
On-line Monitoring of Metric Temporal Logic with Time-
Series Constraints Using Alternating Finite Automata

Doron Drusinsky
(Naval Postgraduate School, Monterey, CA, USA

ddrusins@nps.edu
and

Time Rover, Inc., Cupertino, CA, USA
www.time-rover.com)

Abstract: In this paper we describe a technique for monitoring and checking temporal logic
assertions augmented with real-time and time-series constraints, or Metric Temporal Logic
Series (MTLS). The method is based on Remote Execution and Monitoring (REM) of temporal
logic assertions. We describe the syntax and semantics of MTLS and a monitoring technique
based on alternating finite automata that is efficient for a large set of frequently used formulae
and is also an on-line technique. We investigate the run-time data-structure size for several
interesting assertions taken from the Kansas State specification patterns.

Keywords: formal specification, temporal logic, run-time monitoring, run-time verification,
alternating automata, time series, assertions, reactive systems
Categories: F.4.1, F.1.1, D.2.4

1 Introduction

Temporal Logic is a special branch of modal logic that investigates the notion of time
and order. It was Pnueli [17] who first suggested using Linear-Time Temporal Logic
(PLTL) for reasoning about concurrent programs. Since then, several researchers have
used PLTL to state and measure the correctness of concurrent programs, protocols,
and hardware (e.g., [11, 16]).

PLTL is an extension of propositional logic in which, in addition to the well-
known propositional logic operators, there are four future-time operators (◊-
Eventually, -Always, U-Until, Ο-Next) and four dual-past time operators. A well
known library known as the Kansas State University (KSU) specification patterns
library, contains patterns of PLTL specifications that encode the knowledge of experts
in finite state verification [2].

Chang, Pnueli, and Manna suggested Metric Temporal Logic (MTL) as a vehicle
for verifying real time systems [3]. MTL extends PLTL by supporting the
specification of relative-time and real-time constraints. Using MTL, all four PLTL
future-time operators can be characterized by relative-time and real-time constraints
specifying the duration of the temporal operator.

In [1], Alur and Henzinger classify a variety of real-time logics according to their
complexity and expressiveness. In particular, they investigate the expressive power of
MTL and Timed Temporal Logic (TPTL) in which a freeze quantifier is used for

Journal of Universal Computer Science, vol. 12, no. 5 (2006), 482-498
submitted: 21/10/05, accepted: 27/4/06, appeared: 28/5/06 © J.UCS

freezing and capturing particular real-time values for later use within the TPTL
formula.

Time series constraints enable the specification of temporal properties of
sequences of propositions with constraints on how data values change over time. They
also enable the simulation and monitoring of such properties as stability,
monotonicity, temporal average and sum values, and temporal min/max [6]. Note that
time-series constraints differ from the freeze operator of [1] in that they capture and
freeze data values, not time.

Remote Execution and Monitoring (REM) is a class of methods for tracking the
temporal behavior of an underlying application. REM methods range from simple
print-statement logging methods to run-time tracking of complete formal
requirements (written, e.g., in PLTL/MTL) for verification purposes. Recently, NASA
used REM to verify the flight code for its Deep Impact project [8]. In addition, the
U.S. Missile Defense Agency (MDA) is currently applying REM to verify its Ballistic
Missile Defense System [9]. Both applications use the REM method described here.

In this paper we are particularly interested in on-line REM methods, where
temporal rules are evaluated without storing an ever-growing and potentially
unbounded history trace. In particular, we prove that for a large subset of temporal
logic, the method requires only a polynomially sized implementation. In addition, we
show the actual expected implementation size for several interesting assertions taken
from the Kansas State specification patterns.

Recently, Thati and Rosu [18] have proven lower bounds for on-line REM of
MTL assertions, showing that monitoring time grows exponentially to the size of the
assertion being monitored when real-time constraint bounds are small, and double
exponentially to the size of the assertion being monitored in the general case. Note
that these lower bound refer to the amount of computation required during every cycle
of a REM process.

Also, whereas Sistla and Wolfson investigated temporal rule checking in
databases [20], our approach differs in the following two aspects: First, our
implementation algorithm is based on executing and efficiently managing and
reducing alternating finite automata (AFA) representations of temporal rules. Second,
our AFA-based and/or tree reduction techniques enable on-line computations,
whereas their algorithm is not on-line in that their requirement graph data structure
grows with time. It should be noted, however, that in [19], Sistla and Wolfson provide
an on-line (incremental) variant of their algorithm by limiting themselves to past-time
temporal logic.

In [14] Kovacs, et-al, describe the use of PLTL formulas as runtime assertions in
a parallel debugging environment. Their approach, like ours, distinguishes between
transient evaluations of temporal assertions and “final” evaluations that cannot change
in the future. They do not however support time-series within PLTL nor do they
describe the details of their monitoring technique.

In [21] Tuzhilin describes Templar, a high-level simulation language based on
temporal logic. The suggested interpreter is not on-line and relies on stored historical
data. Also, Templar does not support MTL or time-series constraints.

In [12] Hevelund and Rosu describe the Java Path Explorer (JPaX), an on-line
implementation method for PLTL based on a rewriting system using PLTL recurrence
equations. The primary disadvantage of JPaX compared with the technique we

483Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

suggest in this paper is its inability to monitor MTL assertions or time-series
constraints [6]. In addition, this paper provides analysis, growth metrics, and growth
reduction techniques that have not been provided for in alternative techniques.

