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1 Introduction

Truly good algorithms solve problems fast and deliver optimal solutions. Unfor-
tunately, many real world problems do not seem to have such good algorithms.
Consequently, algorithm designers have to settle for less, algorithms that still
deliver optimal solutions but take way too much time as the size of the input
grows, or algorithms that run fast but obtain only approximations of the op-
timal solution. Beside those two, there seems to be a third type of algorithm
that has turned out to be quite useful for some applications: randomized al-
gorithms. Randomized algorithms are algorithms in which some computational
steps depend on random choices and so the outcome itself is a random variable.
However, randomized algorithms are fast and the prize one has to pay for that is
that the solution they compute is correct only with a certain probability. Good
randomized algorithms are those that come with a very high probability that
the result they compute is correct.

We will study randomized algorithms in the setting of complexity theory, in
particular we will focus on probabilistic complexity classes. Complexity theory
mainly deals with the issue what amount of time and space is needed to solve a
problem, the so-called complexity of a problem. Problems with similar time and
space bounds are grouped in complexity classes and the structure and properties
of such complexity classes are studied.

When we speak of problem we usually refer to decision problems, problems
that have YES/NO-solutions. Even though many real world problems are not
of that decision nature but rather of the nature that a function value is asked,
the difference between the complexity of those two is usually quite small. In
fact, computing a single bit of a function is just a decision problem and so by
repeatedly solving a decision problem one can easily compute the value of a
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function. So in the following we will restrict ourself to the study of decision
problems, in other words the acceptance of sets of strings or languages.

The model of computation used in complexity theory to analyze the amount
of time and space needed to solve a problem is the Turing machine. The no-
tion of a nondeterministic Turing machine (NTM) can be used as a model for
randomized algorithms and so will be important for this survey. A formal defi-
nition of the concept of a nondeterministic Turing machine can be found in any
standard textbook on complexity theory (for instance [Pap94]). Informally put,
a nondeterministic Turing machine is an algorithm which in each computation
step has two choices1 for continuing the computation. In contrast to the deter-
ministic Turing machine where there is just one outcome of the computation,
and so acceptance of string by that algorithm is defined in the obvious way,
a nondeterministic Turing machine may have many “computation paths,” and
each of those is potentially able to reject or accept the input independent of
what other computation paths do. We therefore say a nondeterministic Turing
machine accepts an input if and only if there exists a sequence of choices during
the run of the algorithm such that the input is accepted on this computation
path. An NTM M accepts a language L if and only if for all strings x ∈ Σ∗

the string x is in L if and only if x is accepted by L. The set of all languages
accepted by NTMs whose runtime is bounded by some polynomial defines the
well-known complexity class NP.

However, the above acceptance criteria is not the only reasonable acceptance
criteria for nondeterministic computations. Basing acceptance or rejection of
the input on the outcome of the majority of the computation paths leads us
to so-called probabilistic complexity classes, the complexity-theoretic model of
randomized algorithms. A so-called probabilistic Turing machine is just a non-
deterministic Turing machine in which whenever there are two possible ways of
continuing the computation, a fair coin flip is made to govern the computation.
From that perspective the class NP is the set of all languages L such that there is
a probabilistic Turing machine M such that the following holds for each x ∈ Σ∗:

x ∈ L ⇐⇒ Prob(M accepts x) > 0.

Note that this type of randomized algorithm has a nonzero success probability
but the probability that on a single run an input is falsely rejected can be very
close to 1. On the other hand, accepting strings on a single run that do not belong
to the language is impossible. So NP can be viewed as the class of languages that
have randomized algorithms with one-sided nonzero success probability. Clearly,
one would usually not call such NP-algorithms randomized algorithms, but for
the scope of this paper we will do so. We will soon define classes of problems
that admit “true” randomized algorithms.
1 In general, nondeterminism allows more than just two choices but restricting the

model to only two can be done without loss of generality.
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The paper is organized as follows. In Section 2 we will define the basic no-
tions and probabilistic complexity classes. Section 3 contains an overview over
the basic containment relations between the probabilistic complexity classes. In
Sections 4, 5, 6, 7, and 8 we will study each of the probabilistic classes NP,
PP, BPP, RP, and ZPP in more detail. Finally, Section 9 will contain historical
remarks and literature pointers.

