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1 Introduction

The goal of cryptography is to provide techniques for keeping information secret,
for determining that information has not been tampered with, and for determin-
ing who authored pieces of information. To achieve these goals cryptographers
develop methods to encrypt information and to sign information digitally, i.e.
to provide an electronic equivalent for a handwritten signature. For a long time
cryptography was of interest mainly for spies, military leaders, and diplomats.
In recent decades, the application of cryptography has expanded because cryp-
tographic technology is used extensively in today’s computing and telecommuni-
cations infrastructure. Moreover, cryptography became an exact science on the
border between mathematics and computer science. Among the main achieve-
ments of cryptography as an exact science are precise security definitions. Once
exact security definitions were given it soon turned out that randomness is a nec-
essary ingredient to satisfy strong security notions. For example, if we encrypt
information to keep it secret, a weak notion of security says, that given the
encrypted information an eavesdropper should not be able to deduce the infor-
mation. This security can be achieved without randomness. On the other hand,
a strong notion of security will require that given only the encrypted information
an eavesdropper cannot deduce even partial knowledge about the information.
To achieve this kind of security randomness is necessary.

The first who clearly stated that randomness is a key ingredient in a se-
cure cryptographic system was C. Shannon in 1949 in his paper Communication
theory of secrecy systems [Shannon], in which he introduced among other things
the notion of perfect secrecy. Cryptographic system with perfect secrecy provide,
well, perfect security, even against an adversary that has unlimited computing
power but is not omniscient. However, to achieve perfect secrecy one has to
pay a huge price, e.g. in any system with perfect secrecy the secret key has to
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be as long as the message to be encrypted and a key can only be used to en-
crypt a single message. It was not until 1984 in a paper entitled Probabilistic
encryption [Goldwasser/Micali] that Goldwasser and Micali introduced notions
of security that achieve the same goals as perfect secrecy if only adversaries
with limited computing powers are considered.1 They also constructed encryp-
tion schemes that satisfy these security notions, but that do not suffer from the
drawbacks of systems having perfect secrecy. Nevertheless, just like Shannon
showed that perfect secrecy is impossible without randomness, Goldwasser and
Micali showed that to meet their security requirements an encryption must use
randomness. Since the work of Goldwasser and Micali randomness has been rec-
ognized as a key component in almost any cryptographic system that provides
more than just the most basic kind of security.

In this brief overview we demonstrate the close connection between security
and randomness by reviewing the original security definitions of Goldwasser and
Micali. We also sketch how to construct encryption schemes that satisfy these
security definitions. Even though we cannot provide all the details we try to keep
our treatment mathematically rigorous, clearly stating what assumptions we
need to show that our constructions satisfy the security definitions of Goldwasser
and Micali.

2 Notation

In this section we introduce the basic notation that will be used throughout
the rest of the paper. For any two bit strings x, y ∈ {0, 1}∗ we denote the
concatenation of x and y by x‖y. Given some finite set S, we denote the uniform
distribution on S by U(S). If S = {0, 1}s we write Us for U({0, 1}s). Let D be
a distribution on some set S, we write x ← D if an element x ∈ S is chosen
according to distribution D on set S. By slight abuse of notation, given a finite
S and a distribution D on S we call any function f : S →W a random variable.
Traditionally, this term is reserved for functions with W = R.

For a deterministic algorithm A we denote by A(x) the output of A on input
x. In this article we mainly deal with probabilistic polynomial-time algorithms
(PPTAs) and probabilistic polynomial-size circuit families (PPSCs). If A is a
PPTA or a PPSC we denote by A(x, r) the output of A if the input is x and
r = r1‖ . . . ‖rl ∈ {0, 1}∗ are the internal random bits of A. We assume that for
any input x a PPTA or a PPSC generates a fixed number l(x) of random bits
which are uniformly distributed, i.e. distributed according to Ul(x). A PPTA
or PPSC A together with an input x defines a random variable with domain
1 Note that this happened almost ten years after the invention of public-key cryp-

tography by Diffie and Hellman and the invention of RSA by Rivest, Shamir, and
Adleman.

655Bloemer J.: Randomness and Secrecy - A Brief Introduction



{0, 1}l(x) whose range is the set of possible outputs of A. For any input x we
denote this random variable simply by A(x). Namely,

Pr(A(x) = y) =
|{r ∈ {0, 1}l(x)|A(x, r) = y}|

2l(x)
.

According to our notation for random variables, for any PPTA or PPSC A and
any input x for A we write y ← A(x), if y is chosen according to the random
variable A(x).

Given some PPTA or PPSC A in addition to the internal random bits of A

we may have a second source of randomness, i.e. we may also assume that the
input to A is distributed according to some distribution D on all possible inputs
of some given bit length n. Then we write

Pr(A(x) = y|x← D)

for the probability that the output of A is y if the input is chosen according
to distribution D. Note that the probability here is taken with respect to the
internal random bits of A and with respect to the input distribution D. Also note
that for fixed y and fixed family of distributions {Dn}n∈N, Dn a distribution on
{0, 1}n, the probabilities Pr(A(x) = y|x← D) define a function N→ R.