Tableau methods for PLTL (e.g., [22]), and for TPTL [1], are in effect on-line
methods: They convert PLTL into exponential-sized non-deterministic finite automata
(NFA), which are then executable and usable as a REM engine. Our method,
however, uses AFA instead of NFA, yielding substantially smaller implementations.
More importantly, the AFA method lends itself to the implementation of the sorts of
PLTL extensions described here, such as real-time constraints (MTL) and time-series
constraints, as well as counting operators [4].

Extended regular expressions are those that, as their name suggests, extend
regular expressions with negation and conjunction. They have a direct automata
theoretical representation using AFA, analogous to the way that non-deterministic
automata represent standard regular expressions. For example, Perl and recent
versions of Java support extended regular expressions in an off-line manner, in which
the entire input string is stored in memory (e.g. as a string variable) and then checked
for membership in a formal language defined by a given extended regular expression.
Indeed, [15] presents a polynomial time off-line membership algorithm for extended
regular expressions.

The DBRover and Temporal Rover REM tools described in [4-10] use the AFA-
based implementation technique described in this paper. In addition to on-line
processing they are [redundant] low-impact [7] in that they require only limited
exposure of potentially confidential information on the monitored system, a useful
property when monitoring financial or security-based systems.

The rest of this paper is organized in this way: Section 2 describes the syntax and
finite sequence semantics for MTLS. Sections 3 and 4 outline our AFA-based REM
method for PLTL. Sections 5 and 6 provide analysis and metrics for the growth of the
data structures used by the suggested REM method, and Section 7 examines these
growth functions for several specifications taken from the KSU specification pattern
library. Section 8 describes an adaptation of the REM method for monitoring MTLS
and past-time operators.

2 MTL with Time Series Constraints (MTLS): Syntax and
Semantics

Conventionally, the semantics of PLTL and MTL are defined over infinite sequences.
Run-time monitoring is, however, by definition a finite process. We therefore define
MTLS semantics for finite sequences. We do so by using an automata-like approach,
in which an MTLS formula evaluates (accepts or rejects) an input string, σ, over some
alphabet, Σ. In addition, we extend the definition of a sequence, σ=a1 …an, to be a
sequence of pairs from Σ×T , i.e. ∀i, 0≤i≤n, ai=(bi, ti), where bi∈Σ and ti is an integer
that represents the arrival time of bi at the input. We denote the projections ai|Σ=bi and
ai|T=ti. Clearly, also, i ≤ j → ti ≤ tj.

Because input sequences are finite, we introduce the concept of the finality of an
evaluation, which indicates whether the Boolean evaluation result has the potential of
changing when using an input string, σ', that is an extension of σ. For example, p =

484 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

(x>0) accepts a sequence σ of 100 time stamps with x>0 in each. The final value for
this evaluation is false because x≤0 might occur in an extended sequence σ' that
extends σ beyond time t=100. However, if x≤0 at some time t<100, then p is rejected
and the final value is true because this rejection is unchangeable in the future. That is
to say, every extension of the input sequence will not change the fact that (x>0) has
been violated.

Let P be a set of Boolean propositions, V a set of variables called frozen
variables, and V’={v’/v∈V} a set of variables called current variables. Let Q be a set
of time-series propositions defined as Boolean relations over arithmetic expressions
of numeric constants and variables from V∪V’. For example, using V={v1,v2,v3},
v1+v2'*0.9<2+v3 is a legal time-series proposition. The formulae φ of MTLS are
defined inductively as follows:
φ := p | false | φ1 ∨ φ2 | ¬φ | Οφ | ◊I $x1,…,xm$ φ | φ1 UI $x1,…,xm$ φ2
for p∈ P∪Q and ∀i, 0≤i≤m, xi∈V. As in [1], the subscript I is an interval of � whose
end points are natural number constants. Intervals may be open, half open, or closed,
as well as empty, bounded, or unbounded. We use standard pseudo-arithmetic
expressions to describe such intervals. For example, ≤ c1 and > c2 stand for the closed
interval [0,c1] and the open interval (c2, ∝), respectively. An interval (c, ∝) or [c, ∝) is
called right unbounded. We use the standard abbreviations: true = ¬false, φ1 ∧ φ2 =
¬(¬φ1 ∨ ¬φ2), and I $x1,…,xm$ φ = ¬◊I $x1,…,xm$ ¬φ. For readability reasons we
abbreviate $x1,…,xm$ as xm throughout the remainder of this paper.

An example of an MTLS formula is ◊[10,500]x (x>30 ∧ ≤20 x'>1.5*x), which
states that sometime between 10 and 500 real-time units in the future it should hold
that (i) the value of x is a number greater than 30, e.g. 35, and (ii) the value of x in
every cycle within the 20 consecutive real-time units is greater than 1.5*35. Note how
x, a frozen variable, denotes the initial value of x within a sub-sequence of cycles
while x', a current variable, denotes values of the same variable x in the following
cycles. Note also that the sub-formula ≤20 x'>1.5*x has no frozen variables of its
own.

Frozen and current variables are similar to free and bound instances of variables
found in other languages and tools (e.g. [1]). Our definitions differ somewhat from
the conventional definitions in the following respect. Frozen and current variables
such as x and x' in the above example are defined under a particular temporal operator
(◊ in the above example). The frozen variable x is frozen in the initial cycle of the
sub-sequence for that operator (the first time between time 10 and 500 in which x is
greater than 30) whereas the current variable x' refers to the value of x in following
cycles. Note that the motivation for using the same variable name for frozen and
current variables is that from a programmers standpoint they look like the same
programming language variable x being observed in different snapshots.