2 Preliminaries

The decision problems we consider are sets of strings over the alphabet Σ =
{0, 1}. As already mentioned in Section 1, our model of computation is a vari-
ant of the nondeterministic Turing machine, for a detailed definition see for
instance [Pap94]. Interpreting the nondeterministic choices of such a machine as
random events we obtain so-called probabilistic Turing machines that allow to
model randomized algorithms. For clarity of presentation, we will work without
loss of generality with the following assumptions regarding probabilistic Turing
machines:

1. The runtime depends solely on the length of the input. To be more precise,
there is a polynomial p such that on any input x ∈ Σ∗ and for any sequence
of coin flips during the run of the Turing machine on input x, the machine
makes exactly p(|x|) computation steps.

2. The number of coin flips made during the run of the machine on an input
x ∈ Σ∗ depends solely on |x|, and hence for any sequence of coin flips during
the run of the machine on input x, the number of coin flips made is the same.
(We can even assume that there is a coin flip made in every computation
step.)

3. We assume fair coin flips and so a uniform distribution for the series of coin
flips, i.e., each single coin flip is independent of any previous coin flip and
returns 1 (heads) or 0 (tails) with probability exactly 1

2 .

4. The Turing machine, for any input and for any series of coin flips made
during the run on that input, always ends in one of two possible final states:
Accept or Reject.

Randomized algorithms in general have the property that a single run does
not give a reliable answer whether the input is truly accepted or not. In fact, a
randomized algorithm accepts the correct and rejects the incorrect inputs only
with a certain probability. For a probabilistic Turing machine M , a string x ∈ Σ∗,
and a series of coin flips y, without loss of generality assume y ∈ {0, 1}p(|x|),
where p is a polynomial, and let M(x, y) denote the final state reached by M on
input x if the computation proceeded according to the series of coin flips encoded
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by y (each bit of y encodes one coin flip). We write M(x, y) = + if the final state
reached on input x and the computation proceeding according to the series of
coin flips y is “Accept,” and we write M(x, y) = − if the final state is “Reject.”
Observe that since y is a series of random events, also M(x, y) is a random event.
The probability of a Turing machine M to reach the “Accept” or “Reject” state
on input x will be denoted by Prob{y : M(x, y) = +} or Prob{y : M(x, y) = −}
and by Prob(M(x) = +) or Prob(M(x) = −) for short, respectively.

A probabilistic Turing machine M for a language L is said to have (two-sided)
error probability ε if and only if for all x ∈ Σ∗,

(a) x ∈ L =⇒ Prob(M(x) = +) ≥ 1 − ε,

(b) x /∈ L =⇒ Prob(M(x) = +) ≤ ε.

If a probabilistic Turing machine M for a language L satisfies that either for all
x ∈ Σ∗,

(a′) x ∈ A =⇒ Prob(M(x) = +) = 1

and (b) holds, or that for all x ∈ Σ∗, (a) and

(b′) x /∈ A =⇒ Prob(M(x) = +) = 0

holds, we say that M has one-sided error probability of ε. And clearly, if both,
(a′) and (b’) hold, M is as good as a deterministic Turing machine. However,
note that the notion of zero error is different from that. We will comment on
this in more detail in Section 8.

Observe that due to our assumptions regarding the general behavior of a
probabilistic Turing machine M on input x, i.e., a uniform distribution of the
series of coin flips y and all series of coin flips having the same length depending
solely on the length of the input, it follows that the probability Prob(M(x) = +)
is simply the number of series of coin flips leading to acceptance divided by the
overall number of potential series of coin flips.

We are now prepared to define the basic acceptance criteria for probabilistic
Turing machines:

Definition 1. 1. A language L belongs to the class NP (Nondeterministic Poly-
nomial Time) if and only if there exists a probabilistic Turing machine M

such that for all x ∈ Σ∗ the following holds:

x ∈ L ⇐⇒ Prob(M(x) = +) > 0.

2. A language L belongs to the class PP (Probabilistic Polynomial Time) if
and only if there exists a probabilistic Turing machine M such that for all
x ∈ Σ∗ the following holds:

x ∈ L ⇐⇒ Prob(M(x) = +) >
1
2
.
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3. A language L belongs to the class BPP (Bounded-Probability Polynomial
Time) if and only if there exists a probabilistic Turing machine M such that
for all x ∈ Σ∗ the following holds:

x ∈ L =⇒ Prob(M(x) = +) ≥ 3
4

and

x /∈ L =⇒ Prob(M(x) = +) <
1
4
.

