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Abstract: Shor’s algorithms for the integer factorization and the discrete logarithm
problems can be regarded as a negative effect of the quantum mechanism on public-
key cryptography. From the computational point of view, his algorithms illustrate that
quantum computation could be more powerful. It is natural to consider that the power
of quantum computation could be exploited to withstand even quantum adversaries.
Over the last decade, quantum cryptography has been discussed and developed even
from the computational complexity-theoretic point of view. In this paper, we will survey
what has been studied in quantum computational cryptography.
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1 Introduction

Due to the rapid growth of electronic communication means, information security
has become a crucial issue in the real world. Modern cryptography provides fun-
damental techniques for securing communication and information. While modern
cryptography varies from encryption and digital signatures to cryptographic pro-
tocols, we can partition modern cryptography into public-key cryptography and
secret-key cryptography. From the theoretical point of view, public-key cryptog-
raphy has a computational complexity-theoretic flavor and secret-key cryptog-
raphy has an information-theoretic flavor. Though the two disciplines of cryp-
tography have different flavors, they do not separate from each other and rather
complement each other.

The principal and classical task of cryptography is to provide confidential-
ity. Besides confidentiality, modern cryptography provides authentication, data
integrity and so on. Since Diffie and Hellman devised the notion of public-key
cryptosystem, complexity-theoretic approaches to cryptology have succeeded in
theory and practice. The fundamental study of one-way functions and pseudoran-
dom generators has developed computational complexity theory. Cryptographic
protocols such as digital signatures, commitment schemes, oblivious transfer
schemes and zero-knowledge proof systems have contributed to building various
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information security systems. For each objective mentioned above, we should
make models of adversaries so as to enable us to discuss whether some crypto-
graphic protocols or methods fulfill the objective. For public-key cryptography,
we typically suppose that the adversary should be a probabilistic polynomial-
time Turing machine or a polynomial-size circuit family. For secret-key cryp-
tography, the adversary might be the almighty or those who have some specific
power.

It is when the adversary is physically realized that it could become a real
threat. We know that the real world behaves quantum-mechanically. Thus, we
may suppose that the adversary should run quantum-mechanically. Shor’s al-
gorithm on quantum computers for the integer factorization problem [56] illus-
trates that quantum adversaries would spoil the RSA cryptosystem, which is
widely used for secure communications. Shor also proposed an efficient quan-
tum algorithm for the discrete logarithm problem. Moreover, since the security
of many cryptographic protocols relies on the computational hardness of these
two problems, we might have to reconstruct cryptographic protocols to maintain
information security technologies in future when the quantum adversary could
have a physical implementation.

The quantum mechanism also has an impact on the other discipline of cryp-
tography (i.e., secret-key cryptography). In 1984, Bennett and Brassard [4]
proposed a quantum key distribution scheme which is a key distribution pro-
tocol using quantum communication. For two decades, so-called quantum cryp-
tography has been developed dramatically. For example, its unconditional se-
curity proofs were provided, some alternatives were proposed and so on. We
would like to specially mention that Mayers [41] and Lo and Chau [39] indepen-
dently demonstrated that quantum mechanics cannot necessarily make all cryp-
tographic schemes information-theoretically secure and proved that no quantum
bit commitment scheme can achieve both concealing and binding uncondition-
ally. Therefore, it is still important to take “complexity-theoretic” approaches
to quantum cryptography.

As mentioned, secret-key cryptography enjoys the benefits of the quantum
mechanism. On the other hand, Shor’s algorithms can be regarded as a negative
effect of the quantum mechanism on public-key cryptography. From the compu-
tational point of view, his algorithms illustrate that quantum computation could
be more powerful than classical computation. It is natural to consider that the
power of quantum computation could be exploited to withstand even quantum
adversaries. Over the last decade since the negative impact on public-key cryp-
tography due to Shor, quantum cryptography has been discussed and developed
from the complexity-theoretic point of view in the literature. In this paper, we
will survey what has been studied in quantum computational cryptography.
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2 Foundations of Quantum Computational Cryptography

One-way functions are functions f : {0, 1}∗ → {0, 1}∗ such that, for each x ∈
{0, 1}∗, f(x) is efficiently computable but f−1(y) is computationally tractable
only for a negligible fraction of all y’s. The notion of one-way function is one of
the most fundamental notions in cryptology. A construction of pseudorandom
generators from any one-way functions [25] is one of the most important re-
sults in the foundations of cryptography, because pseudorandom generators are
still primitive for other cryptographic protocols. Digital signature schemes are
also constructible from one-way functions [47,53]. Besides one-way functions, bit
commitment schemes are building blocks for cryptographic protocols and (non-
uniform) computationally concealing statistically binding schemes are built in
zero-knowledge proof systems, introduced in [20], for any NP language [17]. Fur-
thermore, Naor, in [45], showed that computationally concealing statistically
binding bit commitment schemes are constructible from pseudorandom genera-
tors (i.e., from one-way functions). Another type of bit commitment scheme, say
statistically concealing computationally binding scheme, is constructible from
1-to-1 length-preserving one-way functions (i.e., one-way permutations) [36, 46]
and from another special type of one-way functions [24].

