
Detecting Bad Smells in AspectJ

Eduardo Kessler Piveta

(Universidade Federal do Rio Grande do Sul, Brazil

epiveta@inf.ufrgs.br)

Marcelo Hecht

(Universidade Federal do Rio Grande do Sul, Brazil

mhecht@gmail.com)

Marcelo Soares Pimenta

(Universidade Federal do Rio Grande do Sul, Brazil

mpimenta@inf.ufrgs.br)

Roberto Tom Price

(Universidade Federal do Rio Grande do Sul, Brazil

tomprice@terra.com.br)

Abstract: This paper defines algorithms to automatically detect five types of bad
smells that occur in aspect-oriented systems, more specifically those written using the
AspectJ language. We provide a prototype implementation to evaluate the detection
algorithms in a case study, where bad smells are detected in three well-known AspectJ
systems.

Key Words: Aspect Oriented Software Development, AspectJ language, Refactoring

Category: D.1.5

1 Introduction

Aspect-oriented software development improves the separation of concerns by

providing abstraction and composition mechanisms that deal specifically with

the modularization of crosscutting concerns [Kiczales et al., 1997]. The most

common abstraction mechanisms are aspects, pointcuts, advice and inter-type

declarations. Although the use of aspects might help in the modularization of

crosscutting concerns, their use can introduce problems either particular to the

use of aspects or similar to those found in objects, such as: pieces of code aban-

doned in a module and no longer used, code duplication and classes with too

many or too few responsibilities.

These problems usually difficult reuse in several development process activ-

ities [Boehm and Sullivan, 2000] and can be minimized by the identification of

their symptoms and the removal of their causes. These symptoms (called bad

smells by Fowler [Fowler et al., 2000]) may be seen as signs or warnings, indi-

cating potential problems in the software [Elssamadisy and Schalliol, 2002]. The

Journal of Universal Computer Science, vol. 12, no. 7 (2006), 811-827
submitted: 28/1/06, accepted: 6/4/06, appeared: 28/7/06 J.UCS

problems could be removed or minimized by using appropriated refactorings to

change the application design.

There are catalogs and descriptions of bad smells for object-oriented soft-

ware (such as [Fowler et al., 2000], [M.P. Monteiro, 2005]), but their detection

in aspect-oriented software is still not enough explored. Monteiro and Fernandes

discuss bad smells that arise in object-oriented software [M.P. Monteiro, 2005],

indicating refactoring opportunities for code extraction from objects to aspects,

without extensively discussing bad smells that occurs in aspect oriented soft-

ware. Several bad smells in the context of aspect-oriented software are discussed

elsewhere [Piveta et al., 2005]. However, at that point there where not available

mechanisms to automatically detect occurrences of those smells.

This paper focuses on automatic detection of bad smells in the context of

the AspectJ language [Kiczales et al., 2001]. The main goal is to provide algo-

rithms and a prototype implementation to detect five types of bad smells defined

in [Piveta et al., 2005]: anonymous pointcut definition, large aspect, lazy aspect,

feature envy and abstract method introduction.

The remainder of this paper is structured as follows: in Section 2, some

mechanisms to bad smells detection are detailed as well as a implementation of

an AspectJ bad smells detector, using an AST visitor based approach. In Section

3, a case study with well-known aspect oriented systems is conducted. The chosen

systems are: the AspectJ Design Patterns [Hannemann and Kiczales, 2002], the

AspectJ examples1 and the GlassBox Inspector 2. Section 4 describes related

work and Section 5 details final considerations.

2 Algorithms to Bad Smells Detection

Fowler [Fowler et al., 2000] presents bad smells as a way to identify problems in

existing software artifacts. This is accomplished by suggesting possible symptoms

that can appear in the artifacts, indicating areas that usually can be improved

by refactoring. The use of refactoring techniques attacks the causes of those

problems, causing the symptoms to be minimized or removed.

Several refactorings have been proposed to enable the code manipulation

in aspect-oriented software ([Hanenberg et al., 2003], [Iwamoto and Zhao, 2003],

[Garcia et al., 2004], [Monteiro and Fernandes, 2004], [M.P. Monteiro, 2005]).

These refactorings help to remove or minimize the occurrence of bad smells

in aspect oriented code.