We call a function g : N → R negligible if for every polynomial p : N → R

there exists some n0 such that for n > n0,

g(n) <
1

p(n)
.

If some function g (e.g. a density function Pr(A(x) = y|x← D)) is negligible we
simply write g(n) < negl(n). More generally, if two functions g and h differ only
by some negligible function, we write g(n) = h(n) + negl(n).

3 Encryption Schemes and One-Way Security

Suppose two parties, Alice and Bob, want to communicate over an insecure
channel without an eavesdropper Eve being able to understand the messages
that Alice and Bob exchange. Because the channel is insecure, Eve can read all
messages that Alice and Bob exchange. Hence Alice and Bob need a means to
transform their messages such that Eve cannot comprehend the original mes-
sages even though she has full access to the transformed messages. Moreover,
the transformation must be done in such a way that the legitimate receiver of
a message (Alice or Bob) can easily recover the original message. The task of
transforming messages from the original format into a format that is incompre-
hensible to everyone except the intended receiver is achieved by using encryption
schemes. We distinguish two types of encryption schemes: symmetric or private-
key schemes and asymmetric or public-key schemes.
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Definition 1. A symmetric or private-key encryption scheme is a triple (G, E

, D) of PPTAs such that:

1. G is called the key generator. On input 1s, s ∈ N, the algorithm G outputs
a key from {0, 1}∗.

2. The encryption algorithm E and the decryption algorithm D take as inputs
elements from {0, 1}∗ × {0, 1}∗ and output elements from {0, 1}∗.

3. For every key k ∈ {0, 1}∗ generated by G and every m ∈ {0, 1}∗, we have

D
(
k, (E(k, m)

)
= m. (1)

The parameter s is called the security parameter of the scheme.

To communicate with the aid of a symmetric encryption scheme, Alice or Bob
first have to run the key generator G to obtain a common key k. They have
to share the key k but keep it secret from other persons. Then they exchange
messages m ∈ {0, 1}∗ as follows. The sender, say Alice, encrypts m as c =
E(k, m) and sends c to Bob. Upon receiving c, Bob decrypts c as m′ = D(k, c).
From (1) we see that m = m′.

Note that the definition of a symmetric encryption scheme does not say any-
thing about the security of an encryption scheme (G, E, D), i.e. it says nothing
about the chances of an eavesdropper Eve to understand the messages that
Alice and Bob exchange. For example, a triple of algorithms (G, E, D) with
E(k, m) = m and D(k, m) = m for every k ∈ {0, 1}∗ satisfies Definition 1,
although it certainly can not be called a good or secure encryption scheme. Se-
curity issues and the role that the security parameter s plays will be dealt with
later.

Definition 2. An asymmetric or public-key encryption scheme is a triple of
PPTAs (G, E, D) such that:

1. G is called the key generator. On input 1s, s ∈ N, the algorithm G outputs a
key pair (pk, sk) from {0, 1}∗× {0, 1}∗. The first coordinate pk of each pair
is called the public key, the second coordinate sk is called the private key.

2. The encryption algorithm E and the decryption algorithm D take as inputs
elements from {0, 1}∗ × {0, 1}∗ and output elements from {0, 1}∗.

3. For every output pair (pk, sk) ∈ {0, 1}∗×{0, 1}∗ of G and every m ∈ {0, 1}∗
we have

D
(
sk, (E(pk, m)

)
= m. (2)
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If Bob wants to send messages to Alice with the aid of an asymmetric encryption
scheme, Alice first has to run the key generator G to obtain a pair of keys
(pkA, skA). She publishes the key pkA (hence the name public-key encryption
scheme) but keeps skA secret. Now Bob encrypts messages m he wants to send
to Alice by setting c = E(pkA, m). Finally, Bob sends c to Alice. To recover the
message m from c Alice sets m′ = D(skA, c). From (2) it is clear that m′ = m.
Note that in general the key pair (pkA, pkA) cannot be used by Alice to encrypt
messages she wants to send to Bob. If Alice wants to encrypt messages she
sends to Bob, Bob first has to run the key generator G to obtain his own key
pair (pkB , skB). This explains the name asymmetric encryption schemes. Again,
security issues will be dealt with below.

In the sequel we call messages m plaintexts and encrypted messages (i.e. bit
strings produced by an encryption algorithm E) ciphertexts.

Before we consider security issues, let us look at some examples.

Example 1. The symmetric encryption scheme xor-encryption is defined as fol-
lows:

– On input 1s, the key generator G outputs a key k chosen uniformly at random
from {0, 1}s, i.e.

Pr
(
G(1s) = k

)
= 2−s for all k ∈ {0, 1}s.