Since modern cryptography depends heavily on one-way functions and uti-
lized several candidates in practice, the existence of one-way functions is one
of the most important open problems in theoretical computer science. On the
other hand, Shor [56] showed that famous candidates of one-way functions such
as the RSA function or the discrete logarithm function are no longer one-way
in the quantum computation model. For quantum one-way permutations, we do
not have any candidates.

2.1 Quantum One-Way Permutations

Kashefi, Nishimura and Vedral [30] gave a necessary and sufficient condition for
the existence of worst-case quantum one-way permutations as follows. (In the
classical case, different characterizations were obtained [28, 29, 54].)

Let f : {0, 1}n → {0, 1}n be a permutation. Then f is worst-case quantum
one-way if and only if there exists a unitary operator in Q = {Qj(f) | j =
0, 1, ..., n/2−1} that is not efficiently computable. The reflection operatorsQj(f)
are defined as

Qj(f) =
∑

x∈{0,1}n

|x〉〈x| ⊗ (2|ψj,x〉〈ψj,x| − I),

where

|ψj,x〉 =
1√

2n−2j

∑

y:pref(f(y),2j)=pref(x,2j)

|y〉
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and pref(s, i) denotes the i bits long prefix of a string s.
They also considered quantum weakly one-way permutations (i.e., weak in

the cryptographic sense) and gave a sufficient condition on the existence. After
that, Kawachi, Kobayashi, Koshiba and Putra [31] gave a necessary condition
and completed an algorithmic characterization of quantum weakly one-way per-
mutations. The characterization is similar to the case of worst-case quantum
one-way permutation except that the unitary operators in Q permit of exponen-
tially small errors. While, in [31], Kawachi et al. mentioned a characterization
of quantum weakly one-way permutations only, a similar characterization holds
for quantum strongly one-way permutations. These characterizations might be
helpful either to search for candidates of quantum one-way permutations or to
disprove their existence.

2.2 Quantum Hard-Core Predicates

Hard-core predicates for one-way functions are also important in computational
cryptography. Goldreich and Levin [16] showed that a hard-core predicate is
constructible from any one-way function f . Let f ′(x, r) = (f(x), r) be a function
where x, r ∈ {0, 1}n. Here, it is easy to see that f ′ is also one-way. The predicate

GL(x, r) = 〈x, r〉 =
n∑

i=1

xiri mod 2

is a hard-core predicate for the one-way function f ′. Moreover, they gave a way
to construct a hard-core function of output length O(log n) for any one-way
function. In [1], Adcock and Cleve considered quantum hard-core predicates
(i.e., hard-core predicates against quantum adversaries) for quantum one-way
functions. They showed that for any quantum one-way function f , GL(x, r) is
also a quantum hard-core predicate for the quantum one-way function f ′(x, r) =
(f(x), r). Furthermore, they proved that the reduction between quantum hard-
core predicates and quantum one-way functions is simpler and tighter than the
classical reduction. Actually, they showed that a lower bound on the number of
oracle calls in the classical reduction is properly larger than an upper bound in
the quantum reduction.

It is widely known that list-decodable codes have many complexity-theoretic
applications including hard-core functions [57]. Intuitively speaking, if we are
given a corrupted codeword of a list-decodable code, we may output a short list
containing messages close to the correct one rather than uniquely recover it. For
example, the Goldreich-Levin Theorem [16] mentioned above can be regarded as
an efficient list-decoding algorithm for the binary Hadamard code. Actually, for
a message x, GL(x, 0), ..., GL(x, 2n − 1) correspond to a codeword of the binary
Hadamard code. The prediction algorithm for the hard-core predicate GL also
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corresponds to an access to a corrupted codeword. Suppose that we could obtain
a polynomially long list that contains x with high probability by accessing the
corrupted codeword. It implies that inverting the one-way function f is efficiently
computable. Thus, we can say that there is no efficient algorithm to predict the
hard-core value of GL.

From the quantum computational point of view, a general construction of
quantum hard-core functions from quantum one-way functions has been obtained
by Kawachi and Yamakami [33], who utilize a classical code that has a quantum
list-decoding algorithm. Roughly speaking, they showed that any code that has
an almost orthogonal structure in a sense has a quantum list-decoding algorithm.
Consequently, it enables us to discover new (quantum) hard-core functions. Es-
pecially, the quantum list-decoding technique affirmatively but quantumly set-
tled the open problem of whether Damg̊ard’s generator [12] is cryptographically
secure or not.