4. A language L belongs to the class RP (Random Polynomial Time) if and
only if there exists a probabilistic Turing machine M such that for all x ∈ Σ∗

the following holds:

x ∈ L =⇒ Prob(M(x) = +) >
1
2

and

x /∈ L =⇒ Prob(M(x) = +) = 0.

5. A language L belongs to the class ZPP (Zero-Error Probabilistic Polynomial
Time) if and only if L ∈ RP ∩ coRP.

The clases PPP and BPP are examples of probabilistic complexity classes
with two-sided error. In terms of algorithms we may say that problems from
BPP and PP admit polynomial-time bounded Monte Carlo algorithms. The
complexity classes RP and coRP are probabilistic classes with one-sided error.

3 Basic Containments

In this section we will prove the known containments among the above defined
probabilistic complexity classes. Observe that a result C ⊆ D can be interpreted
as any problem admitting a randomized algorithm of type C also admits a ran-
domized algorithm of type D.

Theorem 2. 1. ZPP ⊆ RP ⊆ NP ⊆ PP.

2. RP ⊆ BPP ⊆ PP.

3. ZPP ⊆ coRP ⊆ BPP.

Proof. The inclusions ZPP ⊆ RP ⊆ NP and ZPP ⊆ coRP are immediate conse-
quences of Definition 1. The inclusion BPP ⊆ PP also follows immediately from
Definition 1, since BPP has a two-sided error probability less then 0.25, whereas
PP allows error probabilities arbitrarily close to 0.5.

For the inclusion NP ⊆ PP let L ∈ NP and M be a probabilistic Turing
machine such that for all x ∈ Σ∗:

x ∈ L ⇐⇒ Prob(M(x) = +) > 0.
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Figure 1: The inclusion structure of the probabilistic complexity classes. For
comparison, the well-known Polynomial Hierarchy as well as the classes P, NPNP

(the second level of the Polynomial Hierarchy, also known as Σp
2 ), and PSPACE

have been added.

Consider the following probabilistic Turing machine M ′: On input x ∈ Σ∗, the
Turing machine M ‘ simulates the work of M on input x until M(x) reaches a
final state. If M accepts x then M ′ flips a random coin and accepts x regardless
of the outcome of the coin flip. If M rejects x then M ′ flips a coin and rejects x

if the coin flip returned 0 and accepts x if the coin flip returned 1.
Let p be a polynomial bounding the runtime of M . It follows that the polyno-

mial q, where q(n) = p(n)+1 for all n, bounds the runtime of M ′. Furthermore,
for all x ∈ Σ∗ we have that x ∈ L if and only if the number of series of coin
flips of M(x) leading to acceptance is at least 1, and hence x ∈ L if and only
if the number of series of coin flips of M ′(x) leading to acceptance is at least
1
2 (2p(|x| − 1) + 2. It follows that for all x ∈ Σ∗:

x ∈ L ⇐⇒ Prob(M(x) = +) > 0,

⇐⇒ Prob(M ′(x) = +) >
1
2
.
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This shows L ∈ PP.
It remains to show RP ⊆ BPP as well as coRP ⊆ BPP. We will only show

RP ⊆ BPP here, since coRP ⊆ BPP then follows from the fact that BPP is
closed under complement (see Section 6).

Suppose L ∈ RP, hence there exists a probabilistic Turing machine M satis-
fying for all x ∈ Σ∗,

x ∈ L =⇒ Prob(M(x) = +) >
1
2
,

x 	∈ L =⇒ Prob(M(x) = +) = 0.

Define a probabilistic Turing machine M ′ as follows: On input x ∈ Σ∗, simulate
M(x) until it reaches a final state and then simulate M(x) again. Accept if
and only if at least one of the two simulations of M(x) ended in the final state
“Accept.” Otherwise reject.

Note that if x 	∈ L, then M(x) does not reach “Accept” for all series of
coin flips. Hence M ′(x) implicitly depending on two series of coin flips from
the two simulations of M(x) will not accept. If x ∈ L, we have by definition
Prob(M(x) = −) < 1

2 and hence, since M ′(x) simulates two independent runs
of M(x) and rejects if and only if both those simulations return “Reject,” we
obtain Prob(M ′(x) = −) < 1

2 · 1
2 . It follows that for all x ∈ Σ∗ we have

x ∈ L =⇒ Prob(M(x) = +) ≥ 3
4
,

x 	∈ L =⇒ Prob(M(x) = +) = 0.