– On input (k, m) ∈ {0, 1}s×{0, 1}∗, the encryption algorithm first partitions
m into bit strings m1, . . . , ml−1 ∈ {0, 1}s and ml ∈ {0, 1}t with t ≤ s. Then
E sets ci = mi⊕k, i = 1, . . . , l−1 and cl = ml⊕k[1..t], where k[1..t] denotes
the t-bit prefix of k. The output c of E is the concatenation c = c1‖ · · · ‖cl

of the bit strings c1, . . . , cl.

– The decryption algorithm D works exactly as the encryption algorithm E.

It is clear that the xor-encryption satisfies (1). It is also not hard to see that the
three algorithms G, E, D are PPTAs.

Example 2. To define the RSA system we denote by ZN the ring of integers mod-
ulo N ∈ N and by Z

∗
N we denote the multiplicative group of integers relatively

prime to N ∈ N. Furthermore φ(N) is Euler’s totient function. In particular, if
N = pq is the product of two distinct primes, then φ(N) = (p− 1)(q − 1). The
asymmetric encryption or public-key scheme RSA is defined as follows:

– On input 1s, the key generation algorithm G first chooses two s-bit primes
p, q uniformly at random and sets N = p · q. Then G chooses an element
e ∈ Z

∗
φ(N) also uniformly at random. Finally it determines d ∈ Z∗

φ(N) such
that e·d = 1 mod φ(N). The output of G is the pair (pk, sk) with pk = (N, e)
and sk = d. Here we write N, e, d as 2s-bit strings.
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– On input (N, e, m) ∈ {0, 1}4s × {0, 1}∗, the encryption algorithm E first
partitions m into bit strings m1, . . . , ml−1 ∈ {0, 1}2s−1 and ml ∈ {0, 1}t
with t ≤ 2s − 1. Then E interprets each mi as an element of ZN and sets
ci = me

i mod N, i = 1, . . . , l. This is possible since N ≥ 22s−2. The algorithm
E interprets the elements ci as bit strings of length 2s (possible since N <

22s) and outputs the concatenation c = c1‖ · · · ‖cl of the bit strings c1, . . . , cl.

– On input (d, c) ∈ {0, 1}2s × {0, 1}∗, the decryption algorithm D first par-
titions c into bit strings c1, . . . , cl ∈ {0, 1}2s. Then D interprets each ci

as an element of ZN and sets mi = cd
i mod N, i = 1, . . . , l. The algorithm

D interprets the elements mi as strings with 2s − 1 bits2 and outputs the
concatenation m = m1‖ · · · ‖ml.

It follows from elementary number theory that RSA satisfies (2) (see for example
[Stinson]). Using algorithms like the extended euclidean algorithm, the square-
and-multiply algorithm and prime generating algorithms it can also be shown
that the algorithms G, E, D are PPTAs.

Now let us turn to the question what it means for an encryption scheme to be
secure. The first idea that comes to mind is the following informal definition of
security.

Definition 3 (informal). 1. A symmetric encryption scheme (G, E, D) is se-
cure iff given as input a ciphertext c = E(k, m) no efficient algorithm A can
compute the plaintext m.

2. An asymmetric encryption scheme G, E, D) is secure iff given as input a
public-key pk and a ciphertext c = E(pk, m) no efficient algorithm A can
compute the plaintext m.

However, in several ways this definition requires clarification. What exactly do
we mean by saying that an efficient algorithm cannot compute plaintexts from
ciphertexts (and public keys)? Are we considering worst-case or average-case
complexity? It seems that average-case complexity is the right measure. Next,
does the algorithms have to be successful for any ciphertext? Clearly, it is bad
enough if there is an algorithm that for a non-negligible number of ciphertexts
c succeeds in computing the corresponding plaintext. Again, we should be con-
sidering probabilistic algorithms, more precisely probabilistic algorithms with a
non-negligible success probability in determining the plaintext from a cipher-
text (and a public key). These considerations lead to the following definition of
one-way security.
2 For the last bit string we have to ignore leading zeros.
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Definition 4. A symmetric encryption scheme is one-way secure if for every
PPTA A (whose running time is polynomial in the security parameter s) and
every polynomial p, the following property holds:

Pr
(
A(1s, c) = m|c← E(k, m), k ← G(1s), m← Up(s)

)
< negl(s).

That is, no eavesdropper modeled as a PPTA A can with some non-negligible
probability compute the correct plaintext from a ciphertext. Here the success
probability is with respect to the internal coin tosses of A, a key k chosen ac-
cording to the distribution defined by the key generator G, and the encryption c

of a plaintext m chosen from the uniform distribution of plaintexts whose length
is bounded by the polynomial in the security parameter s.3

This definition also explains the use of the security parameter s: Given a one-way
secure symmetric encryption scheme (G, E, D), the security parameter s can be
used to control the security of the scheme: Larger security parameter means
better one-way security.

The definition of one-way security is easily extended to asymmetric encryp-
tions schemes, the only difference being that the PPTA A in addition to a ci-
phertext c also gets the public key being used as an input.