Let us go into details about quantum hard-core predicates. Regard a mapping
from a message space {0, 1}n and an index set {0, ...,M − 1} to a finite field Fq

as a code C over Fq. Let Cx(r) be the value of the r-th block in the codeword Cx

for a message x, with message length |x| = n and block length (of codewords)
|Cx| = M . For a codeword Cx, we define a codeword state |Cx〉 as follows:

|Cx〉 =
1√
M

M−1∑

r=0

ωCx(r)
q |r〉,

where ωq = e2πi/q. In [1], Adcock and Cleve implicitly considered codeword
states for the case of binary codes, and the above is a natural extension.

One of the most important special cases is when two codeword states |Cx〉
and |Cy〉 are orthogonal, namely,

〈Cx|Cy〉 =
1
M

M−1∑

r=0

ωCx(r)
q · ωCy(r)

q = 0.

A code with the above orthogonality is said to be phase-orthogonal. The phase-
orthogonal codes have good properties from the algorithmic point of view. If
M ≤ 2n, there exist quantum states |u0〉, ..., |u2n−M−1〉 such that

U = [|C0〉 · · · |Cqn−1〉 |u0〉 · · · |u2n−M−1〉]†

is unitary and U |Cx〉 = |x〉. This implies that there exists a (possibly inefficient)
decoding algorithm that, given a codeword (with no error added), recovers the
original message.

Since it is easy to generate the codeword state from an “uncorrupted” code-
word, we would like to obtain a quantum state close to the codeword state whose
uncorrupted codeword is close to a given “corrupted” codeword.
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Remember that our goal is to show the hard-core property by using list-
decodable codes. Specifically speaking, by using an efficient quantum predictor
for the hard-core function C, we only have to find a short list of pre-images for
a given functional value of a quantum one-way function. The quantum predictor
A can be written as the following unitary operator:

A|r〉|0〉|0〉 = αr,Cx(r)|r〉|Cx(r)〉|φr,Cx(r)〉 +
∑

s∈Fq−{Cx(r)}
αr,s|r〉|s〉|φr,s〉,

where the last register is for the workspace A utilizes. Since A is a predictor, it
is assumed that Cx(r) be predictable with non-negligible probability. In other
words, there exists a non-negligible fraction S ⊂ {0, 1}n, for every x ∈ S, for
some non-negligible function ε such that

M−1∑

r=0

|αr,Cx(r)|2 > 1
q

+ ε.

In case of binary codes, the predictor A can be written as

A|r〉|0〉|0〉 = αr,Cx(r)|r〉|Cx(r)〉|φr,Cx(r)〉 + αr,¬Cx(r)|r〉|¬Cx(r)〉|φr,¬Cx(r)〉.

Note that

1
M

∑

r,x

|αr,Cx(r)|2 > 1/2 + ε and
1
M

∑

r,x

|αr,¬Cx(r)|2 ≤ 1/2 − ε.

Here, let us consider the following procedure:

(1) Initialize the registers to |0〉|0〉|0〉.
(2) Make a uniform superposition in the first register and apply A to it:

1√
M

M−1∑

r=0

|r〉(αr,Cx(r)|Cx(r)〉|φr,Cx(r)〉 + αr,¬Cx(r)|¬Cx(r)〉|φr,¬Cx(r)〉).

(3) Shift the phase according to the second register:

1√
M

M−1∑

r=0

(−1)Cx(r)|r〉(αr,Cx(r)|Cx(r)〉|φr,Cx(r)〉

−αr,¬Cx(r)|¬Cx(r)〉|φr,¬Cx(r)〉).

(4) Apply A−1 to all the registers:

〈Cx|〈0|〈0|A−1 =
1√
M

(−1)Cx(r)〈r|(α∗
r,Cx(r)〈Cx(r)|〈φr,Cx(r)|

+α∗
r,¬Cx(r)〈¬Cx(r)|〈φr,¬Cx(r)|).
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Let

|ψ〉 = A−1 1√
M

M−1∑

r=0

(−1)Cx(r)|r〉(αr,Cx(r)|Cx(r)〉|φr,Cx(r)〉

−αr,¬Cx(r)|¬Cx(r)〉|φr,¬Cx(r)〉),
which is computable by the above procedure. Then

〈Cx|〈0|〈0|ψ〉 =
1
M

M−1∑

r=0

|αr,Cx(r)|2 − |αr,¬Cx(r)|2 ≥ 2ε.