We consider MTLS formulae as acceptors of sequences of an alphabet Σ whose
letters are as follows. Each letter of Σ is a collection of functions, each being one of
three types: a:P->Boolean, a:V→�, and a: V’→�. We distinguish between these
functions using their argument, one takes a proposition as an argument while other
two take a variable as their argument. As in [19], the semantics of MTLS is defined
with respect to a time-stamped sequence, i.e., finite input sequence σ= a0…an, where a
letter ai is interpreted as representing the following readings for the ith cycle: (i) truth

485Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

assignments for Boolean propositions in P, and (ii) integer values of variables in V
such as ai(v1)=8 and ai(v2)=10.

Let q be an expression in Q. We define the time series substitution of a variable in
q with an integer value n, denoted q<v←n>, as the expression q where all instances of
v are substituted with n. Because we have two types of variables, frozen and current,
we define a similar substitution q<v←n1, v’←n2> in which both types of variables are
substituted. For an input letter a∈Σ, q←xma is the expression q with all occurrences
of xi replaced by a(xi). Likewise, q←xm<a,b> is the expression q where ∀i, 1≤ i≤ m,
all instances of a frozen variables xi are substituted with a(xi), and all instances of a
current variable xi’ are substituted with b(xi’). In the following semantics we use the
substitution q←xm<ai,aj> (where i≤j) in the following way: ai and aj are letters in Σ,
where ai is a reading of the input tape used for setting values of frozen variables, and
aj is a reading of a subsequent letter used for setting current variables.

For the purpose of creating simple semantics, we impose the following syntactic
constrains: a variable x in the variable list (xm) of a formula cannot appear in the
variable list of any sub-formula. For example, ◊[10,500]x,y (x>30 ∧ ≤20 y
x'+y’>1.5*x+y) is illegal.

The finite-sequence semantics for an MTLS formula p is defined recursively with
a standard evaluation (accept or reject) value, where p rejects a sequence of elements
of Σ×T, σ=a1 …an, if it does not accept it. We denote the acceptance relation as σ|=p
for p accepting σ, and as σ|≠p for p rejecting σ.

• For a formula p∈ P, σ|= p iff a0|Σ(p) contains p.
• σ|=p ∨ q iff σ|=p or σ|=q.
• σ|=¬p iff σ|≠q.

• σ|=○ρ iff a1…an |=p.
• σ|=◊Ixmp iff ∃i, 0≤ i≤ n, such that: (i) ai…an |= p←xm<a0|Σ, ai|Σ> and (ii)

ai|T∈I.

• σ|=ρUIxmq iff one or both of the following conditions hold:
1. ∃j, 0≤ j≤ n, such that aj…an|=q←xm<a0|Σ,aj|Σ>, aj|T∈I, and ∀i, 0≤i<j,

ai…an|=p←<a0|Σ, ai|Σ >.
2. I is right unbounded and ∀i, 0≤i≤n, ai|T∈I implies that

ai…an|=p←xm<a0|Σ, ai|Σ>.

In addition, we define the Boolean finality qualifier, where the final value of an
MTLS formula p, given an input sequence σ, is denoted f(p,σ). When f(p,σ) is true it
means that the decision of whether p accepts σ is immutable.

• For a formula p∈ P, f(p,σ)=true.
• f(p ∨ q)=true if at least one of the following conditions holds: (i) σ|=p and

f(p,σ)=true; (ii) σ|=q and f(q,σ)=true; or (iii) σ|≠p and f(p,σ)=true and σ|≠q,
and f(q,σ)=true.

• f(¬p, σ) = f (p,σ).

• f(○ρ, σ) = f(p,σ) iff |σ|>1.
• f(◊Ixmp, σ) is true if ∃i, 0≤ i≤ n, such that: ai…an |= p←xm<a0|Σ, ai|Σ>,

f(p←xm<a0|Σ, ai|Σ>, ai…an), and ai|T∈I. Stated informally, f(◊Ixmp, σ) is

486 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

true if p with substituted variables is true in a final way sometime in the
future.
f(◊Ixmp, σ) is also true if ∀i, 0≤ i≤ n, ai|T∈I → ai…an|≠ p←xm<a0|Σ, ai|Σ>
and f(p←xm<a0|Σ, ai|Σ>, ai…an). Otherwise f(◊Ixmp, σ) is false. Stated
informally, f(◊Ixmp, σ) is true if p with substituted variables is false in a
final way always in the future.

• f(ρUIxmq, σ) is true if ∃j, 0≤ j≤ n, such that (i) aj…an|=q←<a0|Σ,aj|Σ>,
f(p←<a0|Σ, aj|Σ>, aj…an), aj|T∈I, and (ii) ai…an|=p←xm<a0|Σ, ai|Σ > and
f(p←xm<a0|Σ, ai|Σ>, ai…an). Stated informally, f(ρUIxmq, σ) is true if q
(with substituted variables) is true in a final way sometime in the future and
all instances of p (with substituted variables) up to that point in time are true
in a final way.
f(ρUIxmq, σ) is also true if I is right unbounded and ∀i, 0≤i≤n, ai|T∈I
implies that ai…an|=p←xm<a0|Σ, ai|Σ> and f(p←xm<a0|Σ, ai|Σ>, ai…an).

f(ρUIxmq, σ) is otherwise false.