Definition 5. An asymmetric encryption scheme is one-way secure if for every
PPTA A (whose running time is polynomial is s) and every polynomial p, the
following property holds:

Pr
(
A(1s, pk, c) = m|c← E(pk, m), (pk, sk)← G(1s), m← Up(s)

)
< negl(s).

Let us consider whether the xor-encryption and RSA are one-way secure.

Theorem 6. The xor-encryption (Example 1) is one-way secure.

Proof. In order to compute the plaintext m correctly from a ciphertext c, any
algorithm A that does not get the key k as an input must guess this key correctly.
However, for any ciphertext c and any key k there is a plaintext m such that
c = E(k, m). From this and the fact that k is chosen uniformly at random from
{0, 1}s it easily follows that for all polynomials p and all PPTAs A, we get

Pr
(
A(1s, c) = m|c← E(k, m), k ← G(1s), m← Up(s)

)
= 2−s.

Whether RSA is one-way secure is not known. However, the result immediately
follows from the following widely believed assumption(s).
3 It is not hard to see that a bound on the length of the plaintext is necessary for a

definition of this kind to make sense. Similar remarks apply to many of the definitions
we state below.
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Assumption 1 (uniform version) For any probabilistic polynomial-time al-
gorithm (PPTA) A, the following holds:

Pr
(
A(N, e, c) = m|(N, e, d)← G(1s), m← U(ZN ), c = me mod N

)
< negl(s).

(non-uniform version) For any polynomial-size circuit family (PPSC)
{Cs}s∈N, the following holds

Pr
(
Cs(N, e, c) = m|(N, e, d)← G(1s), m← U(ZN ), c = me mod N

)
< negl(s).

That is, there is no probabilistic polynomial-time algorithm or probabilistic
polynomial-size circuit family that for a random public RSA key (N,e) and for a
random element c ∈ ZN is able to invert with non-negligible success probability
the RSA encryption function restricted to bit strings representing elements in
ZN .

The non-uniform assumption will only be used when we discuss advanced secu-
rity concepts. The uniform version of the assumption easily implies the one-way
security of RSA.

Theorem 7. Under Assumption 1 the RSA encryption scheme (Example 2) is
one-way secure.

4 Advanced Security Concepts - Semantic Security and
Polynomial Indistinguishability

Although one-way security captures important aspects of security it has several
weaknesses. We state just two problems.

1. If an encryption scheme (G, E, D) is one-way secure, then it can still be easy
to compute the plaintext m from a ciphertext c = (E, em), if the plaintext
m is of a special form or if the plaintext m is chosen not according to the
uniform distribution but some other distribution.

2. Even if a plaintext m cannot be computed efficiently from a ciphertext
E(e, m), still partial information about m may be efficiently computable
given the ciphertext c.

To illustrate both problems we look at so-called stereotyped messages. Consider
the case of a company that secures access to its sensitive customer data by a
daily changing password. To distribute this password among its employees a
public-key encryption scheme (G, E, D) is used where each employee A has its
own public key pkA. Every morning a message m of the form Today’s password
for our customer data is xxxx. is send to every employee A, always encrypted

661Bloemer J.: Randomness and Secrecy - A Brief Introduction



with the employee’s public key pkA. Messages like m are called stereotyped since
they consist of a never changing part (”Today’s password for our customer data
is”) and a part that is variable (the actual password).

Using a scheme that is only known to be one-way secure this method to
distribute a daily password may not be secure. First, one-way security does not
guarantee that messages of the form used in this application are difficult to
compute given only the ciphertexts E(pkA, m). Second, even if in the encryption
scheme (G, E, D) used by the company it is difficult to compute the complete
message m from the ciphertexts E(pkA, m) this does not rule out the possibility
that parts of m given E(pkA, m) can be computed efficiently. If the part that is
easy to determine happens to be the variable part containing the daily password,
then the method is completely insecure and useless. This threat is real. For
example, Coppersmith [Coppersmith] describes attacks on stereotyped messages
in the RSA encryption scheme.4

Hence one-way security is only a first step in defining security notions for
encryption schemes. It must be superseded by stricter notions of security. In
1984 in a seminal paper Goldwasser and Micali [Goldwasser/Micali] defined two
different stricter notions of security and described encryption schemes that meet
these security requirements. The first security notion is called semantic security.
Informally it can be stated as follows.

Definition 8 (informal). An encryption scheme (G, E, D) is semantically se-
cure if for every probability distribution on plaintexts, whatever a PPTA A can
compute about a plaintext given a ciphertext, can also be computed by a PPTA
A′ without the ciphertext. For a public-key encryption scheme, both A and A′

also get the public key being used.

It should be clear that semantic security meets both objections raised against
one-way security. The second security notion is called polynomial indistinguisha-
bility. Informally it reads as follows.

Definition 9 (informal). An encryption scheme (G, E, D) is polynomial in-
distinguishable, if no PPTA A can generate two plaintexts m0, m1 and then
correctly distinguish between encryptions of m0 and m1 with probability sig-
nificantly greater than 1

2 . For a public-key encryption scheme, A also gets the
public key being used.

