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Abstract: Combinatorial property testing, initiated formally by Goldreich, Gold-
wasser, and Ron in [Goldreich et al. (1998)] and inspired by Rubinfeld and Sudan in
[Rubinfeld and Sudan 1996], deals with the relaxation of decision problems. Given a
property P the aim is to decide whether a given input satisfies the property P or is far
from having the property. A property P can be described as a language, i.e., a non-
empty family of binary words. The associated property to a family of boolean functions
f = (fn) is the set of 1-inputs of f . By an attempt to correlate the notion of testing
to other notions of low complexity property testing has been considered in the context
of formal languages. Here, a brief summary of results on testing properties defined by
formal languages and by languages implicitly represented by small restricted branching
programs is provided.
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1 Introduction

Property testing is a field in computational theory that deals with the informa-
tion that can be deduced from the input, when the number of allowable queries
(reads from the input) is significantly smaller than its size. Applications could
be practical situations in which the input is so large that even taking linear time
in its size to provide an answer is too much. Since any sublinear time algorithm
can only view a small portion of the input for most problems the algorithm must
give an answer which is in some sense approximate. Given a particular set, called
property, and an input x one wants to decide whether x has the property or is
far from it. Far usually means that many characters of the input have to be
modified to obtain an element in the set. The definition of property testing is a
relaxation of the standard definition of a decision problem in the sense that the
tester is allowed arbitrary behavior when the object does not have the property
and yet is close to an object having the property. In other words, property testing
approaches approximation of decision problems by transforming languages into
promise problems where certain inputs are excluded from consideration. Such an
approximation might be used e.g. in applications where typical inputs are either
good (have the property) or very bad (far from having the property) or to speed
up a slow exact algorithm.

Journal of Universal Computer Science, vol. 12, no. 6 (2006), 710-724
submitted: 31/5/06, accepted: 23/6/06, appeared: 28/6/06 © J.UCS



Property testing was first defined and applied by Rubinfeld and Sudan in the
context of algebraic properties of functions [Rubinfeld and Sudan 1996]. They
checked whether a given function computes a low-degree polynomial or is far
from computing it. Inspired by this work the study of property testing for com-
binatorial objects was initiated in [Goldreich et al. (1998)]. These investigations
were motivated by the notion of testing serving as a new notion of approximation
and by some related questions that arise in computational learning theory. In
[Goldreich et al. (1998)] the authors considered mainly graph properties. Since
then property testing has become quite an active research area and has been
applied to different classes of objects including graphs, hypergraphs, matrices,
formal languages, boolean expressions, and point sets, see e.g., [Fischer 2001],
[Ron 2001] for excellent surveys on the topic. A strong motivation for investigat-
ing property testing is that this area is abundant with fascinating combinatorial
problems. One of the important questions is characterizing all properties that can
be tested with a sublinear or even better with a constant number of queries into
the input. Since a logical characterization of the properties testable with a con-
stant number of queries is far from achieved, one goal is to identify whole classes
of properties (instead of individual properties) that are testable and to formu-
late sufficient conditions for problems to be testable with a constant number
of queries. One attempt is to correlate the traditional categorization of proper-
ties into computational complexity classes with the notion of testing. There are
properties that are hard to decide but are easy to test with a constant number of
queries into the input such as 3-colorability [Goldreich et al. (1998)] and proper-
ties that are easy to decide but are hard to test, e.g. in [Alon et al 2000] examples
of NC1 functions (functions representable by polynomial-size B2-circuits of log-
arithmic depth) were presented that require Θ(n1/2) queries. By an attempt
to correlate the notion of testing to other notions of low complexity property
testing has been considered in the context of formal languages. In this survey
we provide a brief summary of results on testing properties defined by formal
languages and by languages implicitly represented by small restricted branching
programs.