In this section, we describe how bad smells in aspect-oriented software could

be detected in AspectJ programs. A brief textual description, a more formal

definition and algorithms are provided for each type of bad smell. A detailed

1 http://www.eclipse.org/aspectj/doc/released/progguide/examples.html
2 http://www.glassbox.com

812 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

discussion about the nature of bad smells in aspect oriented software can be

found in [Piveta et al., 2005].

2.1 Detecting Anonymous Pointcut Definitions

In AspectJ, as pieces of advice are not named, sometimes it is necessary to rely

on the pointcut definition to have an idea of the affected points. The use of

the pointcut definition predicate directly in an advice may reduce legibility and

hide the predicate’s intention. A name that clearly defines the pointcut intention

could be defined and referenced by any advice or declare construction.

Definition 01 Let A = {call, execution, get, set, initialization, preinitialization,

staticinitialization, handler, adviceexecution, within, withincode, cflow, cflowbe-

low, if} be the set representing all the primitive pointcuts in AspectJ that are not

related to context exposure. Let B be the set of the tokens in a given pointcut

definition. The pointcut definition is an anonymous pointcut definition if and

only if the predicate ∀b ∈ B¬∃a ∈ A|b = a is true.

An implementation of a function to detect anonymous pointcut definition is

showed in Listing 1. First, a set named primitive, containing all pointcuts not

concerned with context exposure is created (line 2). After, the string s containing

the pointcut predicate is divided into tokens (line 7), which are individually

compared with the primitive set. If the set contains s, the method returns

true, false otherwise.

1 protected boolean isAnAnonymousPointcut(St r ing s) {
2 Co l l e c t i on p r im i t i v e = new ArrayList () ;
3 p r im i t i v e . add(” c a l l ”) ;
4 p r im i t i v e . add(” execut i on”) ;
5 . . .
6 boolean temp = fa l se ;
7 S t r ing [] r e s u l t = s . r ep l a c e (” (” , ” ”) . r ep l a c e (”) ” , ” ”) .

s p l i t (”\\ s ”) ;
8 for (int x=0; x<r e s u l t . l ength ; x++)
9 i f (p r im i t i v e . conta in s (r e s u l t [x])) {

10 temp = true ; break ;
11 }
12 return temp ;
13 }
14 }

Listing 1: A Java implementation of the isAnAnonymousPointcut function

The detection of anonymous pointcuts in AspectJ and AJDT could be done

using a visitor, which visits advice declarations looking for the use of anony-

mous pointcuts. Listing 2 shows the implementation of such visitor. It vis-

813Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

its all AdviceDeclaration, AfterAdviceDeclaration, AroundAdviceDecla-

ration and BeforeAdviceDeclarationnodes. Whenever the function isAnAno-

nymousPointcut returns true, a BadSmellsEvent instance is created to gather

information about the bad smell (lines 9-11).

1 public class AnonymousPointcutASTVisitor extends
BadSmellsASTVisitor {

2 private boolean v i s i tAdv i c e (AdviceDec larat ion node) {
3 isAnAnonymous(node . getPointcut ()) ;
4 return fa lse ;
5 }
6 protected void isAnAnonymous(PointcutDes ignator pd) {
7 i f (pd instanceof DefaultPointcut)
8 i f (isAnAnonymousPointcut (((Defau l tPointcut)pd) .

g e tDe t a i l ())) {
9 BadSmellsEvent event = new BadSmellsEvent () ;

10 event . setType (”Anonymous Pointcut De f i n i t i o n ”)
;

11 . . .
12 }
13 . . .
14 }
15 }

Listing 2: An AST visitor that detects the anonymous pointcut bad smell

2.2 Detecting Large Aspects

Whenever an aspect tries to deal with more than one concern, it could be divided

in as many aspects as there are concerns. This smell is usually discovered when

the developer finds several unrelated aspect members (fields, pointcuts, inter-

type declarations) in the same aspect.

Definition 02 Consider an aspect α. The crosscutting members of α are the

collection of all advice, pointcuts, declare constructions and inter type declara-

tions directly defined in α. Consider η as the number of crosscutting members of

α. Given a threshold τ , an aspect is considered a large one whenever the predi-

cate η >= τ holds. The function to determinate if an aspect is a large one, could

be defined as: f(α) = η >= τ

The threshold could be defined by the user of the function, or given as a

constant. The detection in AspectJ could be implemented as a visitor (see Listing

3). All TypeDeclaration nodes are inspected in the end of the visiting process

(line 2). Whenever the node is an aspect, the number of declared members is

obtained and compared to the τ value, defined in a constant named TAU available

in a class named Consts (lines 4-5). If the number of crosscutting members is

equal or higher than TAU, the aspect is marked as a large aspect, false otherwise.