This shows L ∈ BPP.

From the perspective of practicality, BPP is the most interesting class. BPP
algorithms give correct answers with high probability, and as we will soon see the
error probability can without loss of generality be quite close to 0. Of course RP
algorithms are even better, since they offer a one-sided zero-error probability.
However, for practical purposes, BPP algorithms are the best one can hope for.
The bad news is that NP does not seem to be a subset of BPP and so it seems
that not all NP problems admit efficient randomized algorithms. In fact, up to
date no BPP-algorithm is known for any NP-complete problem and it appears
that none will be found in the (near) future (see Section 6).

4 The Class NP – Nondeterministic Polynomial Time

Even though we made the connection to probabilistic classes very clear, the
class NP is generally not considered to be a probabilistic complexity class. This
is mainly due to the fact that the class NP comes with one-sided zero-error prob-
ability but the error probability (of the “other” side) can be arbitrarily close to
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1. So, when viewing the class NP as a class of problems admitting randomized
algorithms, it is clear that NP algorithms are extremely weak randomized algo-
rithms of no practical use. Better descriptions of the class NP are the class of
search problems or the class with short and easy to check proofs.

However, the class NP is well-studied and complexity theory in some sense
evolved from attempts to solve the famous “P = NP?” question and to under-
stand why that question has no easy answer and no easy proof for an answer
either. Since many computational problems (from mathematics, biology, chem-
istry,...) belong to the group of hardest problems in NP, so-called NP-complete
problems (see [GJ79]), the relation of the class NP to the probabilistic complexity
classes has immediate consequences towards the existence of efficient random-
ized algorithms for those problems. Unfortunately, since it seems highly unlikely
that NP ⊆ BPP, the search for efficient randomized algorithms for NP-complete
problems is somewhat hopeless in general.

5 The Class PP – Probabilistic Polynomial Time

The type of randomized algorithms that defines the class PP has a two-sided
error probability arbitrarily close to 0.5. Even though PP algorithm are not very
useful in practice, the study of the complexity class PP has led to many insights
into the nature of probabilistic complexity classes and randomized algorithms.
With respect to Figure 1 we mention the following inclusion.

Theorem 3. PP ⊆ PSPACE.

The class PP is surprisingly powerful and it turns out that the type of ran-
domization captured by the class PP together with so-called Turing reductions
is strong enough to contain all of the Polynomial Hierarchy [Tod91]. The class
PP has a number of interesting properties and connections to other probabilistic
classes. As we have seen, PP contains all classes mentioned in this introduction,
in particular NP and BPP. In the context of this paper, the acceptance criteria
for PP is the weakest among the criteria mentioned in Definition 1 and thus
emphasizes the fact that PP algorithms are useless in practice.

We mention in passing that PP possesses a number of strong closure prop-
erties such as closure under union, intersection, symmetric difference, and com-
plement as well as closure under truth-table reductions. The class PP is also a
prominent example of so-called counting classes and many computational prob-
lems based on counting solutions are many-one complete for PP. A prominent
example of a many-one complete problem for the class PP is MAJORITY SAT,
the set of all boolean formulas such that more than half of all its assignments
are satisfying.

With respect to counting classes the acceptance criteria for PP is of the
threshold type as is illustrated by the following theorem.
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Theorem 4. Let L be a language. The following statements are equivalent:

1. A ∈ PP.

2. There exists a NPTM M and polynomial-time computable function f such
that for all x ∈ Σ∗, x ∈ A ⇐⇒ M(x) has at least f(x) accepting paths.

6 The Class BPP – Bounded-Probability Polynomial Time

From a standpoint of practicality, BPP algorithms are true randomized algo-
rithms. It is even conjectured that BPP = P, that is, any problem admitting
a good randomized algorithm can be solved efficiently with a deterministic al-
gorithm. We would like to mention two facts supporting that conjecture. The
first fact is that the computational problem PRIMES, the problem of deciding
if a given natural number is prime or not, that was long the prime example for
problems in BPP, was shown to be in P by Agrawal, Kayal, and Saxena [AKS04].
The second fact, stated as Theorem 5, is that even though BPP problems ad-
mit by definition only algorithms with two-sided error probability (of 0.25) that
error probability can be made quite small and hence, from a practical point of
view, BPP problems admit algorithms that are nearly as good as deterministic
algorithms.

