilation sys-

tem. In such an ambicious system (figure 6), optimization would proceed in three

phases. First, the executable is instrumented to record receiver types. Then, the

application is run with one or more test inputs that are representative of the

expected inputs for production use. Finally, the collected type and profiling in-

formation is fed back to the compiler to produce the final optimized code. In our

dynamic system (figure 7), this process is divided into two phases. Initially, the

code is interpreted and the interpreter collects runtime informations. The final

phase is similar that using for conventional batch-style compilation system.

Source
Code Profiler

Instrumented
Code

Optimized
Native CodeCompiler

Type feedback data

Figure 6: Type Feedback in a Statically Compiled System

Having obtained the program’s type profile, this information is then fed back

781da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

Source
Code

Optimized
Native CodeCompiler

data repositoryInterpreter
Type feedback

Figure 7: Type Feedback in our Dynamic System

into the compiler so it can optimize dynamically-dispatched calls by predicting

likely receiver types and selecting executable paths for these types.

Our approach of dynamic compilation has the same advantage of static com-

pilation. Both have complete information since optimization starts after at pro-

gram execution. However, a dynamic compilation system has a significant ad-

vantage because it can dynamically adapt to changes in the program’s behavior.

4.6 More Details about Fibonacci’s Code

As said previously, when the runtime system invokes the optimizing compiler,

it is provided with fresh informations. These informations will indicate that the

third predicate should be compiled and optimized, because for one execution of

Fib(10,X) the third predicate is the more frequent invoked one.

The complexity of the emulator’s code and the high quality of the optimizing

compiler’ code can be seen in only one instruction. For executing the instruction

X1 is X - 1 of the reduced graph (bold part in figure 5), the code shown in figure

8 would be executed by emulator. However, the optimizing compiler will reduce

this code into few instructions. The profiling gotten by the emulator indicates

that the first argument is a integer number, with this information the compiler

reduces this code in the code of figure 9.

After these steps, the compiler again reduces the generated code. As the

content of X was identified as being an integer number, no more exist the neces-

sity of creating an integer term. Also no more exist the necessity of the macro

Bind(), for the cases where X1 indicates an unbound variable. When this situ-

ation occurs, the compiler is able to generate the code of figure 10.

782 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

OUT is Exp() {

}

if checkIfExpIsGround()

else
Error()

Ti = Eval(Exp);
unify(Ti, OUT);

Term Eval(Term Exp) {

}

switch_on_type(Eval) {

return Eval(Head(Exp));
case Number:

return Exp;
case Atom:

case Function:
if (Arity(Exp) == 1)

return UnaryEval(Exp);
else

return BinaryEval(Exp);

}
else Error();

Term BinaryEval(Term Exp) {

}

T1 = Arg(1, Exp);
T2 = Arg(2, Exp);
. . .

case List:

return EvalAtom(Exp);

Figure 8: Emulator’ code for X1 is X - 1

else

if (X != X1)
Falha();

if (IsInt(X))

if (IsVar (X1))

else

if (IsAtom (X1))

Goto_Emulator();

BIND (X1, Tint);

Tint = MkTerm(IntFromTerm(X) − 1);

Figure 9: Optimizing code for X1 is X - 1

Tint = X − 1
X1 = Tint

Figure 10: Highly Optimizing code for X1 is X - 1

5 Conclusions

Late binding is a problem for traditional systems because often the source code

does not have enough information to generate the best compiled code. By de-

783da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

laying optimization until the necessary information is available, a compiler can

generate better code. Delaying optimization has the additional benefit of reduc-

ing compilation pauses by confining costly optimization to the time-critical parts

of the program.

Late binding also allow us to reconcile global optimizations with source-

level debugging. The debugging information provided by the runtime system

only needs to support reading the source-level program state at points where

the program may be interrupted, not at every instruction boundary. Debugging

requests that go beyond reading the current state are handled by transparently

deoptimizing compiled code and performing the request on the interpreted code.

Thus, the programmer is not forced to chose between speed and source-level

debugging: programs can be debugged at any time.

Type feedback and dynamic compilation improve both runtime performance

and interactive behavior. We believe that these techniques can be used to execute

logic programs efficiently. Dynamic compilation is often regarded as complicated

and hard to implement. We hope that our work shows that dynamic compilation

can actually make the implementor’s life easier. Once the underlying mechanisms

are in place, new functionality based on dynamic compilation can be added

relatively easily. For example, both the source-level debugging system and the

handling of exceptional situations could be implemented with relatively little

effort because the system already supported dynamic compilation. We believe

that dynamic compilation can be an attractive choice for interactive development

environments and runtime systems that using an emulator.

Several approaches has been implemented to support fully compiled exe-

cution of Prolog, and they have achieved good performance, but only for small

applications. Unfortunately, similar results were not always forthcoming for logic

programs well. Furthermore, runtime performance was achieved at the expense

of considerable compiler complexity and compilation speeds that were too slow

for interactive use.