For practical implementation reasons beyond the scope of this paper our tools use
the following relaxed finality definition for a formula p ∨ q: f(p∨q,σ)= f(p,σ)∧f(q,σ).
This relaxation induces a final value definition that is not complete, i.e., there can
exist a PLTL formula and a sequence σ such that f(p, σ) is true according to the
formal definition but false according to the relaxed definition.

3 From Temporal Logic to AFA

An AFA is a finite automaton with two types of states, and-states and or-states.
Whereas the computation of a deterministic or non-deterministic finite automaton is a
sequence of states, a computation of an AFA is represented as a tree of and-or states.
A trace is a sub-tree of the computation and-or tree such that every child of an and-
state is in the trace and some child of an or-state is in the trace. A trace is accepting if
all its leaves are final states. An AFA accepts a sequence, σ, if an accepting-trace for
σ exists.

In this paper we consider AFA augmented with zero-delay transitions similar to
ε-transitions of [13], i.e., transitions that are traversed without reading a symbol from
the input tape. Unlike ε-transitions, however, zero-delay transitions must be traversed,
i.e., they do not imply a non-deterministic possibility of being either traversed or not.

The temporal logic monitoring method described in this paper is based on
executing equivalent AFA representations. A graph-oriented AFA-based technique
was selected over string-based logic manipulation of recursive Boolean logic
equations because of its visual appeal, and because the AFA method lends itself to
extensions of PLTL like real-time constraints and time-series constraints.

Our (recursive) PLTL-to-AFA conversion method is based on the well-known
recurrence equations:

• p = p ∧ ○ p

• ◊p = p ∨ ○◊p

• p U q = q ∨ (p ∧ ○(p U q))

487Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

Fig. 1 contains the recursive AFA construction procedure for PLTL based on
these recurrence equations, and Fig. 2 contains two examples of PLTL to AFA
translation. We use the following notation: Transitions labeled Σ are those that are
enabled by all letters of the alphabet, and zero-delay transitions are visually depicted
using dashed lines. Also, by convention, we consider the top-most state as the initial
state. For clarity, AFA states are sometimes annotated with their PLTL logic symbols,
using bubble callouts, as in Figs. 1c, 1d, and 1g. We refer to such a symbol as the type
of the node. For example, the initial state in the AFA in Fig. 2b is an and-node whose
type is . Note that in Fig. 1 we assume that PLTL formulae contain no negations
because, using conventional logic conversions and temporal logic conversions,
negations can be pushed down to the proposition level.

4 Runtime Monitoring using AFA

This section describes an AFA based-technique for run-time monitoring of PLTL and
MTLS.

4.1 Runtime Monitoring of PLTL using AFA

Given an PLTL formula p and its representative AFA, our REM method constructs
and maintains an and/or promise tree, abbreviated as p-tree, which is an evolving
AFA computation tree. The p-tree is the only composite state that is preserved
between cycles by the REM method. No history trace of input information is stored.
The p-tree performs the on-line evaluation of the logical value of p at any given time
t. The p-tree then dynamically reconfigures itself based on the current on-line inputs,
thereby generating a new p-tree that represents a Boolean function to be evaluated at
time t+1 (the promise). Fig. 3 illustrates the process for the AFA in Fig. 2b. We use a
diagrammatic notation in which, for a node whose PLTL-type is N (e.g. a node), its
recursive copy—namely a child node with the same PLTL type N—is the right hand-
side child. For example, the root node of the AFA in Fig. 2b, whose corresponding
p-tree is illustrated in Fig. 3a, has a recursive copy on its right-hand side child. Both
nodes in the p-tree in Fig. 3a implement a node in the AFA: The first p-tree realizes
the AFA node during the first visitation, and the second p-tree realizes the node as it
is revisited after traversing the loop transition.

The p-tree is used for two purposes: One is for the evaluation of the acceptance
and final values every cycle; the other is as a data structure that preserves the state of
the evaluation for future cycles.

During the ith cycle of performing REM of an PLTL formula p, i ≥0, the p-tree is
evaluated resulting in Boolean values for σ|=p (acceptance) and f(p,σ) (finality),
where σ= ai…an. During p-tree evaluation, acceptance and final values are assigned in
a bottom-up manner, where leaves hold the following values:

• A leaf holding a Boolean T(F) value, such as in Fig. 3b, has a true (false)
acceptance value and a true final value.

• An unexpanded leaf (e.g. the unexpanded U1 leaf in Fig. 3a) has an
acceptance value that is neutral with respect to its least common Boolean
parent. For example, in Fig. 3a, the parent of the U1 leaf is an and node, so

488 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

the acceptance value of the U1 node is true, whereas if the parent were an or
node the leaf’s acceptance value would be false. The final value of an
unexpanded leaf is false, representing the fact that the node has yet to be
expanded.

Internal p-tree nodes are assigned acceptance values as a straightforward Boolean
function of the acceptance values of their children. An internal node is assigned a true
final value if and only if all its children have been assigned a true final value. As
stated earlier, we use a relaxed final value. Consequently the final value is
incomplete; that is, an assigned final value might be false when, in fact, according to
the formal semantics, it should be true.

Because a node with a true final value has an acceptance value that cannot change
in the future, then the REM method replaces this node with a singleton T or F node
representing the node’s acceptance value.