Thus, by applying the algorithm that, given an uncorrupted codeword state,
computes the original message to a corrupted codeword state, we can obtain
the original message with non-negligible probability. By repeating this process
independently, we can get a polynomially long list including the original mes-
sage x with high probability. Actually, in [1], Adcock and Cleve took the same
approach.

In the case of q-ary codes, the matter is not simple. While the fidelity between
|ψ〉 obtained in a naively generalized way and |Cx〉|0〉|0〉 is written as

1
M

∣∣∣∣∣∣

M−1∑

r=0

∑

s∈Fq

ωs−Cx(r)
q |αr,s|2

∣∣∣∣∣∣
,

the fidelity cannot be bounded by a non-negligible function. To overcome the
difficulty, Kawachi and Yamakami [33] introduced a new tool. They defined the
k-shuffled codeword state as

|C(k)
x 〉 =

1√
M

M−1∑

r=0

ωk·Cx(r)
q |r〉.

Intuitively speaking, the objective of the k-shuffled codeword state is the ran-
domization over the phases in amplitude. After the randomization, we can say
that there exists at least one value k such that a “good” k-shuffled codeword
state can be computed by using the predictor A. If |Fq| ∈ poly(n), then we can
similarly recover the original message with non-negligible probability.

3 Quantum Commitment and Oblivious Transfer

Since the BB84 protocol [4] was shown to be unconditionally secure, some other
cryptographic protocols such as bit commitment and oblivious transfer schemes
were expected to achieve the security without any computational assumption.

A bit commitment scheme is a two-party protocol. The protocol consists
of two phases: the commit phase and the reveal phase. In the commit phase,
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the sender Alice has a bit b in her private space and she wants to commit b
to the receiver Bob. They exchange messages and at the end of the commit
phase the receiver gets some information that represents b. In the reveal phase,
Alice confides b to Bob by exchanging messages. At the end of the reveal phase,
Bob judges whether the information gotten in the reveal phase really represents
b or not. The security of bit commitment schemes consists of the concealing
property and the binding property. The concealing property is satisfied if a
cheating receiver cannot predict the committed value before the reveal phase.
The binding property is satisfied if a cheating sender cannot reveal two different
values in the reveal phase. In the classical setting, either the concealing or the
binding property must be computational. By introducing quantum states into
bit commitment scheme, unconditionally secure bit commitment schemes had
been expected to be realized.

A 1-out-of-2 oblivious transfer (OT) is also a fundamental primitive in cryp-
tography. Especially, it is well-known that 1-out-of-2 OT implies secure multi-
party computation. Roughly speaking, a 1-out-of-2 OT is a two-party protocol,
in which the sender Alice holds two secrets, s0 and s1, and the receiver Bob
holds a secret bit b. If both parties follow the protocol, Bob learns sb. Moreover,
even a cheating receiver cannot learn more than a single value in {s0, s1} and
even a cheating sender cannot learn anything about b.

First, Crépeau and Kilian [10] showed a construction from unconditionally
secure quantum commitment schemes to 1-out-of-2 quantum oblivious trans-
fer schemes. Its information-theoretic security were proved in [8, 42, 61]. (Note
that such a reduction in the classical setting is unknown.) Unfortunately, it was
later shown that commitment schemes with unconditional concealing and bind-
ing properties are impossible even if quantum states are applicable [39,41]. If we
allow either the concealing or the binding condition of a bit commitment scheme
to be computational, interesting commitment schemes utilizing quantum infor-
mation are still possible. Dumais, Mayers and Salvail [14] proposed a perfectly
concealing and computationally binding bit commitment scheme with constant-
round interactions under the assumption that quantum one-way permutations
exist. (In the classical case, schemes with O(n/ log n) rounds are the best result
known [36].) The use of quantum information enables us to transform from com-
putationally concealing and computationally binding bit commitment scheme to
statistically concealing and computationally binding scheme [11]. Since the for-
mer is constructible from any quantum one-way function, so is the latter. (In the
classical case, a statistically concealing bit commitment scheme is constructible
from one-way functions with special features [24].)

Here, let us consider some issues in defining quantum bit commitment. Though
we can define the concealing condition of quantum bit commitments as in the
classical case, some care must be taken to define the binding condition in the
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quantum case. In the classical case, the binding property means that the prob-
ability that the bit value committed in the commit phase can be revealed as
both 0 and 1 is negligibly small. However, this definition is too strong in the
quantum case. Suppose that a sender in some quantum bit commitment scheme
could generate the following state:

1√
2
|0〉|φ0〉 +

1√
2
|1〉|φ1〉,

where |φ0〉 (resp., |φ1〉) is a quantum state to be sent when 0 (resp., 1) is honestly
committed in the commit phase. Then the sender Alice sends the quantum state
only in the second register to the receiver Bob and keeps the quantum state in the
first register at her side. Alice can change the committed value with probability
1/2 by measuring the quantum state left at her side just before the reveal phase.
Since the above situation is essentially inevitable, the straightforward extension
of the binding condition in the classical case is not satisfied in the quantum case.
Thus, we have to weaken the definition of the binding condition in the quantum
case. Actually, in [14], Dumais, Mayers and Salvail introduced a weaker definition
of the binding property. Their weaker binding propety is satisfied if p0 + p1 − 1
is negligibly small, where p0 (resp., p1) is the probability that the committed
value is revealed as 0 (resp., 1).