Theorem 5. Let L ∈ BPP and p be a polynomial. There exists a probabilistic
Turing machine N such that for all x ∈ Σ∗ the following holds:

x ∈ L =⇒ Prob(N(x) = +) ≥ 1 − 1
2p(|x|) ,

x /∈ L =⇒ Prob(N(x) = +) <
1

2p(|x|) .

Proof. The core idea of the proof is that by iterated applications of the original
BPP algorithm for the language L we can make the error probability smaller and
smaller. This technique is also known as the probability amplification technique.

Let L ∈ BPP and let p be a polynomial. Let M be an NPTM accepting L in
the sense of BPP (see Definition 1).

Let t ≥ 1 and consider the following NPTM Mt: On input x ∈ Σ∗, the NPTM
Mt starts simulating the work of M on input x including flipping random coins.
After finishing the simulation of M on input x, Mt starts another simulation of
M on input x and does so t times. Mt accepts the input x if and only if out of
the t simulations of M on input x at least t

2 were accepting computations.
Claim: For all t ≥ 1 and all x ∈ Σ∗:

x ∈ L =⇒ Prob(Mt(x) = +) ≥ 1 − 1
2

(
3
4

) t
2

,

x /∈ L =⇒ Prob(Mt(x) = +) <
1
2

(
3
4

) t
2

.
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The claim follows from the following argument. Let t ≥ 1. Define

pt,i =
(

t

i

) (
3
4

)i (
1
4

)t−i

for all 0 ≤ i ≤ t and note that:

pt,i ≤
(

t

i

) (
3
4

)i (
1
4

)t−i (
3
4

) t
2−i

(1
4 )

t
2−i

≤
(

t

i

) (
3
4

) t
2

(
1
4

) t
2

≤
(

t

i

) (
3
16

) t
2

.

The probability pt that a random path of Mt(x) returns cL(x) is by definition
of Mt the probability that out of the t simulations of M(x) at least t

2 return
cL(x). The latter can be bounded from below by

pt ≥ 1 −
� t

2 �∑
i=0

pt,i.

Using the inequalities from above we obtain:

pt ≥ 1 −
� t

2 �∑
i=0

(
t

i

) (
3
16

) t
2

≥ 1 −
(

3
16

) t
2

2t−1

≥ 1 − 1
2

(
3
4

) t
2

.

This completes the proof of the claim.
In order to prove the theorem we chose N to be a Turing machine that on

input x is essentially Mt on input x for a carefully chosen t. In particular we
want to have

1 − 1
2

(
3
4

) t
2

≥ 1 − 1
2p(|x|)

and thus need t ≥ 2 1−p(|x|)
log( 3

4 )
. Note that t depends on |x|, yet a suitable t satisfying

that inequality can be computed in polynomial time.

We mention that the class BPP is closed under union, intersection and com-
plement. On the other hand, even though BPP is closed under many-one re-
ductions, it might not have many-one complete problems, a property that BPP
shares with the probabilistic complexity classes RP and ZPP.
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Finally, we turn to a rather bad news. The study of probabilistic complexity
classes led to the insight that many NP problems might not have good ran-
domized algorithms. This follows from the fact that all problems from BPP
have polynomial-size circuit families which in turn can be used to show that
an containment NP ⊆ BPP is highly unlikely, it would imply a collapse of the
polynomial hierarchy to its second level. Another interesting consequence of an
assumption NP ⊆ BPP is, in the context of this paper, stated in the next theo-
rem.

Theorem 6. NP ⊆ BPP =⇒ NP ⊆ RP.

7 The Class RP – Random Polynomial Time

Even better than BPP algorithms, RP algorithms not only have, as we will soon
see, very small error probability, but they like NP algorithms will never falsely
accept strings.

Note that the 0.5 success probability in case of acceptance is chosen at will,
any other success probability that is polynomially related to the length of the
input would lead to the same complexity class.