The rest of the paper is organized as follows. In Section 2 some preliminaries
are given. Property testing is formally defined and representation models for
boolean functions are introduced. In Section 3 some results concerning property
testing in the context of formal languages are presented. Section 4 is devoted
to results for properties described by boolean formulas in conjunctive forms of
small size. The final Section 5 contains results for properties defined by branching
programs of small size. To give the reader the opportunity to catch a glimpse of
the lower bound techniques used in the property testing scenario, one result is
presented in more detail.
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2 Preliminaries

2.1 Property Testing

We introduce some basic definitions and notations and make the idea of property
testing for formal languages a little bit more precise. Let P be a property, i.e.,
a non-empty family of binary words. A word w of length n is called εn-far from
satisfying P if no word w′ of the same length, which differs in at most εn places
(Hamming distance), satisfies P . The distance parameter ε plays a role similar
to that of an approximation factor in standard approximation algorithms. An
ε-test for P is a randomized algorithm, which queries the quantity n, has the
ability to make queries about the value of any desired bit of an input word w

of length n, and distinguishes with probability 2/3 between the case of w ∈ P

and the case of w being εn-far from satisfying P . (Obviously the choice of the
success probability 2/3 is not crucial since any constant strictly greater than 1/2
is sufficient because of probability amplification.) Sometimes an ε-test is simply
called a testing algorithm. An ε-test for P has one-sided error if it always accepts
inputs that have the property P . An ε-test is non-adaptive if its queries do not
depend on the answers to previous queries, otherwise the ε-test ist adaptive. In
addition to possible practical significance, one-sided error and non-adaptivity are
useful theoretical tools for obtaining hardness results. A property P is said to be
(ε, q(ε, n))-testable if there is an ε-test that for every input x of size n queries at
most q(ε, n) bits of the input string. If a property P is (ε, q(ε, n))-testable with
q = q(ε) (i.e., q is a function of ε only, and is independent of n), P is said to
be ε-testable. Finally, we say that property P is testable if P is ε-testable for
every fixed ε > 0. Otherwise P is non-testable. The query complexity of a testing
algorithm is the minimal number of its queries to an input string.

Properties can be identified with the collection of their characteristic boolean
functions, i.e., a property P ⊆ {0, 1}∗ is identified with a family of boolean
function f = (fn), where fn : {0, 1}n → {0, 1} so that fn(x) = 1 iff x ∈ P and
|x| = n. Let x, y ∈ {0, 1}n. If g : {0, 1}n → {0, 1} and g is not the constant
function 0, we define dist(x, g) = min{H(x, y)|y ∈ g−1(1)}|, where H(x, y) is
the Hamming distance. An input x is εn-close to a function g iff dist(x, g) ≤ εn.
Otherwise the input x is εn-far.

A property is linear if it forms a vector space.

2.2 Representations for Boolean Functions

2.2.1 Branching Programs and Binary Decision Diagrams

Branching programs (BPs), in applications also called binary decision diagrams
(BDDs), are considered as a nonuniform model of computation in complexity
theory and as a data structure for boolean functions in several applications,
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in particular, in verification and for CAD problems. (See [Wegener 2000] for a
survey.)

A branching program (BP) on the variable set Xn = {x1, . . . , xn} is a directed
acyclic graph with one source and two sinks labeled by the constants 0 and 1.
Each non-sink node (or decision node) is labeled by a boolean variable and has
two outgoing edges, one labeled by 0 and the other by 1.

An input a ∈ {0, 1}n activates all edges consistent with a, i.e., the edges
labeled by ai which leave nodes labeled by xi. The computation path for an
input a in a BP G is the path of edges activated by a which leads from the
source to a sink. A computation path for an input a is called accepting if it
reaches the 1-sink.

Let Bn denote the set of all boolean functions f : {0, 1}n → {0, 1}. The BP
G represents the function f ∈ Bn for which f(a) = 1 iff the computation path
for the input a is accepting. The size of a branching program G is the number of
its nodes. The branching program size of a boolean function f is the size of the
smallest BP representing f . The length of a branching program is the maximum
length of a path.

A branching program is called (syntactically) read k times (BPk) if each
variable is tested on each path at most k times.

A branching program is called s-oblivious, for a sequence of variables s =
(s1, . . . , sl), si ∈ Xn, if the set of decision nodes can be partitioned into disjoint
sets Vi, 1 ≤ i ≤ l, such that all nodes from Vi are labeled by si and the edges
which leave Vi-nodes reach only Vi+1-nodes. The level i, 1 ≤ i ≤ l, contains
the Vi-nodes. The level l + 1 contains the 0- and the 1-sink. If the sequence of
variables is unimportant we call an s-oblivious branching program an oblivious
branching program. An oblivious branching program is of width w if its largest
level contains w nodes.