The following is the description of the quantum bit commitment scheme
in [14]. Let f : {0, 1}n → {0, 1}n be any quantum one-way permutation

[Commit Phase]

1. Alice decides w ∈ {0, 1} as her committing bit. She also chooses x ∈ {0, 1}n

uniformly at random, and then computes f(x).

2. Alice sends |f(x)〉 to Bob if w = 0 and H⊗n|f(x)〉 otherwise, where H is the
Hadamard transformation.

[Reveal Phase]

1. Alice announces x and w to Bob.

2. If w = 1, Bob applies H⊗n to the state sent from Alice. Otherwise, he does
nothing to the state.

3. Bob measures the resulting state in the computational basis. Let y be the
outcome. He accepts if and only if y = f(x).

The above protocol satisfies the perfect concealing property. This is because
for a bit w to be committed and for the corresponding quantum state ρw, Alice
generates the following equalities:

ρ0 =
1
2n

∑

x∈{0,1}n

|f(x)〉〈f(x)| = I/2n =
1
2n

∑

x∈{0,1}n

(H⊗n|f(x)〉)(〈f(x)|H⊗n†) = ρ1.
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This implies that both states generated by Alice are maximally mixed states
and they are independent of w. On the other hand, the computationally binding
property can be satisfied by constructing an inverter of the quantum one-way
permutation f from a quantum adversary for the binding condition. In general,
the space in which a quantum adversary can operate is partitioned into three
subspaces: the register A for the working space, the register B that is sent to Bob
in the reveal phase, and the register C that is sent to Bob in the commit phase.
Suppose that the quantum adversary can change whatever the committed bit
is and Bob accepts it. This essentially implies that the following transformation
UAB over registers A and B has a polynomial-size circuit for some vectors |γ0

x〉
and |γ1

x〉:

|φ0〉 =
∑

x∈{0,1}n

|γ0
x〉A|x〉B|f(x)〉C UAB�→ |φ1〉 =

∑

x∈{0,1}n

|γ1
x〉A|x〉BH⊗n|f(x)〉C .

(Note that the quantum adversary cannot access the register C after the commit
phase because the values in C have already been sent to Bob.) Let

∑
x ‖|γ0

x〉‖ =∑
x ‖|γ1

x〉‖ = 1.
Let us see that it is possible to construct an algorithm to compute f−1(y)

from a given y ∈ {0, 1}n by using the mapping UAB. First, note that the state

|φy〉 =
∑

x∈{0,1}n

(−1)〈y,f(x)〉|γ0
x〉A|x〉BH⊗n|y〉C

can be computed from |φ0〉. Here, we consider to apply the projection
H⊗n|y〉〈y|H⊗n to |φ0〉 in the register C and normalize the state. The result-
ing state indeed coincides with |φy〉. This state |φy〉 can be easily generated as
follows. (1) We change the phase to (−1)〈y,f(x)〉 according to the value in the
register C and y. (2) We set the register B to zero by computing f again. (3)
We copy the input value y to the register B and apply H⊗n to it. The above
procedure implies that the mapping TC |φ0〉 = |φy〉 has an efficient implementa-
tion. Moreover, UAB and TC commute, because UAB acts on the registers A and
B by the assumption and TC is just the projection of the value in the register
C to H⊗n|y〉〈y|H⊗n and thus does not act on the registers A and B. Hence,

UABTC |φ0〉 = TCUAB|φ0〉 = TC |φ1〉 = |γ1
f−1(x)〉|f−1(y)〉H⊗n|y〉.

Therefore, what we want to obtain appears in the register B. (Note that the
inverter in the case where the adversary errs becomes more complicated.)

Last in this section, we mention a conversion from a quantum bit commit-
ment scheme with computational assumption to quantum oblivious transfer with
computational assumption. Crépeau and Kilian’s conversion from quantum bit
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commitment to 1-out-of-2 quantum oblivious transfer supposes that some clas-
sical information must be sent to a third party in the commit phase. Thus, since
the statistically binding and “computationally” binding bit commitment scheme
may use quantum information, their proof technique is not applicable. Crépeau
et al. have shown a way to convert a statistically concealing and computationally
binding bit commitment scheme to 1-out-of-2 quantum oblivious transfer [9].