At first sight it may not be clear that polynomial indistinguishability also meets
the two objections against one-way security. However, it turns out that semantic
security and polynomial indistinguishability (if appropriately formalized) are in
fact equivalent notions of security. Intuitively, this can be seen as follows. Seman-
tic security states that basically nothing about the plaintext can be computed
4 There are additional security problems with this approach since an adversary gets

not just one ciphertext, but many encryptions cA = E(pkA, m)) of a single plaintext.
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from the ciphertext. But then one should not be able to distinguish ciphertexts of
two different plaintexts, which is polynomial indistinguishability. If, on the other
hand, one is not able to distinguish the ciphertexts of two plaintexts (i.e. poly-
nomial indistinguishability), one cannot learn anything about a plaintext given
a ciphertext, which is semantic security. For a formal proof that semantic secu-
rity and polynomial indistinguishability are equivalent see [Goldwasser/Micali]
(polynomial indistinguishability implies semantic security) and [MRS] (for se-
mantic security implies polynomial indistinguishability).

Since polynomial indistinguishability is somewhat easier to deal with, in the
sequel we will concentrate on this notion. First we will give a formal definition
of polynomial indistinguishability. Then, in the next section, we will see how
to construct encryption schemes that are polynomially indistinguishable. As it
turns out, neither RSA nor the xor-encryption is polynomially indistinguishable.
However, we will see how we can construct a polynomially indistinguishable
encryption combining RSA with randomization.

We now formalize the notion of polynomial indistinguishability. To simplify
our exposition we will work with families of probabilistic polynomial-size circuits
(PPSCs) rather than with algorithms, i.e. we switch to a non-uniform model of
computation. Using circuits rather than algorithms in our definition of security
actually strengthens the security requirements (every algorithm can be simulated
by circuits but not vice versa). However, we will also be forced to use stronger
complexity-theoretic assumptions like the non-uniform version of Assumption 1
to show that the constructions presented in the next section satisfy these security
requirements.

Definition 10. 1. A symmetric encryption scheme is called polynomially indis-
tinguishable if for every PPSC {Cs}s∈N, every polynomial p , every m0, m1 ∈
{0, 1}p(s), |m0| = |m1|, we have

Pr
(
Cs(E(k, mb)) = b|k← G(1s), b← U1

)
<

1
2

+ negl(s).

2. An asymmetric encryption scheme is called polynomially indistinguishable if
for every PPSC {Cs}s∈N, every polynomial p, and every m0, m1 ∈ {0, 1}p(s),

|m0| = |m1|, we have

Pr
(
Cs(pk, E(pk, mb)) = b|(pk, sk)← G(1s), b← U1

)
<

1
2

+ negl(s).

Remark. 1. Given an encryption of either m0 or m1 an algorithm or circuit
that simply guesses which message was encrypted has success probability 1

2 .
Hence, the definition states that no polynomial-size circuit can do signifi-
cantly better than just guessing.
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2. In the informal definition of polynomial indistinguishability we only required
that no algorithm can distinguish the encryptions of two messages which it
must be able to generate in polynomial time. In our formal definition we
require that this is true for any two messages. This only strengthens the
definition. It also simplifies the exposition.

3. The restriction to messages m0, m1 whose length is bounded by some poly-
nomial has technical reasons which the reader may ignore.

It is not hard to see that neither the xor-encryption nor RSA is polynomially
indistinguishable. For RSA this is easily seen as follows. Let m0, m1 be arbitrary
plaintexts and let c = E((N, e), mb) be an encryption of one of these plaintexts.
Since the circuit Cs in addition to c also gets the public key as input, Cs may
simply compute the encryptions of m0 and m1 and compare them with c. This
way the circuit Cs can distinguish between encryptions of m0 and m1 with
probability 1.

Actually, the same argument can be used to show that any asymmetric en-
cryption scheme (G, E, D) with a deterministic encryption algorithm E cannot
be polynomially indistinguishable. Hence, E must be randomized, i.e. for any
plaintext m there exists a whole set or cloud of possible encryptions. On the
other hand, the set of possible encryptions for two distinct plaintexts m0, m1

must be disjoint. Otherwise the decryption algorithm D cannot decrypt cor-
rectly. At first it seems impossible to meet these requirements simultaneously.
For adversaries whose resources are unbounded, it is in fact impossible to do
so. However, in the next section we will see that in the world of polynomially
bounded adversaries one can reconcile these requirements.

A polynomially indistinguishable symmetric encryption scheme need not em-
ploy a randomized encryption function. Nevertheless, the xor-encryption as de-
fined in Example 1 is not polynomially indistinguishable. This is easily seen as
follows. Let s be the security parameter. Set m0 = 02s and m1 = 0s‖1s. Finally
let c = E(k, mb) be the encryption of m0 or m1. To determine whether b = 0 or
b = 1, the circuit writes c = c0‖c1 with c0, c1 ∈ {0, 1}s. If c0 = c1 then c is the
encryption of m0, otherwise c is the encryption of m1. Again, we have a circuit
that distinguishes encryptions of two different messages with probability 1.