814 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

1 public class LargeAspectASTVisitor extends
BadSmellsASTVisitor {

2 public void endVi s i t (TypeDeclaration node) {
3 super . endVi s i t (node) ;
4 i f (((AjTypeDeclaration) node) . i sAspec t ())
5 i f (getNumberOfMembers() >= Consts .TAU) {
6 BadSmellsEvent event = new BadSmellsEvent () ;
7 event . setType (”Large Aspect”) ;
8 . . .
9 }

10 }
11 }

Listing 3: AST visitor responsible for the detection of the Large Aspect bad smell

2.3 Detecting Lazy Aspects

This bad smell, initially defined in [M.P. Monteiro, 2005], occurs if an aspect has

few responsibilities, and its elimination could result in benefits during mainte-

nance activities. Sometimes, this responsibility reduction is related to previous

refactoring or to unexpected changes in requirements (planned changes that did

not occur, for instance).

Definition 03 Consider an aspect α. The crosscutting members of α are the

collection of all advice, pointcuts, declare constructions and inter type declara-

tions directly defined in α. Consider η as the number of crosscutting members of

α. An aspect is considered a lazy one whenever the predicate η == 0 holds. The

function could be defined as: f(α) = η == 0

To detect lazy aspects, a similar approach to the Large Aspect bad smell is

taken. The LazyAspectASTVisitor creates bad smell events whenever an aspect

without crosscutting members is found (see Listing 4).

1 public class LazyAspectASTVisitor extends
BadSmellsASTVisitor {

2 public void endVi s i t (TypeDeclaration node) {
3 super . endVi s i t (node) ;
4 i f (((AjTypeDeclaration) node) . i sAspec t ())
5 i f (getNumberOfMembers() == 0) {
6 BadSmellsEvent event = new BadSmellsEvent () ;
7 event . setType (”Lazy Aspect”) ;
8 . . .
9 }

10 }
11 }

Listing 4: AST visitor responsible for the detection of the Lazy Aspect bad smell

815Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

2.4 Detecting Feature Envy

In AspectJ, pointcuts could be defined in aspects and also in classes. If a single

aspect uses a class-defined pointcut, it is interesting to move the pointcut from

the class to the aspect that uses it. The same problem might occur also in classes.

It happens when a class extensively refers to members of another class instead of

referring to its own. In this paper, we deal only with the detection of pointcuts

in classes.

Definition 04 If the number of pointcuts in a class χ is given by η, the class

suffers from the feature envy bad smell if the predicate η > 0 holds. The function

could be defined as: f(χ) = η > 0

The implementation using AspectJ is pretty straightforward (see Listing 5).

The program checks all nodes representing types (aspects, classes and interfaces)

and verifies if a class does not implement a pointcut in its body. If this hap-

pens, an event is generated. Note that the visit(PointcutDeclaration node)

method (line 5) is executed only if the method visit(TypeDeclaration node)

(line 2) returns true.

1 public class FeatureEnvyASTVisitor extends
BadSmellsASTVisitor {

2 public boolean v i s i t (TypeDeclaration node) {
3 return (! ((AjTypeDeclaration) node) . i sAspec t () | |

node . i s I n t e r f a c e ()) ;
4 }
5 public boolean v i s i t (Po in tcutDec la ra t i on node) {
6 BadSmellsEvent event = new BadSmellsEvent () ;
7 event . setType (” Feature Envy”) ;
8 . . .
9 return fa lse ;

10 }
11 }

Listing 5: AST visitor responsible for the detection of the Feature Envy bad

smell

2.5 Detecting Abstract Method Introductions

Aspects could be used to add state and behavior into existing classes. This

is made through the inter-type declaration mechanism. This mechanism allows

methods and/or fields to be inserted in classes. However, the use of this func-

tionality may cause problems when abstract methods are inserted in application

classes.

816 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

This introduction forces the developer to provide concrete implementations

to the introduced methods in every affected classes and sub-classes. This depen-

dency unnecessarily increases the coupling between the aspect and the affected

classes.