This work has presented a new system that simultaneously improves exe-

cution and compilation speed. We go beyond the WAM for improving Prolog

performance not only using the techniques described in section 3, but by using

dynamic compilation too.

The progress made in implementing YAPc will encourage others to find even

better solutions to the implementation challenges posed by logic languages, and

to other systems also heavily using late binding. Our work will also contribute

to make logic programming environments more popular, as in the past, such

systems have often suffered from performance problems that have limited their

acceptance.

784 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

References

[Agesen and Holzle 1995] Agesen, O., Holzle, U.: “Type Feedback vs. Concrete Type
Inference: A Comparison of Optimization Techniques for Object-Oriented Lan-
guages”; Proc. of the Conference on Object-Oriented Languages, 1995, 91-107.

[Ait-Kaci 1991] Ait-Kaci, H.: “Warren’s Abstract Machine: An Tutorial Reconstruc-
tion”; MIT Press, 1991.

[Auslander et al 1996] Auslander, J., Philipose, M., Chambers, C., et al: “Fast, Effec-
tive Dynamic Compilation”; Proc. of the Conference on Programming Language
Design and Implementation, 1996, 149-159.

[Bacon et al 1994] Bacon, D. F., Graham, S. L., Sharp, O.J.: “Compiler Transforma-
tions for High-Performance Computing”; ACM Computing Surveys, 26 4(1994),
345-420.

[Beer 1998] Beer, J.: “The Occur-Check Problem Revisited”; Journal of Logic Pro-
gramming, 5, 3(1998), 243-261.

[Chamblers 1992] Chamblers, C.: “The Design and Implementation os SELF Compiler:
an Optimizing Compiler for Object Programming Languages”; PhD thesis, Stanford
University.

[Ciernick et al 2000] Cierniak, M., Lueh, G. Y., Sitchmoth, J. M.: “Practicing JUDO:
Java Under Dynamic Optimizations”; Proc. of the Conference on Programming
Language Design and Implementation, 2000, 13-26.

[Click and Paleczny 1995] Click, C., Paleczny, M.: “A Simple Graph-Based Intermea-
diate Representation”; Proc. of the Workshop on Intermediate Representations,
1995, 35-49.

[Colmerauer 1993] Colmerauer, A.: “The Birth of Prolog”; Proc. of the Second History
of Programming Languages Conference, 1993, 37-52.

[Cousot 1992] Cousot, P., Cousot, R.: “Abstract Interpretation and Applicaton to
Logic Programs”; Journal of Logic Programming, 13, 2(1992), 103-179.

[Cytron et al 1991] Cytron, R., Ferrante, J., et al.: “Efficiently Computing Static Sin-
gle Assignment Form and the Control Dependence Graph”; ACM Transactions on
Programming Languages and Systems, 13, 2(1991), 451-490.

[da Silva 2005] da Silva, A., Costa, V. S.: “An Experimental Evaluation of Java JIT
Technology”; Proc. of the Brazilian Symposium on Programming Languages, 2005,
25-40.

[Diaz and Codognet 2001] Diaz, D., Codognet, P.: “Design and Implementation of the
GNU Prolog System”; Journal of Funcional and Logic Programming, 13, 4(2001),
451-490.

[Goodman and Hsu 1988] Goodman, J. R., Hsu, W. C.: “Code Scheduling and Reg-
ister Allocation in Large Basic Blocks”; Proc. of the International Conference on
Supercomputing, 1988, 442-452.

[Holzle 1994] Holzle, U.: “Adaptative Optimization for SELF: Reconciling High Per-
formance with Exploratory Programming”; PhD Thesis, Stanford University.

[Holzle and Ungar 1994] Holze, U., Ungar, D.: “Optimizing Dunamically-Dispatched
Calls with Runtime Type Feedback”; Proc. of the conference on Programming Lan-
guage Design and Implementation, 1994, 326-336.

[Knoop et al 1994a] Knoop, J., Rthing, O., Steffen, B.: “Optimal code Motion: Theory
and Practice”; ACM Transactions on Programming Language and Systems, 16,
4(1994), 1117-1155.

[Knoop et al 1994b] Knoop, J., Rthing, O., Steffen, B.: “Partial Dead Code Elimina-
tion”; Proc. of the Conference on Programming Language Design and Implementa-
tion, 1994, 147-158.

[Komatsu et al 1986] Komatsu, H., Tamura, N., et al: “ An Optimizing Prolog Com-
piler”; Proc. of the Logic Programming’86, 1986, 104-115.

785da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

[Marien 1988] Marien, A.: “An Optimal Intermediate Code for Structure Creation in
a WAM-based Prolog Implementation”; Technical Report T 1988:01, Katholicke
Universiteit Leuven.