Theorem 7. A language L is in RP if and only if there exists a probabilistic
Turing machine M and a polynomial q such that for all x ∈ Σ∗,

x ∈ L =⇒ Prob(M(x) = +) >
1

q(|x|) ,

x /∈ L =⇒ Prob(M(x) = +) = 0.

Proof. Clearly, if L ∈ RP then there exists a probabilistic Turing machine M ac-
cepting L in the sense of Definition 1. Obviously M together with the polynomial
q, where q(n) = 2 for all n, satisfies for all x ∈ Σ∗,

x ∈ L =⇒ Prob(M(x) = +) >
1

q(|x|) ,

x /∈ L =⇒ Prob(M(x) = +) = 0.

Now let L ⊆ Σ∗ and let M be a probabilistic Turing machine and q be a
polynomial such that for all x ∈ Σ∗,

x ∈ L =⇒ Prob(M(x) = +) >
1

q(|x|) ,

x /∈ L =⇒ Prob(M(x) = +) = 0.

Similarly to the proof of the claim inside the proof of Theorem 5 we can show
L ∈ RP by repeated simulations of M . In contrast to that earlier proof we
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accept a string x if and only if at least one of the simulations of M(x) led to
acceptance. More formally, for all t ≥ 1 define the probabilistic Turing machine
M ′

t as follows: On input x ∈ Σ∗, the Turing machine M ′
t simulates the work of

M on input x including flipping random coins. After finishing the simulation of
M on input x, M ′

t starts another simulation of M on input x and so on until
M(x) has been simulated t times. M ′

t accepts the input x if and only if out of
the t simulations of M on input x at least one was an accepting computation.

Observe that in case x /∈ L, M ′
t will not accept x regardless of the random

choices made during the simulations of M(x). For the case x ∈ L, observe that
the probability that M(x) rejects x is smaller than or equal to 1− 1

q(|x|) . Hence,

the probability that M ′
t rejects x even though x ∈ L is at most

(
1 − 1

q(|x|)
)t

.
But note that as t grows, that term goes to 0, and so for t large enough we

have
(
1 − 1

q(|x|)
)t

< 1
2 . It remains to show that t is polynomial in |x|. However,

this essentially follows from the rapid convergence limk→∞
(
1 − 1

k

)k = 1
e where

e = 2, 7182818284 . . . .

Finally we mention that RP is closed under union and intersection, yet seems
to lack many-one complete languages.

8 The Class ZPP – Zero-Error Probabilistic Polynomial Time

The complexity class ZPP is defined as the intersection of RP and its comple-
mentary class coRP. Since both RP and coRP come with one-sided zero-error
probability, one can show that ZPP has two-sided zero-error probability. How-
ever, note that two-sided zero-error probability algorithms for a language L

simply guarantee that they on input x:

1. return “Accept” with high probability if x ∈ L,

2. return “Reject” with high probability if x 	∈ L,

3. never return “Accept” if indeed x 	∈ L, and

4. never return “Reject” if indeed x ∈ L.

Still, two-sided zero-error probability algorithms are not identical to determin-
istic algorithms, since they might return neither “Accept” nor “Reject,” but
rather “Undecided.” Randomized algorithms that never return a wrong answer,
yet return the correct answer with high probability are known as Las Vegas
algorithms.

The following theorem states that fact in more detail.
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Theorem 8. Let L ⊆ Σ∗. The language L belongs to ZPP if and only if there
exists a probabilistic polynomial-time Turing machine M having three types of
final states, “Accept” (+), “Reject” (−) and “Undecided” (u), such that the
following holds for all x ∈ Σ∗:

x ∈ L =⇒ Prob(M(x) = +) >
1
2

∧ Prob(M(x) = −) = 0,

x /∈ L =⇒ Prob(M(x) = +) = 0 ∧ Prob(M(x) = −) >
1
2
.

Proof. Let L ⊆ Σ∗ and suppose L ∈ ZPP. It follows from Definition 1 that
L ∈ RP ∩ coRP and hence there exist two probabilistic polynomial-time Turing
machines N and N ′ that accept L and L in the sense of RP. Hence, for all x ∈ Σ∗

we have:

x ∈ L =⇒ Prob(N(x) = +) >
1
2
,

x /∈ L =⇒ Prob(N(x) = +) = 0 (or equivalently Prob(N(x) = −) = 1),

x ∈ L =⇒ Prob(N ′(x) = +) >
1
2
, and

x /∈ L =⇒ Prob(N ′(x) = +) = 0 (or equivalently Prob(N ′(x) = −) = 1).