Definition 05 If the set of modifiers of a inter type method declaration ι is

given by m(ι) and the abstract modifier is given by α, the function that describes

if an inter type method declaration is an abstract one could be defined as f(ι) =

α ∈ m(ι). If the result of the function evaluation is true, then the inter type

declaration is an abstract one.

1 public class AbstractMethodIntroductionASTVisitor extends
BadSmellsASTVisitor {

2 public boolean v i s i t (InterTypeMethodDeclaration node) {
3 St r ing name = node . getName () . t oS t r i n g () ;
4 i f (Mod i f i e r . i sAb s t r a c t (node . g e tMod i f i e r s ())) {
5 BadSmellsEvent event = new BadSmellsEvent () ;
6 event . setType (”Abstract Method Int roduct i on ”) ;
7 . . .
8 }
9 . . .

10 }
11 }

Listing 6: An AST visitor that detects if an inter type method declaration is

abstract

An algorithm that detects this kind of smell could be seen in Listing 6. A

visit method is defined to visit all inter type method declarations (line 2). If

the node has abstract modifier, the inter type declaration is abstract, false

otherwise (line 4).

2.6 A Bad Smell Detector

A bad smell detector was implemented to test the algorithms described in this

paper. It explores the AST support3 available in the AJDT4 project and is

implemented as an Eclipse plugin.

This plugin extends both the Eclipse environment and the AspectJ environ-

ment. The AspectJ extension (Figure 1) was developed to provide mechanisms to

find the bad smells discussed in this paper. The Eclipse extensions are available

to provide visual information about the detected smells.

The classes of the AspectJ extension package are briefly described here:

3 The developments in the AST support are still in progress and they are covered by
enhancement https://bugs.eclipse.org/bugs/show_bug.cgi?id=110465.

4 http://www.eclipse.org/ajdt

817Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

Figure 1: Class hierarchy of the AspectJ extension

AjASTVisitor This class implements a visitor for abstract syntax trees. For

each different concrete AST node type T there are some methods that could

be used, such as visit(T node) or endVisit(T node), to visit a given node

and perform some arbitrary operation. This class is provided by the AspectJ

reference implementation.

MetricsAjASTVisitor This class collects meta-information about the visited

AST. It holds data about advice, pointcuts, inter type declaration fields, inter

type declaration methods, declare constructions and size related metrics.

BadSmellsASTVisitor This visitor is responsible for reading information from

eclipse files and collecting data to be displayed in the user interface. It is the

direct super-class of all the bad smells AST visitors.

Other Classes There are other visitors defined to each type of bad smell being

detected. Examples are: AnonymousPointcutASTVisitor,AbstractMethod-

IntroductionASTVisitor,LazyAspectASTVisitor,FeatureEnvyASTVisi-

tor, LargeAspectASTVisitor and PrivilegedAspectASTVisitor5.

3 Case Study

The following case study uses well-known aspect oriented programs available

as open source. The selected systems give different flavors of AspectJ programs

as they include tutorial examples, academic software, open source software and

commercial application of the language.

The first system selected is the collection of examples shipped with the As-

pectJ language reference implementation (IBM). These examples aim to show

5 This bad smell is not discussed in this paper

818 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

the usage of the different constructions available to the language user. The sec-

ond system is a collection of the GoF design patterns [Gamma et al., 1995] im-

plemented using AspectJ. This collection was developed by Hannemman and

Kiczales [Hannemann and Kiczales, 2002] and it is used in other research pa-

pers [Garcia et al., 2005, M.P. Monteiro, 2005]. The third system is a commer-

cial product, developed by GlassBox Corporation and available as Open Source

at Java.Net6. The GlassBox Inspector aims to deliver performance monitoring

and troubleshoot mechanisms for J2EE applications using AspectJ and JMX7.

In Figure 2, a view showing some occurrences of bad smells in the selected

projects is shown. This view is populated whenever the user requires the acti-

vation of the detection plugin. For each bad smell, the following information is

provided: project name, file name, type of bad smell and additional details.

Figure 2: A view showing the bad smells in the case study

In an attempt to define appropriated thresholds for the Large Aspect bad

smell, the examples chosen (plus AJHotDraw [van Deursen et al., 2005]) were

measured regarding the number of crosscutting members of its aspects. The

data was analyzed and the negative binomial statistical distribution with the

following parameters was selected: NegBin(3, 0.43034). This distribution was

6 https://glassbox-inspector.dev.java.net/
7 http://java.sun.com/products/JavaManagement/

819Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

selected from the results of the Chi-Square test application in the input data.