4 Quantum Zero-Knowledge

The notion of zero-knowledge was introduced by Goldwasser, Micali and Rack-
off [20]. Roughly speaking, an interactive proof system has the zero-knowledge
property if any (possibly cheating) verifier that communicates with the honest
prover learns nothing through the interaction except the validity of the claimed
statement. Even in the classical case, there are several variants of zero-knowledge
corresponding to how to formally define the notion that the verifier “learns noth-
ing.” Anyway, the verifier “learns nothing” if there exists a polynomial-time sim-
ulator whose output is indistinguishable in some sense from the information the
verifier would have after the interaction with the honest prover.

At any round of interaction to simulate, a simulator typically generates a
pair of a question from the verifier and a response from the honest prover. If this
produces a pair that is inconsistent with each other (or with the other parts of
the transcript of the interaction simulated so far), the simulator “rewinds” the
process to simulate this round again. However, the “rewinding” technique is not
generally applicable to quantum verifiers. First, quantum information cannot be
copied; this fact is also known as the no-cloning theorem. Second, measurements
are generally irreversible processes. This difficulty was explicitly pointed out by
van de Graaf [21].

Since then the study of quantum zero-knowledge has developed from a com-
putational point of view. For example, Watrous [58] defined the quantum coun-
terpart of honest verifier statistical zero-knowledge and studied its properties.
We denote by HVQSZK the class of languages that have honest verifier quan-
tum statistical zero-knowledge proof systems. In [58], the following statements
are shown: (i) There exists a complete promise problem, which is a natural gen-
eralization of a complete promise problem in statistical zero-knowledge (SZK)
due to [55]. (ii) HVQSZK is contained in PSPACE. (iii) HVQSZK is closed un-
der complement. (iv) Any HVQSZK protocol can be parallelized to a one-round
HVQSZK protocol.

Kobayashi [35] defined non-interactive quantum perfect zero-knowledge (de-
noted by NIQPZK) and non-interactive quantum statistical zero-knowledge (de-
noted by NIQSZK) and studied their properties. Specifically speaking, (i) if
the prover and the verifier do not beforehand have any shared randomness and
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any shared entanglement, languages that have non-interactive quantum zero-
knowledge proof systems are in BQP. (ii) Assuming that the verifier and the
prover share polynomially many Einstein-Podolsky-Rosen (EPR) pairs a pri-
ori, NIQPZK with the one-sided error has a natural complete promise problem,
which is a generalization of a complete promise problem in non-interactive sta-
tistical zero-knowledge (NISZK) due to Goldreich, Sahai and Vadhan [18]. (iii)
The graph non-automorphism (GNA) problem has a NIQPZK proof system with
prior EPR pairs. (Since it is unknown whether GNA is in BQP or not, NIQPZK
with prior EPR pairs includes a nontrivial language.)

In order to circumvent problematic issues caused by the rewinding technique,
Damg̊ard, Fehr and Salvail [13] have shown a way to construct computational
QZK proof and perfect QZK arguments against quantum adversaries in the
common reference string model, wherein it is assumed that an honest third
party samples a string from some specified distribution and provides both the
prover and verifier with this string at the start of the interaction. They have also
given a construction of unconditionally concealing and computationally binding
string commitment protocols against quantum adversaries.

Very recently, Watrous [59] resolves in many cases the problematic issues
caused by the rewinding technique in quantum zero-knowledge by introducing a
success probability amplifying technique, which is successfully utilized to amplify
the success probability in Quantum Merlin-Arthur protocols without increasing
the witness sizes [40]. Specifically speaking, he showed (i) the graph isomor-
phism problem is in perfect zero-knowledge (PZK) even against an adversarial
verifier who uses quantum computation to cheat, and (ii) if quantum one-way
permutations exist, every problem in NP has ZK proof systems even against an
adversarial verifier who uses quantum computation to cheat.

5 Quantum Public-Key Encryptions

As mentioned in the introduction, public-key cryptosystems are indispensable
even in future where quantum computers might be physically realized. Unfor-
tunately, almost all practical public-key cryptosystems are vulnerable to Shor’s
algorithm. On the other hand, there are public-key cryptosystems that have
not shown to be vulnerable to quantum adversaries. Lattice-based cryptogra-
phy [3, 15, 51, 52] is one example. In [3], Ajtai and Dwork proposed a seman-
tically secure public-key cryptosystem based on the worst-case hardness of the
n8-unique shortest vector problem. The s(n)-unique shortest vector problem is
the shortest vector problem with promise that the ratio of the shortest vector
length to any other non-parallel vector length is at most 1/s(n). The security re-
ducibility to the worst-case hardness of the underlying intractable problem is one
of the remarkable features in lattice-based cryptography. Besides cryptography,
problems with respect to the lattice structures have attracted much attention.
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From now on, we focus on public-key cryptosystems associated with quan-
tum computation. In 2000, Okamoto, Tanaka and Uchiyama [49] proposed a
knapsack-based cryptosystem as a quantum public-key cryptosystem. The first
knapsack-based cryptosystem was proposed by Merkle and Hellman [43]. They
aimed to incorporate the hardness of an NP-hard knapsack problem into their
cryptosystem. A knapsack problem is a search problem to compute a binary vec-
tor (b1, ..., bn) such that s =