An oblivious read k times branching program for a sequence s = (s1, . . . , skn)
is called k-IBDD if s can be partitioned into k subsequences (s(i−1)n+1, . . . , sin),
1 ≤ i ≤ k, for which {s(i−1)n+1, . . . , sin} = Xn.

2.2.2 Conjunctive Forms

A boolean formula is in conjunctive form (CF) if it is a conjunction of clauses,
where every clause is a disjunction of literals. (A literal is a boolean variable or
a negated boolean variable.) The size of a CF is the number of its clauses. If all
clauses contain at most k literals, the formula is a kCF. A boolean function f

is said to have O(1) size 0-witnesses if it can be represented by a kCF, where
k = O(1).
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3 Testing Membership in Formal Languages

Motivated by the desire to understand in what sense the complexity of testing
properties of strings is related to the complexity of formal languages, Alon et al
[Alon et al 2000] showed that membership in any regular language is testable,
hence obtaining a general result identifying a non-trivial class of properties each
being testable. The presented algorithm tries to find evidence to an input string
not belonging to the given language in the form of so-called infeasible subwords.
Every word w that is ε|w|-far from the given language contains many such short
infeasible subwords. The query complexity of the algorithm is dependent on the
size of the (smallest) finite automaton accepting the given language, but this size
is a fixed constant with respect to the length of the input word. The authors also
discussed the testability of more complex languages and proved that the query
complexity required for testing context-free languages cannot be bounded by any
function that only depends on the distance parameter ε. One important subclass
of the context-free languages are the Dyck languages which includes strings of
properly balanced parantheses. Formally, the Dyck language Dm contains all bal-
anced strings that contain at most m types of parantheses. In [Alon et al 2000]
it was shown that membership in D1 can be tested with a number of queries that
only depends on the distance parameter ε, whereas membership in D2 cannot
be tested with less than a logarithmic number of queries with respect to the
input length. A lower bound of Ω(n1/11/ log n) on the query complexity of any
algorithm for testing Dm, m > 1, was shown in [Parnas et al. 2003]. Moreover,
an algorithm with query complexity O(n2/3 log3(n/ε)ε−3) was presented testing
whether an input string belongs to Dm.

It is still not known whether there exists a sublinear testing algorithm for all
context free languages.

In [Chockler and Kupferman 2004] the result of Alon et al was extended to ω-
regular languages and so-called lasso-shaped words. A reduction from the ε-test
of infinite words to a constant number of ε-tests for finite words was described.

4 Testing CF Properties

Testing a property represented by a CF can be viewed as testing whether a
given assignment to boolean variables satisfies the given conjunctive form or is
far from any satisfying assignment. For a long time all properties known to be
hard for two-sided error testing were functions whose 0-witnesses were large, e.g.,
the linear lower bound of Bogdanov, Obata, and Trevisan [Bogdanov et al. 2002]
capitalizes on the existence of inputs that are far from having the property, yet
any local view of a constant fraction of them can be extended to an input having
the property. If the property is defined by a kCF, k = O(1), this cannot happen.
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For each input that does not satisfy the property, there exists a set of k queries
that witnesses the fact that the input does not have the property.

In [Fischer et al. 2002] the authors described some properties that are equiv-
alent to properties representable by formulas in 2CF with respect to the number
of queries required for testing. The equivalent properties include being a vertex
cover in a graph fixed in advance, beeing a clique in a graph fixed in advance
and monotonicity of graph labelings over the binary alphabet. These proofs of
equivalence are so-called gap-preserving local reductions that tranform instances
of one problem into another, such that the testing algorithms for the second
problems could be used to solve the first one (see also [Bogdanov et al. 2002]).
Therefore, the reductions transform positive instances into positive instances and
ε-instances into instances that are reasonably far from having the property, i.e.,
the distance is preserved and is changed by at most a constant factor. Each query
for the new problem should be computable by a constant number of queries for
the original problem. These requirements ensure that a (one-sided error) testing
algorithm for the new problem yields a (one-sided error) testing algorithm for the
original problem with asymptotically the same query complexity. Furthermore,
in [Fischer et al. 2002] a one-sided error testing algorithm for monotonicity of
labelings of graphs with n nodes with query complexity O((n/ε)1/2) was pre-
sented.