We define a probabilistic Turing machine M as follows:

1. On input x ∈ Σ∗, the Turing machine M simulates the work of N(x) until it
reaches a final state “Accept” (+) or “Reject” (−) and afterwards simulates
the work of N ′(x) until that machine reaches a final state “Accept” (+) or
“Reject” (−).

2. If the final states reached by N(x) and N ′(x) are + and −, respectively,
M(x) accepts. If the final states reached by N(x) and N ′(x) are − and +,
respectively, M(x) rejects. If the final states reached by N(x) and N ′(x)
are − and −, respectively, M(x) finishes its computation in the final state
“Undecided.”

It is not hard to verify that for all x ∈ Σ∗ we have:

x ∈ L =⇒ Prob(M(x) = +) >
1
2

∧ Prob(M(x) = −) = 0,

x /∈ L =⇒ Prob(M(x) = +) = 0 ∧ Prob(M(x) = −) >
1
2
.

Now suppose that for a language L ∈ Σ∗, we have a probabilistic polynomial-
time Turing machine M having three types of final states, “Accept” (+), “Re-
ject” (−) and “Undecided” (u), such that the following holds for all x ∈ Σ∗:

x ∈ L =⇒ Prob(M(x) = +) >
1
2

∧ Prob(M(x) = −) = 0,

x /∈ L =⇒ Prob(M(x) = +) = 0 ∧ Prob(M(x) = −) >
1
2
.
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We define two Turing machines N and N ′ as follows: The Turing machine N

on input x ∈ Σ∗ simulates the work of M(x) and accepts if M(x) accepts, and
rejects if M(x) reaches the final state “Undecided.” The Turing machine N ′

on input x ∈ Σ∗ simulates the work of M(x) and accepts if M(x) rejects, and
rejects if M(x) reaches the final state “Undecided.”

It is not hard to verify that N and N ′, respectively, accepts the languages L

and L in the sense of RP, and hence L ∈ RP ∩ coRP.

Regarding closure properties, we note that ZPP is closed under union, inter-
section, and complement.

9 Historical Remarks and Literature Pointers

It is interesting to note that the study of probabilistic Turing machines is closely
connected to the search for fast algorithms for primality testing. The famous
Miller–Rabin Test (see [Rab76, Mil76]) for primality in some sense marks the be-
ginning of the complexity-theoretic study of randomized algorithms. The class
RP was introduced by Adleman and Manders [AM77]. The famous Solovay–
Strassen Test [SS77] for primality essentially shows PRIMES ∈ coRP. Later,
Adleman and Huang [AH87] being influenced by the work of Goldwasser and Kil-
ian [GK86] showed PRIMES ∈ RP which together with the Solovay-Strassen re-
sult implies PRIMES ∈ ZPP. The result of Agrawal, Kayal, and Saxena [AKS04]
that showed PRIMES ∈ P concludes that line of research.

An early model of probabilistic Turing machine can be found in [dLMSS56].
The notion of probabilistic Turing machines as well as the probabilistic complex-
ity classes were formally introduced by Gill [Gil77]. The characterization of ZPP
contained in Theorem 8 can also be found in [Gil77]. The containment of BPP
in the Polynomial Hierarchy was shown by Sipser [Sip83] and was improved by
Gács (see [Sip83]) to BPP ⊆ Σp

2 ∩Πp
2 (see also [Lau83] for a simple proof of the

latter result).
Characterizations of PP as threshold or counting classes were obtained and

studied in [Wag86]. Toda [Tod91] showed that the Polynomial Hierarchy is con-
tained in PPP, the set of all problems being Turing-reducible to PP. The result
is also known as Toda’s Theorem.

Hints that ZPP, RP, and BPP do not have many-one complete languages are
contained in [Adl78, Sip82]. Adleman [Adl78] showed that all problems from RP
have polynomial-size circuits. A similar result for BPP is contained in [BG81].
Karp and Lipton [KL80] showed that NP having polynomial circuits implies
a collapse of the Polynomial Hierarchy to it’s second level and thus making an
inclusion NP ⊆ BPP highly unlikely. Theorem 6 was proven by Ko [Ko82]. Some
relativization results regarding probabilistic complexity classes can be found
in [Rac82].
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