After evaluation, the p-tree is modified to preserve a promise for the next cycle as
follows: In Fig. 3, the original p-tree in Fig. 3a contains the computation that needs to
be performed in the first cycle (time t=0). Note how the U1 leaf node is unexpanded.
It will be expanded in the next cycle (Fig 3b) once the Σ transition is traversed, and
therefore represents a promise for a computation in the future. Similarly, there exists
an unexpanded node (a recursive copy of the root), which represents the loop in the
original AFA in Fig. 2b. It will likewise be expanded in cycle 2 (Fig. 3b) once the Σ
transition is traversed. Recall that solid line transitions consume one cycle of
computation (i.e., they represent delays and conditions), whereas dashed transitions
are traversed instantly (i.e., in the current cycle) and unconditionally. The p-tree in
Fig. 3b represents the computation that needs to be performed in the second cycle
(time t=1), assuming p was true at time t=0. Note, as well, the following: (i) instead of
a solid transition labeled p in Fig. 3a, representing the fact that p needs to be
evaluated in the next cycle, Fig. 3b contains the T singleton node, representing the
fact that p has been evaluated already and found to be true; and (ii) transitions that
have already been traversed are replaced with ε-transitions (dashed lines),
representing conditions that have already been evaluated.

4.2 Runtime Monitoring of MTLS using AFA

A beneficial property of our REM method is its direct realization of the original
temporal logic formula using and-or trees that are homomorphic to the original AFA,
i.e., to the original PLTL formula. This property is helpful when implementing
extensions and constraints for PLTL.

MTL includes real-time constraints that are associated with temporal operators.
For example ψ = (p => ◊<5 q), specifies that whenever p is true, then within five
real-time units q must be true. Let N be the AFA node for the ◊ operator. To
implement the real-time constraint, the following steps are taken:

1. Every object that realizes a p-tree for N is provided with a real-time
counter that is updated from a designated real-time clock. which
measures true real-time using native operating system calls, clock
cycles, or simulated time. The real-time counter for a p-tree is initialized
when the p-tree is created.

489Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

2. As long as the real-time counter has not crossed the constraint’s lower
bound (0, in our example), the p-tree’s acceptance value is false (true for
a node), and the final value is false.

3. Once the real-time counter has entered the range between the lower and
upper bounds of the constraint, normal evaluation of the acceptance and
final values begins.

4. If the real-time counter exceeds the constraint’s upper bound, the final
value for the p-tree is assigned true.

The time-series-constraint implementation technique also uses p-trees to store
information. Consider, for example x(p=> <5 x’>=2x), which states that whenever
p is true at some time t, then for every cycle between t and t+4 the value of x should
be at least twice its value at time t. Let N be the AFA node for the outer operator.
Every p-tree for N is assigned storage space for x. This storage space is assigned the
value of x at the time of construction of a p-tree for N. This value, as well as current
values of x (referred to as x’), are then used in the expression x’>=2x.

The suggested REM method supports past time operators as follows: Consider,

for example, the formula ○○[-]p. A special p-tree is created for every sub-formula
headed by a past time operator, e.g., for [-]p. Rather than looking backward in time
while evaluating [-]p, the REM method evaluates p as of time 0, but it does not use

the results of this evaluation until the delays introduced by the ○operators have
elapsed. At this point, the p p-tree is assigned a true final value and is used under the
future time nodes as a basic proposition.

5 p-tree Growth Control and Analysis

Clearly, the method as shown thus far induces p-trees whose size increases over time,
and are therefore not on-line. To achieve on-line capabilities, our REM method
utilizes collapse optimization operations in which sub p-trees are replaced by smaller,
logically equivalent, p-trees. Collapse operations are designed for all recursive future
time temporal operators (, ◊, and U). They identify and eliminate repetitive and
redundant substructures in p-trees by identifying patterns of isomorphic sub-p-trees.
Collapse operations are performed in a bottom-up manner so that collapsing lower
level substructures increases the potential for identifying repetitions in higher-level
substructures.

In this paper, we identify three classes of collapse operations. Some collapse
operations are general; others are helpful for restricted types of PLTL formula,
designated two-color and discussed in Section 6. The three classes are, simple,
extended and special collapse operations. These classes are not necessarily mutually
exclusive: a given temporal formula might have restricted sub-formulae and can
therefore benefit from special collapse operations whereas other parts of the formula
induce less efficient sub p-trees.

Fig. 4 illustrates simple collapse operations performed during REM of the PLTL
formula (p=>◊q), i.e., (¬p∨◊q), which is identical, except for the basic
propositions, to the formula in Fig. 2a. As a result of the collapse operations, the p-
tree in Fig. 4d is identical to the p-tree in Fig. 4b, the p-tree one cycle earlier. Hence,

490 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

in this example, the p-tree did not actually grow in size from cycle 1 to cycle 2. In the
following sections we will analyze the growth of p-trees for various types of PLTL
formulae.

Fig. 5 illustrates p-tree collapse patterns used for the ◊, , and U operators, where
the collapse patterns for the operator are analogous to those of the ◊ operator. Not
illustrated in Fig. 5a are trivial collapse operations for ◊ () nodes when either A or
A’ is final, i.e., F or T singletons. Fig. 5a illustrates simple collapse operations where
the two isomorphic sub-trees represent first-degree cousins; Fig. 5b illustrates
extended collapse operation for ◊ () nodes, i.e., collapse operations where
isomorphic sub-trees might be more remote than first-degree cousins. Extended
collapse operations exist for U-based p-trees as well, namely, when referring to Fig.
5c, the pair of p-trees A’, B’ is not necessarily a first-degree cousin of the pair A, B,
but is possibly an nth-degree cousin. For example, the logic representation of an
instance of an extended collapse operation for a U node using n=3 is:
q ∨ (p ∧ (r ∨ (s ∧ (q ∨ (p ∧ promise))))) = q ∨ (p ∧ (r ∨ (s ∧ promise)))

Collapse patterns for Boolean nodes exist only for a restricted MTLS, as
described in Section 5.