Testing properties representable by kCFs becomes hard for k ≥ 3, i.e., there
cannot exist sublinear testing algorithm since Ben-Sasson, Harsha, and Raskhod-
nikova [Ben-Sasson et al. 2005] showed the existence of linear properties repre-
sentable by 3CFs that require a linear number of queries. First, they demon-
strated that every adaptive two-sided error test for checking membership in a
vector space can be converted to a non-adaptive one-sided error test with the
same query complexity and essentially identical parameters. Afterwards, the
authors presented sufficient conditions for a vector space to be hard to test,
and proved that random (c, d)-regular Low Density Parity Check Codes (LDPC
codes) satisfy these conditions (see [Gallager 1963] for the definition of these
codes). In the last step, they have demonstrated how to convert the resultant
codes to vector spaces representable by boolean formulas in 3CF. To obtain the
results the following techniques have been used:

- Yao’s minimax principle [Yao 1977] providing a general technique for proving
lower bounds for randomized algorithms;

- expansion in random graphs (and applications to random LDPC codes);

- linear algebra.

Fischer, Newman, and Sgall [Fischer et al. 2004] proved that there exists a
property with O(1) size 0-witnesses, and therefore with boolean formulas in kCF,
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k = O(1), that can be represented by a width 3 oblivious read-twice branching
program but for which a 5/8 ·10−7-test requires Ω(n1/10) queries. Like the result
in [Ben-Sasson et al. 2005] the existence of the property involves a probabilistic
argument and the proof is not constructive.

5 Testing Properties Representable by Small Size Restricted
Branching Programs

In [Bollig and Wegener 1998] it was shown that some monotone functions repre-
sentable by boolean formulas in disjunctive form with prime implicants of length
2 need size 2Ω(n1/2) if they are represented by read-once branching programs. It is
not difficult to modify this function to obtain a function with 2Ω(n1/2) read-once
branching program size that is representable by boolean formulas in 2CFs. On
the other hand the parity function can only be represented by a boolean formula
in conjunctive form with 2n−1 clauses but the OBDD size is 2n+1. Therefore, the
classes of boolean functions representable by kCFs and by oblivious branching
programs of polynomial size are incomparable.

Newman [Newman 2002] extended the result described in [Alon et al 2000]
asserting that regular languages are testable by considering oblivious read-once
branching programs of constant width as a non-uniform counterpart of the notion
of a finite automaton. He proved the following result. If g = (gn) is a family of
boolean functions representable by OBDDs of width w then for every n and
ε > 0 there is a randomized algorithm that always accepts every x ∈ {0, 1}n if
gn(x) = 1 and rejects it with high probability if at least εn bits of x should be
modified to obtain some x′ ∈ g−1

n (1). His algorithm makes (2w/ε)O(w) queries.
Therefore, for constant ε and w the query complexity is O(1).

Fischer, Newman, and Sgall [Fischer et al. 2004] put a bound on the branch-
ing program complexity of boolean functions that still guarantees testability by
presenting a property identified with an oblivious read-twice branching program
of width 3 for which at least Ω(n1/3) queries are necessary. Furthermore, New-
man’s result can be generalized to nonoblivious read-once branching programs
of constant width if on all paths from the source to the sinks all variables are
tested exactly once.

Bollig and Wegener [Bollig and Wegener 2003] showed that functions repre-
sentable by read-once branching programs of quadratic size are not necessarily
testable. Nevertheless, the presented lower bound on the query complexity is
very small for the investigated boolean function. In [Bollig 2005b] an improved
lower bound of Ω(n1/2) was presented. As a corollary a boolean function was
provided representable by (oblivious) read-once branching programs of almost
linear size but not testable with a constant number of queries. Until now it is an
open question whether there exists a sublinear testing algorithm for all functions
representable by read-once branching programs of polynomial size.
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The linear lower bound on the query complexity in [Ben-Sasson et al. 2005]
was proven for a function representable by boolean formulas in 3CFs where each
literal appears in at most d clauses, d = O(1). Therefore, using standard tech-
niques it is not difficult to prove the existence of a boolean function representable
by 2IBDDs of width 3 that need query complexity Ω(n). Like the other results
in [Ben-Sasson et al. 2005] the existence of the property involves a probabilistic
argument and the lower bound proof is not constructive.