In the case of the xor-encryption the problem is easily albeit expensively fixed.
If the key length is s, then we use it only to encrypt plaintexts of length s. To
encrypt longer plaintexts m, we partition the plaintext into strings m1, . . . , ml of
length at most s. For each string we choose a separate key ki in {0, 1}s uniformly
and independently from all other keys. Then m is encrypted to m1⊕k1‖ . . . ‖ml⊕
kl. This scheme is the so-called one-time-pad. It is polynomially indistinguish-
able. This follows immediately from the fact that the modified scheme has per-
fect secrecy as defined originally by C. Shannon. I.e., the a priori probability of
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a plaintext m (according to some distribution D) is the same as the a posteriori
probability of plaintext m given a ciphertext c (see for example [Stinson]).

In many ways, the notions of semantic security and polynomial indistin-
guishability can be seen as analogs of perfect secrecy when the resources of an
adversary are limited to polynomial time.

5 Probabilistic Encryption Schemes

In this section we show how to construct an encryption scheme that is poly-
nomially indistinguishable. As we have just seen, the RSA encryption scheme
does not provide polynomial indistinguishability. Nevertheless RSA will play an
important role in our construction. However, as explained above RSA must be
combined with techniques to randomize encryptions. The security of our con-
struction is based on Assumption 1 in its non-uniform version.

For every positive integer m ∈ N or any element m ∈ ZN for some N ∈ N,
we denote by LSBl(m) the l least significant bits of m. Furthermore, LSB(m) :=
LSB1(m). The following theorem was shown by Alexis, Chor, Goldreich, and
Schnorr [ACGS].

Theorem 11. If Assumption 1 is true in its non-uniform version, then for any
PPSC {Cs}s∈N,

Pr
(
Cs(N, e, c) = LSB(m)|(N, e, d)← G(1s), m← U(ZN ), c = me mod N

)

<
1
2

+ negl(s),

where G is the key generator of the RSA encryption scheme (Example 2). Hence,
in the RSA encryption scheme no PPSC can predict with probability significantly
greater than 1/2 the least significant bit of a plaintext m ∈ ZN given only the
public key e, N and the encryption c = me mod N of m. Here the probability is
over the internal random bits of Cs, a random public RSA key (N, e), and the
encryption of a random plaintext in ZN .

Clearly, a uniform version of the above theorem is true as well, i.e. if we restrict
ourselves to PPTAs then we only need the uniform version of Assumption 1.

Now we can describe our RSA-based polynomially indistinguishable encryp-
tion scheme, called 1-bit-probabilistic-RSA.

Definition 12. The asymmetric encryption scheme 1-bit-probabilistic-RSA is
defined as follows:

– The key generation algorithm is as in the RSA encryption scheme.

– On input (N, e, m) ∈ {0, 1}4s × {0, 1}∗, m = m1 . . .ml with mi ∈ {0, 1}, for
each message bit mi, the encryption algorithm E first chooses an element ri
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uniformly and independently at random from ZN . Then E computes ci =
re
i mod N and sets bi = LSB(ri). The encryption of plaintext m is given by

c = c1‖m1 ⊕ b1‖ . . . ‖cl‖ml ⊕ bl. Here we interpret the ci’s as bit strings of
length 2s.

– On input c = c1‖b′1‖ . . . ‖cl‖b′l with b′i ∈ {0, 1}, ci ∈ {0, 1}2s, the decryption
algorithm interprets the bit strings ci as elements of ZN and computes ri =
cd
i mod N using the secret key d. Then D sets mi := b′i⊕LSB(ri), i = 1, . . . , l.

The output of D is m = m1‖ . . . ‖ml.

It is easily seen that this describes a correct encryption scheme, i.e. we have
D(d, E(e, N, m)) = m for all m ∈ {0, 1}∗. The following theorem shows that the
1-bit-probabilistic-RSA scheme is polynomially indistinguishable.

Theorem 13. Under Assumption 1 (non-uniform version) the 1-bit-probabilistic-
RSA encryption scheme is polynomially indistinguishable.

Proof sketch. We show that if the 1-bit-probabilistic-RSA scheme is not polyno-
mially indistinguishable then we can construct a polynomial-size circuit family
{Cs}s∈N that violates Theorem 11. This will prove our theorem. The proof pro-
ceeds in two stages.

1. It is shown that if the 1-bit-probabilistic-RSA scheme is not polynomially
indistinguishable then there is a polynomial-size circuit family {C′

s}s∈N with
the following property:

Pr
(
C′

s(N, e, c, b⊕ LSB(r)) = b|(N, e, d)← G(1s), b← U1, r ← U(ZN ),

c = re mod N
)

>
1
2

+ negl(s), (3)

where G is the RSA key generator (Example 2).

That is, the circuits C′
s can distinguish the encryptions of 1 bit messages

with probability significantly greater than 1
2 .