Note that collapse operations do not affect the acceptance and final values of the
p-tree. Consider for example p-tree acceptance values: Let a and b be the Boolean
acceptance values of the sub-trees labeled A and B, respectively; clearly
a∨(a∨b)=a∨b. Likewise, the final value is not affected by the removal of a redundant
sub-tree.

6 Growth Analysis

We will use the following three restricted forms of MTLS to analyze the growth of
the suggested REM method: (i) MTLS restricted to basic propositions and the ◊ and
operators, designated vanilla MTLS; (ii) vanilla MTLS extended with Boolean
operators, for which Boolean operators, when consecutively nested, are only
permitted to be nested in a non-alternating manner, designated two-color MTLS; and
(iii) MTLS with formulae in the form of pUq, where p and q are two-color formulae,
designated three-color MTLS. Hence, for example, ◊p is in vanilla MTLS, whereas

(¬p∨◊q) is in two-color MTLS, as is ◊ (¬p∨◊(q1∧q2)). In contrast, ((q1∧q2)∨◊q)

is not in two-color MTLS. Later, we will relax our definitions to enable ○ nodes
anywhere within vanilla and two-color MTLS formulae.

In this section we consider two classes of p-trees: live and final. A final p-tree is a
singleton, or a p-tree that is equivalent to one, i.e., it contains only propositions and
Boolean nodes. A live tree is a non-final tree.

6.1 Growth Analysis for REM of Vanilla MTLS

It is well known for linear time temporal logic that p= p and ◊◊p=◊p. Therefore, a
vanilla MTLS formula either has no temporal operators or has alternating and ◊
operators, as in ◊p and ◊ ◊p. We will show that after applying collapse operations,
p-trees for vanilla MTLS formulae either are always final or assume one possible tree
shape.

491Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

Lemma 1. During REM with simple collapse operations, p-trees for vanilla MTLS
formulae exist in one of two forms: live and final.
Proof outline: Fig. 6a and 6b illustrate all possible p-trees for ◊p and p vanilla
MTLS formula, respectively, after a single execution cycle. Consider Fig. 6a for
example: If p is false, the left p-tree results, whereas if p is true, the right p-tree
results. The claim holds for these p-trees: the unique live p-tree for ◊p (p) is of size
3, while the other p-tree for ◊p (p) is a singleton, final (T or F) state. If the p-tree is
live, then after one additional cycle the recursive copy assumes a form that is again
one of the two forms in Fig. 6a (6b). If this form is a singleton the entire p-tree for ◊p
(p) persists as a singleton.
Consider now a deeper vanilla- MTLS formula such as ◊p. As illustrated in Fig. 6,
let N denote the root node of the p-tree, and let left-N be the left-hand side child of N,
i.e., the non-recursive child. Note that left-N is a p-tree for ◊p, i.e., we have already
shown that it is either the F singleton or assumes one possible form as a live tree.
Both possibilities are illustrated in Fig. 6b, while Fig. 6c illustrates the application of
simple collapse operations, resulting in a single live p-tree for ◊p in both cases.

A full proof for this claim involves an inductive claim over the depth of the
vanilla MTLS formula, while utilizing the fact that the and ◊ operators within the
formula must be ordered in an alternating manner.

6.2 Growth Results for REM of Two-color and Three-Color MTLS

In this section, we provide the results used for the development of growth metrics of
two-color and three-color MTLS, as described in the next section.

Along the lines of Lemma 1, Lemma 3 claims that during REM of two-color
PLTL, the number of different p-trees is limited. We first state that when a p-tree A1
for a vanilla formula p becomes final then so must all p-trees for p that are created
after A1.
Lemma 2. Let A1 and A2 be p-trees for a two-color (sub)formula p that are created
during REM with simple collapse operations. If A1 is live during the period [t1,t2]
and A2 is created within that period, then A2 must be live at time t2.

Using Lemma 3 below, our REM method limits the growth of p-trees for two-
color PLTL formulae. To this end, we define new collapse operations, designated
special collapse operations. Special collapse operations, illustrated in Fig. 7, perform
optimization in the form of (C ∧ T) ∨ (C ∧ D) ∨ promise = C ∨ promise, where the
inner logical or is the ◊ nodes’ logical or, and promise represents any future extension
of the currently un-extended leaf ◊ node. Similarly, for a logical Or B node (B is
illustrated in Fig. 7) under a ◊ root, the collapse pattern represents the equation (C ∨
F) ∨ (C ∨ D) ∨ promise = (C ∨ D) ∨ promise. Analogous collapse patterns exist under

 nodes.

Lemma 3. During REM with simple, extended, and special collapse operations, p-
trees for two-color PLTL formulae exist in one of three forms: one live and two final.
Also, three-color PLTL formulae are in the form of pUq, where p and q are in two-
color PLTL.

Using Lemma 4, below, our REM method limits the growth of p-trees for three-color
PLTL formulae.