Figure 3: The binomial distribution used to represent the number of crosscutting

members in aspects

Using this theoretical distribution, representing a subset of the existing aspect

oriented software, one can choose a coherent τ value. In this case, 94.4% of

the aspects have less than ten crosscutting members. The Figure 3 shows the

relation between aspects and crosscutting members. The dark bars represent the

number of crosscutting members per percentage of aspect. The lines represent

the negative binomial distribution used. In this case study, aspects with ten or

more crosscutting members are marked as large aspects.

In next sections, each software is detailed as following: first, a brief description

about the software under evaluation is presented. After that, a table summarizing

the detected bad smells is presented and each type of bad smell is discussed

regarding its instances in the application.

3.1 System 1: AspectJ Examples

The AspectJ examples provide illustrative source code to teach the users on the

development of aspect-oriented programs using the language. These examples

are divided into categories, such as: development aspects, tracing using aspects,

production aspects and reusable aspects.

820 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

Each example works with different facets of the language. The domains used

in those examples vary from telecom simulation and space war game to trac-

ing systems. There is also an implementation of a reusable Observer pattern

[Gamma et al., 1995] as an example.

In Table 1, the occurrences of each bad smell are summarized. The anony-

mous pointcut definition bad smell is the one that appears most (22 cases). No

instance of a lazy aspect was found and a large aspect was detected in one of

the examples. Feature envy and abstract method introduction appear in a few

aspects.

Type Number of Occurrences

Classes 46
Aspects 27
Interfaces 5

Bad Smell

Anonymous Pointcut Definition 22 of 52 advice
Large Aspect 1 of 27 aspects
Lazy Aspect 0 of 27 aspects
Feature Envy 1 of 46 classes
Abstract Method Introduction 3 of 28 inter-type methods

Table 1: Bad Smells in AspectJ Examples

As an example of the anonymous pointcut definition bad smell, the point-

cut demoExecs() && !execution(* go()) && goCut() declared in an aspect

named GetInfo is composed by two defined pointcuts (demoExecs and goCut)

and an anonymous pointcut definition (!execution(* go())). This last piece

could be extracted in a new pointcut and its name used instead of the literal

predicate. The resulting composition would be, for example: demoExecs() &&

!goExecs() && goCut(). Other detected occurrences of this bad smell could be

found in the Timing, TimerLog, Debug and BoundPoint aspects.

The high number of occurrences of this specific bad smell is due to the na-

ture of the examples. Each example is intended to cover specific features of the

language, without taking reuse concerns in all applications. While good design

techniques are desired, some of them may introduce unnecessary complexity to

those that are trying to learn a new language (the main audience of the exam-

ples).

The aspect detected as a large aspect is the Debug aspect. It defines advice

dealing with different concerns simultaneously. This aspect collects points re-

garding user interface modification, changes in the registry contents, and ship

collisions, among other concerns. Although all of these features are related to

system debugging, they could be divided in several aspects, each one with a

different perspective on debugging. The opposite (lazy aspects) were not found

821Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

in the examples.

Feature envy is present in the Ship class, which implements a spaceship in

the SpaceWar example. This class contains a pointcut definition that is used

only in the EnsureShipIsAlive aspect. The coupling between class and aspect

is reduced, and the aspect’s cohesion is improved if the pointcut definition moves

to the aspect.

An abstract method introduction exists in the Billing aspect, which charges

for telephone calls according to the type and length of a performed call. So, the

user of the class that receives the introduction should be aware of which aspects

affect the code, and then, add methods to the aspect. This dependency could

increase the solution’s complexity.

3.2 System 2: AspectJ Design Patterns

Hanneman and Kiczales [Hannemann and Kiczales, 2002] describe an experi-

ment where the gang of four (GoF) design patterns [Gamma et al., 1995] were

implemented in both Java and AspectJ. The authors state that aspect-oriented

implementations have improved modularity in 17 of the 23 studied cases.

The degree in which the enhancement occurs depends on the relationship

among the roles played by the classes and objects within the pattern. Those

patterns where an object plays more than one role, or where several objects play

the same role, had the most significant improvement.

Garcia et al [Garcia et al., 2005] performed measurements on implementa-

tions of the GoF design patterns using quality metrics referring to separation of

concerns, coupling, cohesion, and code size. The authors state that, in several

cases, the aspect-oriented solution improved the separation of concerns relative

to the participating roles of the design patterns.