To give the reader the opportunity to catch a glimpse of the lower bound
techniques used in the property testing scenario, in the following a smaller lower
bound is presented for an explicitly defined boolean function. One key idea are
gap-preserving local reductions already mentioned in Section 4.

Our aim is to construct a property identified with a family of boolean func-
tions g = (gn) that can be represented by 2IBDDs of constant width and by
CFs of linear size, where even most of the clauses have constant length, but for
which any ε-test requires nδ queries for some 0 < ε < 1 and 0 < δ < 1. First,
we reinvestigate a function fn : {0, 1, 2}n2 → {0, 1} already considered by Fis-
cher and Newman [Fischer and Newman 2001]. Here, we use a different proof to
present a larger lower bound on the query complexity. Afterwards we consider
a boolean encoding of that function. Already Fischer and Newman encoded the
{0, 1, 2}-labeling to present a non-testable ∀∃-poset property. Since our aim is
to construct a boolean function that can be represented by 2IBDDs of small size
and by CFs of linear size, we have to use a different approach.

For the rest of this section we consider 2-dimensional matrices and use the
notion of rows and columns in the usual matrix sense. The property symmetric
permutation uses the alphabet {0, 1, 2}. We say that a matrix satisfies the prop-
erty symmetric permutation if it is a row/column permutation of a symmetric
matrix with all 2’s on its primary diagonal, and no 2’s anywhere else. Obviously,
this requirement is equivalent to the following two conditions:

1. In every row and in every column there exists exactly one 2-entry.

2. The matrix contains none of the following 2× 2 matrices as a submatrix (to
ensure that the original matrix was symmetric):(

2 0
1 2

)
,
(

2 1
0 2

)
,
(

0 2
2 1

)
,
(

1 2
2 0

)
.

The property symmetric permutation is identified with its characteristic func-
tion f = (fn), where fn is defined on n × n matrices M on the variables mij ,
1 ≤ i, j ≤ n.

Proposition1. Let U be the uniform distribution on all boolean n×n matrices.
For each ε ≤ 1/4 − δ, δ a constant, the probability that an instance generated
according to U is εn2-close to fn is o(1).
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Proof. Let m := (n2 − n)/2. A pair (mij , mi′,j′), i 	= i′ and j 	= j′, is called
a σ-pair for a permutation σ ∈ Sn if σ(i) = j′ and σ(i′) = j. If an instance
M generated according to U is εn2-close to fn, then there exists a permutation
σ ∈ Sn such that at most εn2 σ-pairs (mij , mi′,j′) differ, i.e., mij = 1 − mi′,j′ .
If we bound this probability for each σ by 2−Ω(n2), then the probability that
there exists some permutation with this property is bounded above by 2n log n ·
2−Ω(n2) = 2−Ω(n2). For a fixed permutation σ the number of σ-pairs (mij , mi′j′ )
where mij 	= mi′j′ is binomially distributed for the parameters m and 1/2.
Hence, by Chernoff bounds, the probability of at most (1/2−α)m indices where
mij 	= mi′j′ is bounded by 2−Ω(m) = 2−Ω(n2) for each constant α > 0. Hence,
we are done if εn2 ≤ (1/2−α)m. Since n2 = (2 + o(1))m and ε ≤ 1/4− δ we get

εn2 ≤ (1/4 − δ)(2 + o(1))m ≤ (1/2 − α)m

for some appropriate α > 0 and m large enough.

Proposition2. Let S be a set of d = o(n) variables from {m11, . . . , mnn}
and M be an instance generated according to P , the uniform distribution on
f−1

n (1). Let σM be the corresponding permutation to M . Let A(S) be the event
that S contains no σM -pair and no variable mij for which σM (i) = j. Then
ProbP (A(S)) ≥ 1 − o(1).