492 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

Lemma 4. During REM with simple, extended, and special collapse operations, live
p-trees for three-color PLTL formulae ψ=pUq must be either:

1. Of the form in Fig. 8a, where ∀i, 1≤i≤n, Pi is isomorphic to Pi+1 and n ≤
max(2,d), where d is the syntactic nesting depth of q.

2. Of the form in Fig. 8b or Fig. 8c.

7 Growth Metrics

Two metrics measure the growth of p-trees for an PLTL formula ψ during REM:
1. size(ψ), an upper bound on the size of p-trees for ψ, and
2. m(ψ), an upper bound on the number of possible distinct p-trees that

exist for ψ.
Let size2(ψ) and m2(ψ) denote the size(ψ) and m(ψ), respectively, for a two-color
PLTL formula ψ.

Table 1 contains recurrence equations for these metrics based on the lemmas
stated earlier, as well as Lemma 5 below. When calculating the size of hybrid PLTL
formula ψ, such as (p U (¬p∧ q)) U (¬p∨◊q), m2 and size2 are first computed for the
two-color sub-formulae and are then used to compute size and m, respectively, for the
whole of ψ. As suggested by Table 1, nesting of U operators is the primary reason for
p-tree growth. In fact, size(ψ) is exponential in the nesting depth of U operators inside
ψ as well as in the number of alternations of Boolean logic operators within ψ.
However, nesting of U operators in PLTL is typically used in two primary ways:

• Right-side nesting, as in ¬P U (P U (¬P U (P U (¬P U P)))). Right-side
nesting can often be replaced with more readable and more efficient counting
operators [4].

• Left-side nesting, as in (P → (¬R U (S ∧ ¬R))) U R. Growth for left-side
nesting is often limited, as Lemma 5 suggests.

Lemma 5. For a left nested formula ψ=ρUτ, (i) if τ is a propositional logic sub-
formula, then size(ψ) ≤ m(ρ)∗(size(ρ)+2) and m(ψ) ≤ m(ρ)!, and (ii) if τ is a vanilla
PLTL sub-formula, then size(ψ) ≤ m(ρ)∗(size(ρ)+size(τ)) and m(ψ) ≤ m(ρ)!∗m(ρ).
Proof. First, consider a propositional logic τ, i.e., the p-tree for τ is always a
singleton. The Boolean logic representation of any live p-tree for ψ must be in the
form e = F∨ (P1 ∧ (F∨ (P2 ∧ … (F ∨ (Pn∧ promise))), where Pi’s are logical
representations of p-trees for ρ. There are at most m(ρ) distinct Pi’s. Hence, after at
most m(ρ) levels, extended collapse is enabled and consequently:
size(ψ)≤m(ρ)∗(size(ρ)+2) and m(ψ)≤m(ρ)!, representing all ordering possibilities for
the P’s. Similarly, for a vanilla τ, e = Q1∨ (P1 ∧ (Q2∨ (P2 ∧ … (Qn ∨ (Pn∧ promise))),
where Qi’s are Boolean logic representations of p-trees for τ. From Lemmas 2 and 3,
it follows that ∃k, k>0, such that ∀j<k, Qj=F, and ∀j≥k. Also, Qj is isomorphic to Qk.
(k=1 means all Qj’s are isomorphic to one other). Hence, after at most m(ρ) levels,
extended collapse is enabled and consequently: size(ψ)≤m(ρ)∗(size(ρ)+size(τ)) and
m(ψ)≤m(ρ)!∗m(ρ), where m(ρ)! represents all possible enumerations of the Pj’s and
an additional m(ρ) factor counts all possible k’s.

493Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

In a three-color PLTL formula, ψ=ρUτ, when both ρ and τ are propositional, as
in ψ = (¬R U (S ∧ ¬R)), a p-tree for ψ is either final (T or F singletons) or assumes
one possible live form, which is the initial live form for ψ. Hence, for the example
above, size(ψ)=7 and m(ψ)=3. For similar reasons size(¬(S ∧ (¬R) ∧ Ο(¬R U (T ∧
¬R))))=13 and m(¬(S ∧ (¬R) ∧ Ο(¬R U (T ∧ ¬R))))=3. Also, a formula like ((Q ∧
¬R ∧ ◊R) → (¬P U R)) enjoys properties of two-color PLTL, such as Lemmas 2 and
3, because, as in the two-color PLTL case, the sub-formula (¬PUR) has only one live
form

PLTL Formula Recurrence Reasoning
ψ is ◊ρ or ρ size(ψ)≤m(ρ)∗size(ρ) Growth until collapse is

enabled
ψ is ◊ρ or ρ size2(ψ)≤size2(ρ) + 2 Lemma 3
ψ is ◊ρ or ρ m(ψ)≤m(ρ)! Ordering m(ρ) objects
ψ is ◊ρ or ρ m2(ψ)≤3 Lemma 3
ψ is ρ U τ size(ψ)≤m(ρ)2∗m(τ)2∗4

∗size(ρ)∗size(τ)
Growth until collapse is
enabled

ψ is ρ U τ m(ψ)≤(m(ρ)2∗m(τ)2)! Ordering m(ρ)2∗m(τ)2

objects
ψ is ρ U τ (two-
color ρ, τ)

size2(ψ)≤size2(τ)∗
(size2(ρ)+size2(τ))