2. Given circuit family {C′
s}s∈N, a circuit family {Cs}s∈N that violates Theo-

rem 11 is constructed.

1. is shown using the so-called hybrid technique. We refer to [Goldreich 2004] for
a rigorous proof. We only mention that it is this step in the proof that necessi-
tates the use of PPSCs rather than PPTAs. Roughly this can be seen as follows.
If the assumptions of the theorem are not correct then for infinitely many s ∈ N,
there exist pairs (m0, m1) of plaintexts such that one can distinguish efficiently
and with probability significantly greater than 1

2 between encryptions of m0, m1.
Then an algorithm satisfying (3) needs as an additional input the two plaintexts
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m0, m1. However, since these plaintexts depend on s, this raises a serious prob-
lem. To overcome this problem we use circuits {C′

s} instead of an algorithm.
Then for each s, the plaintexts m0, m1 are hardwired into the circuit C′

s. This
need to switch to a non-uniform model of computations remains even if we only
want to show that 1-bit-probabilistic-RSA is polynomially indistinguishable in
a uniform sense. The only way to avoid non-uniform models and assumptions is
to use a technically more elaborate definition of polynomial indistinguishability.

To prove 2., based on circuits C′
s we construct circuits Cs as follows

input: (N, e, c) where (N, e, d)← G(1s), c = me mod N, m← U(ZN ).

output: Bit b (a guess for LSB(m)).

1. Choose b̂← U1.

2. Simulate C′
s with input (N, e, c, b̂).

3. If C′
s(N, e, c, b̂) = b̂, output b := 0, otherwise output b := 1.

To analyze the success probability of circuits Cs, first note that for any m ∈ ZN ,
if b̂ ← U1 then b̃ = b̂ ⊕ LSB(m) ← U1 as well. Using this observation together
with our assumption on the success probability of C′

s, we get

Pr(Cs(N, e, c) = LSB(m))

= Pr
(
C′

s(N, e, c, b̂) = b̂ ∧ LSB(m) = 0|b̂← U1

)
+

Pr
(
C′

s(N, e, c, b̂) = ¬b̂ ∧ LSB(m) = 1|b̂← U1

)

= Pr
(
C′

s(N, e, c, b̃⊕ LSB(m)) = b̃ ∧ LSB(m) = 0|b̂← U1

)
+

Pr
(
C′

s(N, e, c, b̃⊕ LSB(m)) = b̃ ∧ LSB(m) = 1|b̂← U1

)

= Pr
(
C′

s(N, e, c, b⊕ LSB(m)) = b|b← U1

)

>
1
2

+ negl(s).

Here, all probabilities are also conditioned on (N, e, d)← G(1s), m← U(ZN ), c =
me mod N . This concludes the proof sketch.

Remark. We have based our construction of a polynomially indistinguishable
encryption scheme on the assumption that the RSA encryption function is a
trapdoor function with the LSB as a hardcore bit. However, the construction un-
derlying the 1-bit-probabilistic-RSA scheme can be carried out with any trapdoor
function f and any hardcore bit b(x) for f . For precise definitions of trapdoor
functions and hardcore bits, we refer to [Goldreich 2001].
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The 1-bit-probabilistic-RSA scheme achieves polynomial indistinguishability
but it does so quite inefficiently in terms of its message expansion, i.e. if security
parameter s is used, then every single bit of a message is encrypted by 2s+1 bits
in the ciphertext. Since one has to choose s quite large to guarantee security, in
practice this will not be tolerable. Fortunately, there are more efficient techniques
to design encryption schemes that are polynomially indistinguishable. Like the
1-bit-probabilistic-RSA encryption scheme these techniques combine one-way
secure encryption with randomization.

1. One can use an extension of the 1-bit-probabilistic-RSA scheme in which
blocks B of l message bits are encrypted by (c, B ⊕ LSBl(r)), where r ←
U(ZN ) and c = re mod N . To prove the polynomial indistiguishabilty of this
scheme (l-bit-probabilistic-RSA) one needs to assume that there is no algo-
rithm or circuit family that can predict LSBl(r) given only the public RSA
key (N, e) and the value c = re mod N . If l = O

(
log(N)

)
, this assumption is

known to follow from Assumption 1. For larger values of l, this is not known
to be true.

2. One can also use cryptographically secure pseudorandom generators to de-
sign polynomially indistinguishable encryption schemes. One way to con-
struct cryptographically secure pseudorandom generators is based on As-
sumption 1 and on Theorem 11. But one can use any trapdoor function f

and a hardcore bit for f as well. This construction was originally proposed
in [Blum/Goldwasser].

3. Finally polynomially indistinguishable encryption schemes can be constructed
by combining one-way secure encryption schemes with cryptographically se-
cure hash functions.

For an exhaustive treatment of these constructions we refer to [Goldreich 2004].