Table 2 shows the occurrences of each type of bad smell. The anonymous

pointcut definition bad smell appears in five situations. Lazy aspects were found

four times and two large aspects were detected in the patterns. Feature envy and

abstract method introduction do not appear in these examples.

A first occurrence of the anonymous pointcut bad smell occurs in the Single-

tonProtocol aspect: call((Singleton+).new(..)) && !protectionExclu-

sions(). Instead, a composed pointcut could be used (singletonCreation()

&& !protectionExclusions()).

The second occurrence belongs to an aspect named SortingStrategy. The

predicate contains a call primitive: call(int[] Sorter.sort(int[])). This

predicate affects only the calls to the Sorter.sort method. It appears in an

around advice. The advice code could be inserted directly in the sort method.

The same happens with the pointcut initialization(new())&& target(que-

ue) in the QueueStateAspect. The code triggered by the advice could be inlined

822 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

Type Number of Occurrences

Classes 88
Aspects 42
Interfaces 16

Bad Smell

Anonymous Pointcut Definition 5 of 15 advice
Large Aspect 2 of 42 aspects
Lazy Aspect 4 of 42 aspects
Feature Envy 0 of 88 classes
Abstract Method Introduction 0 of 39 inter-type methods

Table 2: Bad Smells in AspectJ Design Patterns

in the constructor. Other examples of this smell could be found in the Queue-

StateAspect aspect.

The lazy aspect bad smell appears in four aspects: StrategyProtocol, Me-

mentoProtocol, FlyweightProtocol and CompositeProtocol. These aspects

do not have any crosscutting members and could be safely converted to classes.

Whenever an aspect does not have members implementing crosscutting concerns

a class could (and should, if possible) be used instead.

The first large aspect is the BooleanInterpretation aspect. It is respon-

sible for adding methods to perform the replace and copy operations in the

following classes: AndExpression, BooleanConstant,OrExpression, Variable-

Expression, NotExpression. To provide those methods, ten inter type method

declarations were used. The aspect could be broken in two aspects (one for the

copy additions, another for the replace operations) or into five separated aspects:

one for each affected class.

The second large aspect (named ClickChain) uses four parent declarations

(Frame, Panel and Button implements Handler and Click implements Request)

and defines inter type declaration methods to add handle and accept behav-

ior to the Button, Panel and Frame classes. It also defines a pointcut to han-

dle clicks in the ChainOfResponsibility pattern implementation. This aspect

could be divided per affected classes (one aspect for affected class) or per oper-

ation (handle or accept). Occurrences of the feature envy and abstract method

introduction were not detected in the examples.

3.3 System 3: Glassbox Inspector

The Glassbox Inspector project uses AspectJ and JMX to monitor performance

for Java/J2EE applications. It provides information to identify specific problems,

capture statistics, monitor database calls etc. The version used in this case study

was version 1.0 beta.

Table 3 summarizes the occurrences of bad smells in the Glassbox. The anony-

mous pointcut definition bad smell appears in seven places in the software. Two

823Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

large aspects and one lazy aspect are present in the source code. Feature envy

and abstract method introduction do not appear in these examples.

Type Number of Occurrences

Classes 12
Aspects 26
Interfaces 7

Bad Smell

Anonymous Pointcut Definition 7 of 27 advice
Large Aspect 2 of 26 aspects
Lazy Aspect 1 of 26 aspects
Feature Envy 0 of 12 classes
Abstract Method Introduction 0 of 17 inter-type methods

Table 3: Bad Smells in GlassBox

The first three anonymous pointcuts appear in the TraceJdbc aspect. The

predicate call(* java.sql..*(..)) || call(* javax.sql..*(..)) is the sa-

me in all advice. The predicate could be extracted in a single pointcut definition

and the name of the new pointcut used in the pieces of advice. Other occurrences

of the same bad smell could be found in the LogManagement, AbstractOpera-

tionMonitor and AbstractRequestMonitor aspects.

Two aspects were detected as large ones. The aspect named LogManagement

has thirteen crosscutting members. Eight of them are inter type method declara-

tions that provide basic functionality for classes that should be logged. Instead

of having methods such as: logError(...), logWarn(...), logInfo(...) and

logDebug(...), the developers could replace them by a general solution, passing

the severity as a formal argument: log(..., Severity severity).