Proof. The permutation σM is chosen according to the uniform distribution.
The d variables in S lead to at most (1/2)d(d − 1) different pairs for at most
(1/2)d(d − 1) · (n − 2)! permutations and to at most d variables mij for at
most (n − 1)! permutations σ each, where σ(i) = j. Therefore, the probability
that S contains a σM -pair or a variable mij , where σM (i) = j, is at most
(1/2)d(d − 1) · (n − 2)!/n! + d(n − 1)!/n! which is o(1) if d = o(n) and n large
enough. Hence, the proposition follows.

Theorem 3. For any ε-test for fn, ε ≤ 1/4 − δ and δ a constant, o(n) queries
are insufficient, where n2 is the number of variables of fn.

Proof. To prove the lower bound, we apply Yao’s minimax principle [Yao 1977]
which says that to show a lower bound on the complexity of a randomized test, it
is enough to present an input distribution on which any deterministic test with
that complexity is likely to fail. Therefore, we define two distributions, P for the
positive instances and N for the negative instances, and show that in order to
distinguish between these distributions o(n) queries are insufficient.

P is the uniform distribution on f−1
n (1) and can be realized as follows. First,

a symmetric matrix M ′ with 2’s on the primary diagonal and 0’s and 1’s every-
where else is uniformly chosen. The input matrix M is constructed from M ′

by permuting its rows according to a permutation which is chosen uniformly in
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random. N is the uniform distribution on the set of all boolean n × n matrices
that are εn2-far from fn. Moreover, let U be the uniform distribution on all
boolean n × n matrices. The probability distribution D over all inputs is now
defined by choosing with probability 1/2 positive instances according to P and
with probability 1/2 negative instances according to N .

We prove that even an adaptive deterministic algorithm that queries at most
d = o(n) bits has an error probability of more than 1/6 on inputs taken from the
distribution D. By probability amplification we can conclude that every adaptive
deterministic algorithm that queries at most d/9 = o(n) bits must have an error
probability of more than 1/3.

Let T be an adaptive algorithm that queries at most d bits. Every leaf in
the decision tree that represents T is labeled by either accept or reject. We
may assume that T queries each input bit at most once for a randomly chosen
input according to D and that the decision tree is a complete ternary tree of
depth d, because we can transform each decision tree in such a tree without
increasing the error probability. Let L be the set of all leaves that are labeled
by reject. Let B(L) be the event to reach a leaf from the set L. We assume that
ProbN (B(L)) ≥ 2/3 as otherwise the algorithm errs on inputs which are εn2-far
from fn with probability of more than 1/6. Our aim is to prove that using the
assumption it follows that ProbP (B(L)) ≥ (1 − o(1))2/3 > 1/3 which implies
that the algorithm errs by rejecting positive inputs with probability of more than
1/6.

Every leaf α ∈ L corresponds to a set of variables Sα that were queried along
the way to α and an assignment bSα to these variables. The algorithm reaches
for an input w the leaf α if the assignment to the variables in Sα is consistent
with bSα . The assignment to variables that are queried in other branches of the
decision tree is meaningless. We may assume that for every α ∈ L the assignment
bSα to the variables in Sα contains only 0’s and 1’s as otherwise the leaf α may
be changed to accept without reducing the success probability of T under D.

Let B(α) be the event that the algorithm reaches the leaf α, A(Sα) the
event as defined in Proposition 2, and Mε the event that a uniformly chosen
boolean n× n matrix is εn2-far from fn. The distribution N equals the uniform
distribution U on all inputs with the restriction that the input is εn2-far from
fn. Using Proposition 1 we obtain ProbU (Mε) ≥ 1− o(1). Moreover, there exist
2d leaves 	, where bS�

contains only 0’s and 1’s. A boolean matrix can only reach
one of these leaves and under the uniform distribution each of these leaves is
reached with the same probability. Therefore,

ProbN (B(α)) = ProbU (B(α) | Mε) = ProbU (B(α) ∩ Mε)/ProbU (Mε)

≤ ProbU (B(α))/ProbU (Mε)

≤ (1 + o(1))2−d.
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Furthermore, using Proposition 2 we know that

ProbP (B(α)) ≥ ProbP (B(α) ∩ A(Sα)) = ProbP (B(α) | A(Sα)) · ProbP (A(Sα))

≥ (1 − o(1))2−d.