6 Beyond Polynomial Indistinguishability and Semantic
Security

So far we have considered adversaries whose goal is to gain information about
a plaintext given only the ciphertext and publicly available information like the
public key in an asymmetric encryption scheme. However, adversaries may have
different goals and/or may be more powerful.

Consider a scenario in which an adversary may know that a ciphertext c is the
encryption of some contract proposal exchanged between some of his business
competitors. Then his goal may be to modify the ciphertext in such a way
that certain contract clauses are modified significantly. Clearly, one way for the
adversary to achieve his goal is to intercept the ciphertext c, to try to decrypt c
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to obtain m, to modify m in the desired way and finally to encrypt the modified
plaintext. For a semantically secure encryption scheme such an attempt must
fail (with overwhelming probability). However, there may be ways to generate
ciphertexts of related messages without decrypting a single ciphertext. A scheme
in which this is impossible is called non-malleable, a notion initially introduced
in [DDN].

Definition 14 (informal). An encryption scheme (G, E, D) is called non-malle-
able if there is no PPTA A that given a ciphertext c can generate a different
ciphertext c′ such that the respective plaintexts m and m′ are related in a known
fashion.

It can be shown that non-malleability is a stronger security notion than semantic
security or polynomial indistinguishability, i.e. any scheme that is non-malleable
is also semantically secure and polynomially indistinguishable. Needless to say
that in any construction of non-malleable schemes randomness plays a crucial
role. Below we will mention briefly how to construct non-malleable encryption
schemes.

So far in our discussion of security concepts we have restricted ourselves to
so-called passive adversaries, i.e. adversaries that only get a ciphertext (or a pair
of ciphertexts) and try to gain information about the corresponding plaintext
(or pair of plaintexts). However, sometimes it is more realistic to consider more
powerful adversaries. One adversarial model that has proved to be very useful are
so-called adaptively-chosen-ciphertext attacks (CCA) introduced in [Naor/Yung]
and [Rackoff/Simon]. We will explain this notion only in connection with poly-
nomial indistinguishability.

As before, given the encryption c = E(pk, mb), b ∈ {0, 1}, of one of two
plaintexts m0 and m1 the adversary has to determine bit b, i.e. has to determine
whether c is an encryption of m0 or of m1. This time, however, after receiving the
challenge c, the adversary is allowed to ask for the decryptions of (polynomially)
many ciphertexts c1, . . . , cl. The ci’s may depend on c and may be adaptively
chosen. That is ci+1 is chosen after the adversary has been told the plaintexts
corresponding to c1, . . . , ci. The only restriction is that the adversary is not
allowed to ask for the decryption of c itself. After having been told the plaintexts
corresponding to the adaptively chosen ciphertexts ci the adversary announces
his guess b̃ for the bit b. As before the success probability of the adversary is
the probability that b̃ = b. We call an encryption scheme (G, E, D) polynomially
indistinguishable against CCAs if no probabilistic polynomial time CCA against
the scheme has a success probability that is significantly greater than 1/2.

One easily sees that the 1-bit-probabilistic-RSA is not polynomial indistin-
guishable against CCA. In fact, given the encryption c = c1‖m1 ⊕ LSB(r1)‖ . . .

‖cl‖ml ⊕ LSB(rl) of some plaintext m = m1‖ . . . ‖ml, an adversary mounting
an CCA may simply ask for the decryption m′ of c′ = c1‖m1 ⊕ LSB(r1) ⊕
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z1‖ . . . ‖cl‖ml ⊕ LSB(rl) ⊕ zl for some arbitrary non-zero bit string z1‖ . . . ‖zl.
Given m′, it is straightforward to determine the plaintext m itself.

To defend against CCAs, Bellare and Rogoway [Bellare/Rogaway] introduced
plaintext-aware encryption schemes.

Definition 15 (informal). An encryption scheme (G, E, D) is called plaintext-
aware if there is no PPTA A that with non-negligible probability can construct
a valid ciphertext without knowing the corresponding plaintext.

In the so-called random oracle model it is known how to construct plaintext-
aware encryption schemes. We are not going to define the random oracle model
or describe the constructions for plaintext-aware encryption schemes. But as
the term random oracle model suggests, randomness again plays an important
role. One can also show, that an encryption scheme that is semantically secure
and is plaintext-aware is non-malleable [BDPP, DDN]. One important practical
scheme that combines plaintext-awareness and semantic security is the RSA-
OAEP (=RSA-optimal-asymmetric-encryption-padding), employed for example
by RSA Inc. in its standard PKCS#1 v2.0.

So far we have seen how randomness plays a vital role in constructing en-
cryption schemes that satisfy advanced security concepts like semantic security
and polynomial indistinguishability. However, randomness is equally important
in the construction of other cryptographic primitives. Digital signatures that
satisfy more than the most basic security requirements must use randomness.
Identification protocols must employ randomness if they want to satisfy even the
most basic security requirements about identification. Hence it is safe to say that
security without randomness is impossible.

The following is by no means an exhaustive bibliography, for this we refer
to [Goldreich 2001, Goldreich 2004, MOV].
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