∑n
i=1 aibi from a positive integer s and a positive

integer vector a = (a1, ..., an). The vector a corresponds to a public key. For an
n-bit message b = (b1, ..., bn), its encryption c is computed as c =

∑n
i=1 aibi.

So, the problem to find the message b from an encryption c and a public key
a is just a knapsack problem. Merkle and Hellman utilized the fact that knap-
sack problems with the super-increasing property ai >

∑i−1
j=1 aj are efficiently

computable and let a public key be a vector obtained by applying a modu-
lar linear transformation to the super-increasing vector. Due to the linearity,
their cryptosystem was cracked soon after the proposal. Since then, knapsack-
based cryptography had been improved again and again. Eventually, Brickell [6]
and Lagarias and Odlyzko [37] independently proposed a general attack (the
so-called low-density attack) on knapsack-based cryptosystems. As a counter-
measure, Chor and Rivest [7] introduced a non-linearity into the public key
generation by using an easy special discrete logarithm problem and proposed
yet another knapsack-based cryptosystem. The quantum public-key cryptosys-
tem by Okamoto, Tanaka and Uchiyama [49] can be regarded as an extension of
the Chor-Rivest cryptosystem. This is because they use the general discrete log-
arithm problem to generate public keys with the help of quantum computation.

In 2005, Kawachi, Koshiba, Nishimura and Yamakami [32] proposed a seman-
tically secure (in a weak sense) quantum public-key cryptosystem based on the
worst-case hardness of the graph automorphism problem. Actually, they intro-
duced the computational problem of distinguishing between two specific quan-
tum states as a new cryptographic problem to design their quantum public-key
cryptosystem. The computational indistinguishability between quantum states
is a generalization of the classical indistinguishability between two probability
distributions, which plays an important role in computational cryptography (see,
e.g., [19, 60]). Their problem QSCDff asks whether we can distinguish between
two sequences of identical samples of ρ+

π (n) and of ρ−π (n) for each fixed hid-
den permutation π for each length parameter n of a certain form. Let Sn be
the symmetric group of degree n and let Kn = {π ∈ Sn : π2 = id and ∀i ∈
{1, ..., n}[π(i) �= i]} for n ∈ N , where id stands for the identity permutation
and N = {2(2n′ + 1) : n′ ∈ N}. For each π ∈ Kn, let ρ+

π (n) and ρ−π (n) be two
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quantum states defined by

ρ+
π (n) =

1
2n!

∑

σ∈Sn

(|σ〉 + |σπ〉)(〈σ| + 〈σπ|) and

ρ−π (n) =
1

2n!

∑

σ∈Sn

(|σ〉 − |σπ〉)(〈σ| − 〈σπ|).

The cryptographic properties of QSCDff follow mainly from the definition
of the set Kn of the hidden permutations. Although the definition seems some-
what artificial, the following properties of Kn lead to useful cryptographic and
complexity-theoretic properties of QSCDff : (i) π ∈ Kn is of order 2, which pro-
vides the trapdoor property of QSCDff . (ii) For any π ∈ Kn, the conjugacy
class of π is equal to Kn, which makes it possible to prove the equivalence
between the worst-case/average-case hardness of QSCDff . (iii) The graph au-
tomorphism problem is (polynomial-time Turing) equivalent to its subproblem
with the promise that a given graph has a unique non-trivial automorphism in
Kn or none at all. This equivalence is exploited to give a complexity-theoretic
lower bound of QSCDff , that is, the worst-case hardness of the graph automor-
phism problem. For these proofs, they introduced new techniques: a new version
of the so-called coset sampling method , which is broadly used in extensions of
Shor’s algorithm (see, e.g., [50]) and a quantum version of the hybrid argument,
which is a strong tool for security reduction in modern cryptography.