The ErrorHandling aspect has eleven crosscutting members but does not

need to be reduced. There is a pointcut named handlingScope that composes

five other pointcuts and is used by an around advice. This advice ensures that

errors in the monitoring code will not damage the underlying application code.

As the pointcut predicate is a large one, the developers split the predicate into

five others.

One lazy aspect was detected in the Glassbox Inspector. The AbstractRe-

sourceMonitor aspect does not have crosscutting members, but it could not be

converted to a class because it extends the AbstractRequestMonitor aspect (in

AspectJ, classes could not extend aspects). Feature envy and abstract method

introduction were not detected in the Glassbox Inspector.

824 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

4 Related Work

The method described by Simon et al [Simon et al., 2001] uses metrics to detect

bad smells. In particular, the method tries to detect candidates for the following

refactorings: Move Method, Move Attribute, Extract Class and Inline Class. An

equation is presented to evaluate the cohesion of methods and attributes inside

the classes of a software. The results are converted to a three-dimensional Carte-

sian coordinate system, and then rendered visually. Similar approaches are used

in [Lanza and Ducasse, 2002] and [van Emden and Moonen, 2002].

The Daikon tool presented in [Kataoka et al., 2001] uses program invariant

detection to find suitable applications of refactorings. Invariants are values that

remain constant every time some piece of code is executed, and indicate the

possible application of refactorings. The detection process implicates in the in-

strumentation of the code for analysis during runtime, and the execution of a

comprehensive set of tests, so the tool can analyze a wide range of possible

interactions.

Tourwé and Mens [Tourw and Mens, 2003] propose the use of logic meta-

programming. Logic programming statements are used to detect bad smells such

as obsolete parameters and inappropriate interfaces.

The tactics of [Balazinska et al., 2000] and [Ducasse et al., 1999] are similar

in that both attempt to find repeated sections of source code throughout a

software. The former approach focuses on Java code and thus involves the parsing

of the code, while the latter tries to remain language independent, considering

the source code only as text strings. A few other approaches to automate the

detection of bad smells in software are presented in [Mens and Tourwe, 2004].

5 Conclusion

In this paper we discussed some algorithms to detect bad smells in AspectJ

programs. The defined algorithms could be extended to deal with more special

cases of each type of bad smell. Other algorithms could also be defined for

different types of bad smells, such as privileged aspects, code duplication and

inappropriate intimacy.

The provided implementation could be extended to support those other kinds

of smells. Additional systems may be subject of further investigation. The ap-

propriate detection and removal of bad smells could affect quality attributes in

the software being modified and each refactoring might be evaluated regarding

those attributes.

The evaluated systems in the case study have, in general, a low number of

smells. The one that appears more frequently is the anonymous pointcut defini-

tion. This smell is usually removed whenever the predicate is used in more than

one advice/inter-type declaration or when the aspect is an abstract one.

825Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

Some smells such as feature envy and abstract method introduction are less

frequently detected. The large aspect detection depends on the definition of sig-

nificant thresholds. This definition could be gathered from the analysis of existing

systems or provided by the users of the detection tool. Lazy aspect occurrences

are associated with aspects that do not have crosscutting members and could be

replaced by classes without problems.

Acknowledgments

We would like to thank: the AspectJ team and Andrew Huff for providing the

initial AST support in AspectJ, Andy Clement and Helen Hawkins for their

constant and quick feedback about the AST implementation, Rafael Chaves for

providing useful directions on Eclipse plugin development and Deise Saccol for

her comments on drafts of this paper. This work has been partially supported

by CNPq under grant No.140046/2006-2 for Eduardo Piveta and Capes-Grices

project for Roberto Tom Price and Marcelo Soares Pimenta, under grant No.

2051-05-2.

References

[Balazinska et al., 2000] Balazinska, M., Merlo, E., Dagenais, M., Lage, B., and Konto-
giannis, K. (2000). Advanced clone-analysis to support object-oriented system refac-
toring. In WCRE ’00: Proceedings of the Seventh Working Conference on Reverse
Engineering (WCRE’00), page 98, Washington, DC, USA. IEEE Computer Society.

[Boehm and Sullivan, 2000] Boehm, B. W. and Sullivan, K. J. (2000). Software eco-
nomics: a roadmap. In ICSE - Future of SE Track, pages 319–343.