Now we can conclude that

ProbP (B(L)) =
∑
α∈L

ProbP (B(α)) ≥ (1 − o(1))
∑
α∈L

ProbN (B(α))

= (1 − o(1))ProbN (B(L)) ≥ (1 − o(1))2/3

> 1/3

if n is large enough. This completes the proof of Theorem 3.

The function fA,B
n : {0, 1}2n2 → {0, 1} is a boolean encoding of the function

fn and is defined on two n × n boolean matrices A and B on the variables aij

and bij , 1 ≤ i, j ≤ n. The function fA,B
n outputs 1 iff the following conditions

are fulfilled:

i) A is a permutation matrix, i.e., there exists exactly one 1-entry in each row
and one 1-entry in each column.

ii) If aij and ai′j′ are equal to 1 then bij′ is equal to bi′j .

Proposition4. If there exists an ε-test with q(ε, 2n2) queries for fA,B
n then

there exists a 2ε-test with the same number of queries for fn.

Proof. For brevity we denote an ε-test with q(ε, n) queries by (ε, q(ε, n))-test in
the following. Assume that there exists an (ε, q(ε, 2n2))-test T for fA,B

n . Our aim
is to construct a (2ε, q(ε, 2n2))-test for fn. For this reason we define a mapping p

from inputs M for fn to inputs (A, B) for fA,B
n . For every M = (mij)1≤i,j≤n ∈

{0, 1, 2}n2
let p(M) be defined as follows:

- aij := mij(mij − 1)/2,

- bij := mij(mij − 1)/2 − (mij − 2)mij .

If mij = 0 then aij = bij = 0, if mij = 1 then aij = 0 and bij = 1, and if mij = 2
then aij = 1 and bij = 1. Obviously, M ∈ f−1

n (1) implies fA,B
n (p(M)) = 1.

In order to obtain an input from f−1
n (1) there have to be at most as many bit

positions in M to be changed as bit positions in p(M) in order to get a 1-input
from fA,B

n . Therefore, if dist(p(M), fA,B
n ) ≤ ε(2n2) then dist(M, fn) ≤ 2εn2.

To (2ε, q(ε, 2n2))-test fn on an input M , we perform the (ε, q(ε, 2n2))-test
T on p(M). The only difference is that each time that aij (bij) is queried for
p(M) we just query mij and compute aij (bij). Since the reduction is distance
preserving we can inherit the result of T without changing the error probability
on 1-inputs and inputs that are 2εn2-far from fn.
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Now we transform the function fA,B
n to a boolean function gn that can be

represented by 2IBDDs of constant width and by CFs of linear size, where most
of the clauses have constant length. The idea for the construction of gn is the
following one. We use the same number of copies for the variables in the matrices
A and B. For every original variable aij (bij) we generate (n− 1)2 new variables
ai′j′

ij (bi′j′
ij ), where i 	= i′ and j 	= j′. Then we add for each aij (bij) two new

variables ar
ij and ac

ij (br
ij and bc

ij).
The function gn outputs 1 iff the following conditions are fulfilled:

a) For 1 ≤ i, j ≤ n, all variables ai′j′
ij , i 	= i′ and j 	= j′, ar

ij , and ac
ij have the

same value. The same holds for the bij-variables.

b) For each row i, 1 ≤ i ≤ n, there exists exactly one variable ar
ij , 1 ≤ j ≤ n,

set to 1.

c) For each column j, 1 ≤ j ≤ n, there exists exactly one variable ac
ij , 1 ≤ i ≤ n,

set to 1.

d) If ai′j′
ij = aij

i′j′ = 1 then bi′j
ij′ and bij′

i′j are equal.

Altogether the function gn is defined on N := 2n2((n − 1)2 + 2) variables.

Proposition5. If there exists an (ε, q(ε, N))-test for gn then there exists an
(ε, q(ε, N))-test for fA,B

n .

The proof of Proposition 5 is similar to the proof of Proposition 4. The key
idea is another gap-preserving local reduction.

Proposition6. The function gn can be represented by 2IBDDs of width 3 and
by CFs of linear size.