Their problem QSCDff is closely related to a much harder problem: the
hidden subgroup problem on the symmetric groups (SHSP). Note that no known
subexponential-time quantum algorithm exists for SHSP. Hallgren et al. [27]
introduced a distinction problem between certain two quantum states, similar
to QSCDff , to discuss the computational intractability of SHSP by a “natural”
extension of Shor’s algorithm [56] with the quantum Fourier transformation.
An efficient solution to this distinction problem gives an answer to a pending
question on a certain special case of SHSP. To solve this distinction problem,
as they showed, the so-called weak Fourier sampling on a single sample should
require an exponential number of samples. This result was improved by Grigni
et al. [22] and Kempe and Shalev [34]. In contrast, Hallgren et al. [26] proved
that no time-unbounded quantum algorithm solves the distinction problem even
from o(n log n) samples. Kawachi et al. [32] showed that the above distinction
problem is polynomial-time reducible to QSCDff . This immediately implies that
we have no time-unbounded quantum algorithm for QSCDff from o(n logn)
samples. Even with sufficiently many samples for QSCDff , there is no known
subexponential-time quantum algorithms for QSCDff and thus finding such an
algorithm seems a daunting task.

Let us move to the description of the quantum public-key cryptosystem
in [32]. Usually, public-key cryptosystems consist of three algorithms, for key
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generation, encryption and decryption.

[Public Key Generation Algorithm]

Input: π ∈ Kn

Procedure:

step 1. Choose a permutation σ from Sn uniformly at random and store it in
the second register. Then, the entire system is in the state |0〉|σ〉.

step 2. Apply the Hadamard transformation to the first register.

step 3. Apply the Controlled-π to the both registers.

step 4. Apply the Hadamard transformation to the first register again.

step 5. Measure the first register in the computational basis. If 0 is observed,
then the quantum state in the second register is ρ+

π . Otherwise, the state of
the second register is ρ−π . Now, apply the conversion algorithm to ρ−π .

Encryption algorithm consists of two parts: one is the conversion algorithm
below and the other is so simple that we describe it in the description of the
total system.

[Conversion Algorithm]

The following transformation inverts, given ρ+
π , its phase according to the sign

of the permutation with certainty.

|σ〉 + |σπ〉 �−→ (−1)sgn(σ)|σ〉 + (−1)sgn(σπ)|σπ〉.

Since π is odd, the above algorithm converts ρ+
π into ρ−π .

Finally, we give a description of decryption algorithm.

[Decryption Algorithm]

Input: unknown state χ which is either ρ+
π or ρ−π .

Procedure:

step 1. Prepare two quantum registers: the first register holds a control bit and
the second one holds χ. Apply the Hadamard transformation H to the first
register. The state of the system now becomes

H |0〉〈0|H ⊗ χ.

step 2. Apply the Controlled-π operatorCπ to the two registers, where Cπ|0〉|σ〉
= |0〉|σ〉 and Cπ|1〉|σ〉 = |1〉|σπ〉 for any σ ∈ Sn.

step 3. Apply the Hadamard transformation to the first register.
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step 4. Measure the first register in the computational basis. Output the ob-
served result.

The following is the description of the total cryptosystem consisting two
phases: key transmission phase and message transmission phase.

[Key Transmission Phase]

1. Bob chooses a decryption key π uniformly at random from Kn.

2. Bob generates sufficiently many copies of the encryption key ρ+
π by using the

public key generation algorithm.

3. Alice obtains encryption keys from Bob.

[Message Transmission Phase]

1. Alice encrypts 0 or 1 into ρ+
π or ρ−π , respectively, by using the conversion

algorithm, and sends it to Bob.

2. Bob decrypts Alice’s message using the decryption algorithm.

Lastly, we mention a lattice-based cryptosystem due to Regev [52]. While his
cryptosystem is a totally classical public-key cryptosystem based on the hardness
of the approximation of the shortest vector problem, his reduction uses the power
of quantum computation. Previous lattice-based cryptosystems have a provable
security based on the hardness of the unique shortest vector problem or no se-
curity proof. While the unique shortest vector problem seems to be difficult, its
computational complexity has not been investigated extensively. On the other
hand, the approximation of the shortest vector problems has been well studied
from the computational point of view. Actually, the computational complex-
ity of the approximation depends on the approximation factor. For example, a
polynomial-time algorithm (namely, the Lenstra-Lenstra-Lovász algorithm [38])
works for the approximation factor 2n/2, where n is the dimension of the lattice.
On the other hand, the approximation with factor

√
2 − ε is NP-hard under

randomized reduction [44]. Though the underlying problem in [52] is neither
NP-hard nor polynomial-time computable, his approach is right to the point.

6 Concluding Remarks

We have reviewed results in quantum computational cryptography for the last
decade. Though Shor’s factoring algorithm certainly had a great impact on com-
putational cryptography, we can say that we have been developing alternatives
and establishing new foundations. On the other hand, we have to say that quan-
tum computational cryptography has much room for improvement and devel-
opment. Especially, quantum counterparts of digital signatures have not been
investigated so much yet.
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