[Ducasse et al., 1999] Ducasse, S., Rieger, M., and Demeyer, S. (1999). A language
independent approach for detecting duplicated code.

[Elssamadisy and Schalliol, 2002] Elssamadisy, A. and Schalliol, G. (2002). Recogniz-
ing and responding to bad smells in extreme programming. In Proceedings of the
24th International conference on Software Engineering.

[Fowler et al., 2000] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.
(2000). Refactoring: improving the design of existing code. Object Technology Series.
Addison-Wesley.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns - Elements of Reusable Object-Oriented Software. Addison Wesley
Professional Computing Series. Addison-Wesley.

[Garcia et al., 2005] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena,
C., and von Staa, A. (2005). Modularizing design patterns with aspects: A quantita-
tive study. In 4th International Conference on Aspect-Oriented Software Development
(AOSD’05).

[Garcia et al., 2004] Garcia, V. C., Piveta, E. K., Lucrédio, D., Alvaro, A.,
de Almeida, E. S., do Prado, A. F., and Zancanella, L. C. (2004). Manipulating
crosscutting concerns. 4th Latin American Conference on Patterns Languages of
Programming (SugarLoafPlop 2004).

[Hanenberg et al., 2003] Hanenberg, S., Oberschulte, C., and Unland, R. (2003).
Refactoring of aspect-oriented software. In Net.Object Days 2003.

826 Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

[Hannemann and Kiczales, 2002] Hannemann, J. and Kiczales, G. (2002). Design pat-
tern implementation in Java and AspectJ. In Proceedings of the 17th ACM confer-
ence on Object-oriented programming, systems, languages, and applications, pages
161–173. ACM Press.

[Iwamoto and Zhao, 2003] Iwamoto, M. and Zhao, J. (2003). Refactoring aspect-
oriented programs. In The 4th AOSD Modeling With UML Workshop, UML’2003.

[Kataoka et al., 2001] Kataoka, Y., Ernst, M., Griswold, W., and Notkin, D. (2001).
Automated support for program refactoring using invariants.

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. G. (2001). An overview of AspectJ. In Knudsen, J. L., editor,
Proc. ECOOP 2001, LNCS 2072, pages 327–353, Berlin. Springer-Verlag.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming. In Akşit,
M. and Matsuoka, S., editors, 11th Europeen Conf. Object-Oriented Programming,
volume 1241 of LNCS, pages 220–242. Springer Verlag.

[Lanza and Ducasse, 2002] Lanza, M. and Ducasse, S. (2002). Understanding software
evolution using a combination of software visualization and software metrics.

[Mens and Tourwe, 2004] Mens, T. and Tourwe, T. (2004). A survey of software refac-
toring. IEEE Transactions on Software Engineering, 30(2):126–139.

[Monteiro and Fernandes, 2004] Monteiro, M. P. and Fernandes, J. M. (2004). Object-
to-aspect refactorings for feature extraction. In Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development (AOSD’2004). ACM Press.

[M.P. Monteiro, 2005] M.P. Monteiro, J. F. (2005). Towards a catalog of aspect-
oriented refactorings. In Mezini, M., editor, Proc. 4th, Int Conf. on Aspect-Oriented
Software Development (AOSD-2005). ACM Press.

[Piveta et al., 2005] Piveta, E., Hecht, M., Pimenta, M., and Price, R. T. (2005). Bad
smells em sistemas orientados a aspectos (in portuguese). Brazilian Symposium on
Software Engineering, SBES 2005, Uberlandia - Brasil.

[Simon et al., 2001] Simon, F., Steinbruckner, F., and Lewerentz, C. (2001). Metrics
based refactoring. In CSMR, pages 30–38.

[Tourw and Mens, 2003] Tourw, T. and Mens (2003). Identifying refactoring oppor-
tunities using logic meta programming.

[van Deursen et al., 2005] van Deursen, A., Marin, M., and Moonen, L. (2005). Ajhot-
draw a showcase for refactoring to aspects. In Linking Aspect Technology and Evo-
lution (AOSD-2005).

[van Emden and Moonen, 2002] van Emden, E. and Moonen, L. (2002). Java quality
assurance by detecting code smells. In Proceedings of the 9th Working Conference
on Reverse Engineering. IEEE Computer Society Press.

827Kessler Piveta E., Hecht M., Soares Pimenta M., Price R.T.: Detecting ...