Proof. In the first part of the 2IBDD we verify the requirements b), c), and d)
one after another. Since the requirements are defined on different sets of variables
we obtain an oblivious read-once branching program for these requirements by
glueing the oblivious read-once branching programs together, i.e., the 1-sink of
one branching program is replaced by the source of the next one and so on.
The requirements b) and c) can be verified by an oblivous read-once branching
program of width 3. The requirement d) can be checked for each group of four
variables ai′j′

ij , aij
i′j′ , bi′j

ij′ , and bij′
i′j by an oblivious read-once branching program

of width 3 realising the function

¬((ai′j′
ij ∧ aij

i′j′ ) ∧ ((bi′j
ij′ ∧ ¬bij′

i′j) ∨ (¬bi′j
ij′ ∧ bij′

i′j))).

In the second part of the oblivious 2IBDD we just check the requirement a),
i.e., if all copies of the same variable of the original function fA,B

n have the same

721Bollig B.: Testing Membership in Formal Languages ...



value. All copies of the same variable are tested one after another. Width 3 is
sufficient.

The resulting CF is a conjunction of CFs checking the requirements a)-d)
separately. The requirement that for each row i (column j) there exists exactly
one variable ar

ij , 1 ≤ j ≤ n, (ac
ij , 1 ≤ i ≤ n) set to 1 is equivalent to the

requirement that there exists for each row i (column j) at least one variable set
to 1 and that there are not two variables in this row (column) set to 1. Hence,
we obtain

(ai1 ∨ ai2 ∨ · · · ∨ ain)
∧

1≤j1<j2≤n

(¬aij1 ∨ ¬aij2 ).

Altogether there are 2n ·n(n− 1)/2 = n3−n2 clauses of length 2 and 2n clauses
of length n to check the requirements b) and c). The requirement d) can be
tested for each group of variables by a 4CF with 2 clauses

(¬ai′j′
ij ∨ ¬aij

i′j′ ∨ ¬bi′j
ij′ ∨ bij′

i′j) ∧ (¬ai′j′
ij ∨ ¬aij

i′j′ ∨ bi′j
ij′ ∨ ¬bij′

i′j).

Altogether there are n2 · 2(n − 1)2 clauses of length 4 to verify condition d).
Finally, the test whether some variables have the same value can be done by
pairwise checking that two of them are equal or in a more clever way by checking
whether the first one is equal to the second one, the second one to the third
one and so on. Therefore, the requirement a) can be tested by a 2CF with
2n2 ·2((n−1)2+1) clauses. Summarizing, the function gn has a CF representation
with 4n4−7n3 +7n2 clauses of length 2, 2n4−4n3 +2n2 clauses of length 4 and
2n clauses of length n, where N = Θ(n4) is the number of variables.

Combining Theorem 3 and Propositions 3-5 we have proved the following
main result.

Theorem 7. The function gn can be represented by 2IBDDs of width 3 and by
CFs of linear size but for any ε-test, ε ≤ 1/8− δ′, δ′ a constant, o(N1/4) queries
are insufficient, where N is the number of variables of gn.

6 Concluding Remarks

An investigation that goes beyond the original definition of testable properties
was initiated in [Parnas et al. 2004], concerning tolerant testers that must also
accept inputs that are close enough to satify the given property. To be more pre-
cise, an input has to be accepted with high probability if at most an ε1 fraction, of
the input characters has to be modified to make it satisfy the property and it has
to be rejected with high probability if at least an ε2 fraction, 0 ≤ ε1 < ε2 < 1, of
the input characters need modification. Recently, in [Fischer and Fortnow 2005]
it was shown that not all testable properties are also tolerantly testable. Until
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now it is open whether every testable boolean property admits a tolerant test
with a sublinear number of queries.

In most of the cases in the literature, the distance used in the definition
of being εn-far from satisfying a property is the Hamming distance between
input strings. It may be interesting to consider other distance measures and
to compare not only inputs of the same length to compute the distance of an
input to a given property. The edit distance between two words is the minimal
number of insertions, deletions, and substitutions of an input letter required to
transform one word into the other. The edit distance with moves considers one
additional operation, subwords can be moved to another position of the input
word. In [Magniez and de Rougemont 2004, Fischer et al. 2006] property testing
in the context of formal languages was investigated concerning the edit measure
with moves.
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