[Marien and Demoen 1989] Marien, A., Demoen, B.: “ On the Management of Choi-
cepoint and Environment Frames in the WAM”; Proc. of the North American Con-
ference on Logic Programming, 1998, 1030-1047.

[Marien 1993] Marien, A.: “Improving the Compilation of Prolog in the Framework of
the Warren Abstract Machine”; PhD thesis, Katholicke Universiteit Leuven.

[Meier 1990] Meier, M.: “Compilation of Compound Terms in Prolog”; Proc. of the
North American Conference on Logic Programming, 1990, 63-79.

[Meier et al 1989] Meier, M., Aggoun, A., et al: “SEPIA - an Extendible Prolog Sys-
tem”; Proc. of the World Computer Congress, 1989, 1127-1132.

[MicroSystems 2003] Sun MicroSystems.: “The Java HotSpot Virtual Machien”; Tech-
nical Report, Sun Developer Network Community, 2003.

[Morales et al 2004] Morales, J., Carro, M., Hermenegildo, M. V.: ”Improved Compi-
lation of Prolog to C Using Moded Types and Determinism Information”; Proc. of
the International Symposium of Practical Aspects of Declarative Languages, 2004,
86-103.

[Muchnick 1997] Muchnick, S. S.: “Advanced Compiler Design and Implementation”;
Morgan Kaufmann, 1997.

[Nassen 2001] Nassen, H.: “Optimizing the SICStus Prolog Virtual Machine Instruc-
tion Set”; Technical Report T2000:01, Intelligent Systens Laboratory, Uppsala Uni-
versity, 2001.

[Paleczny et al 2001] Paleczny, M., Vich, C., Click, C.: “ The Java Hotspot Server
Compiler”; Proc. of the Java Virtual Machine Research and Technology Symposium,
2001, 120-131.

[Plezbert and Cytron 1997] Plezbert, M. P., Cytron, R. K.: “Does Just-In-Time =
Better Late Than Never?”; Proc. of the Symposium on Principles of Programming
Language, 1997, 120-131.

[Poletto and Sarkar 1999] oletto99 Poletto, M., Sarkar, V.: “ Linear Scan Register Al-
location”; ACM Transactions on Programming Languages and Systems, 21, 5(1999),
895-913.

[Roy 1989] Roy, P. V.: “An Intermediate Language to Support Prolog’s Unification”;
Proc. of the North American Conference on Logic Programming, 1989, 1148-1164.

[Roy 1990] Roy, P. V.: “Can Logic Programming Execute as Fast as Imperative Pro-
gramming?”; PhD Thesis.

[Roy and Despain 1992] Roy, P. V., Despain, A.: “High Performance Logic Program-
ming with the Aquarius Prolog Compiler”; IEEE Computer Maganizem 39, 1(1992),
54-68.

[SICStus 2006] Swedish Institute of Computer Sience. http://www.sics.se/isl/sicstus,
accessed in January 12, 2006.

[Sterling and Shapiro 1986] Sterling, L., Shapiro, E.: “ The Art of Prolog”, MIT Press,
1996.

[Suganuma 2000] Suganuma, T., et al.: “Overview of the IBM Java Justin-Time Com-
piler”; IBM System Journal, 39, 1(2000), 66-76.

[Tamura 1986] Tamura, N.: “Knowledge-Based Optimization in Prolog Compiler”;
Proc. of the Computer Society Fall Joint Conference, 1986.

[Taylor 1991] Taylor, A.: “High-Performance Prolog Implementation”; PhD thesis,
Basser Department of Computer Science, University of Sydney.

[Turk 1986] Turk, A. K.: “Compiler Optimizations for the WAM”; Proc. of the Inter-
nationcal Conference on Logic Programming, 1986, 657-662.

[Warren 1983] Warren, D.: “An Abstract Prolog Instruction Set”; Technical Report
390, SRI International Artificial Intelligente Center, 1983.

786 da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

[Warren et al 1988] Warren, D., Hermenegildo, M., Debray, S. K.: “On the Practicality
of Global Flow Analysis of Logic Programs”; Proc. of the International Conference
and Symposium on Logic Programming, 1988,684-699.

[Wegman and Zadeck 1991] Wegman, M. N., Zadeck, F. K.: “Constant Propagation
with Conditional Branches”; ACM Transactions on Programming Languages and
Systems, 13, 2(1991) 181-210.

[Wikipedia 2006] First Order Predicate Calculus. http://en.wikipedia.org/wiki/First-
order-predicate-calculus, accessed in January 12, 2006.

[YAP 2006] The YAP Prolog System. http://www.ncc.up.pt/vsc/Yap, accessed in
January 12, 2006.

[Zhao and Amaral 2003] Zhao, P., Amaral, J. N.: “To Inline or Not to Inline? En-
hanced Inlining Decisions”; Proc. of the Workshop on Languages and Compilers for
Parallel Computing, 2003, 11-23.

787da Silva A.F., Costa V.S.: The Design of the YAP Compiler ...