Lemma 4: growth until
collapse is enabled

ψ is ρ U τ (two-
color ρ, τ)

m2(ψ)≤m2(ρ)∗m2(τ)∗
(size2(τ)+3)

Cases III and V in the
proof of Lemma 5,
induce
m2(ρ)∗m2(τ)∗size2(τ)

ψ is ρ U τ
(propositional τ)

size(ψ)≤m(ρ)∗size(ρ) Lemma 5

ψ is ρ U τ
(propositional τ)

m(ψ)≤m(ρ)! + 1 Lemma 5

ψ is ρ U τ (vanilla
τ)

size(ψ)≤m(ρ)∗
(size(ρ)+size2(τ))

Lemma 5

ψ is ρ U τ (vanilla
τ)

m(ψ)≤m(ρ)!∗m(ρ) Lemma 5

ψ is ρ ∧ τ, ψ=ρ ∨ τ size(ψ)≤size(ρ)+ size(τ) + 1
ψ is ρ ∧ τ, ψ=ρ ∨ τ size2(ψ)≤size2(ρ)+size2(τ)+ 1
ψ is ρ ∧ τ, ψ=ρ ∨ τ m(ψ)≤(m(ρ)-1)∗(m(τ)-1)+1 Cartesian product
ψ is ρ ∧ τ, ψ=ρ ∨ τ m2(ψ)≤3 Lemma 3
ψ is basic
proposition

size(ψ)≤1, size2(ψ)≤1 A final node

ψ is basic
proposition

m(ψ)≤2, m2(ψ)≤2 T or F nodes

Table 1: Growth Metrics

494 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

As for the PLTL next (Ο) operator, it introduces transient delays and therefore
does not affect the analysis performed so far, other than contributing a fixed number
of additional states to the size and size2 metrics. Moreover, Ο operators can also be
expressed in MTL using ◊ and real-time constraints, where the real-time clock counts
in cycles. For example, ΟΟρ is also expressible as ◊=2ρ. An MTL implementation
is described in the next sub-section.

While it is convenient for the purposes of analysis to push negations down to the
proposition level, this is rarely done in practice. Rather, tools typically use a special
negation node that inverts the acceptance value of the p-tree hanging under it. With
inner level negation, the definition of two-color PLTL changes, so that negations are
not permitted to exist directly between two logical and nodes or directly between two
logical or nodes.

KSU pattern ψ English meaning Alternative pattern size(ψ)
◊R → (¬P U R) Absence of P

before R
◊R → (¬P W R) 9

 ((Q ∧ ¬R ∧ ◊R) →
(¬P U R))

Absence of P
after Q until R

 ((Q ∧ ¬R ∧ ◊R) →
(¬P W R))

15

◊R → ((¬P ∧ ¬R) U (R
∨ ((P ∧ ¬R) U (R ∨
((¬P ∧ ¬R) U (R ∨ ((P
∧ ¬R) U
 (R ∨ (¬P U R)))))))))

2 transitions to P
before R

◊R → (¬P∧○P)
RepeatedUntil≥2 R

11

 ((Q ∧ ¬R ∧ ◊R) →
(¬P U (S ∨ R)))

S precedes P
between Q, R

((Q∧¬R∧◊R∧◊S)
→ (¬P W (S ∨ R)))

21

 ((Q ∧ ¬R ∧ ◊R) → (P
→ (¬R U (S ∧ ¬R))) U
R)

Response S
responds to P
between Q and R

 ((Q ∧ ¬R ∧ ◊R) →
(P → (¬R U (S ∧
¬R))) W R)

576

(Q → (¬(S ∧ ¬R ∧

○(¬R U (T ∧ ¬R))) U
(R ∨ P) ∨ (¬(S ∧

○◊T))))

P precedes (S, T)
after Q until R

Replace every αUβ
with (αW β) ∧ ◊β

1575

 (Q ∧ ¬R → (¬R W
(P∧¬R)))

P exists between
Q , R

 13

 (S ∧ ○◊T → ○(◊ (T
∧ ◊P)))

2-stimulus, 1-
response chain

 17

 (P → ◊(S ∧ ¬Z

∧○(¬ZU T)))

P triggers S
followed by T
without Z in the
given scope

 (P → ◊(S ∧ ¬Z ∧

○((¬ZWT) ∧ ◊T))

20

Table 2: KSU Pattern Examples

495Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

8 Practical Examination using KSU Patterns

The KSU specification patterns list is a repository of patterns that occur commonly in
the specification of concurrent and reactive systems. Table 2 contains examples of
KSU patterns along with corresponding size metric, i.e., the upper bound on the size
of their p-trees. Note that KSU patterns refer to the weak-until as W, and strong until
as U, where ρUτ = ρWτ ∧ ◊τ.

As an example for the analysis shown in Table 2, consider the sixth entry. Using
the equations of Table 1 we get:

• size(¬R W (T ∧ ¬R)) = 7; size(◊(T ∧ ¬R))=5.
• size(¬R U (T ∧ ¬R)) = size ((¬R W (T ∧ ¬R)) ∧ ◊(T ∧ ¬R)) = 13;

size(¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) = 19; m(¬(S ∧ ¬R ∧ ○(¬R U (T ∧
¬R))) = 3.

• size of ¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) W (R ∨ P) is therefore 3*19=57 and

size of ¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) is 63.

• m of ¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) W (R ∨ P) is 3! = 6 and therefore m of

¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) = (6-1)*(3-1)+1 = 11.

• size2 of (¬(S ∧ ○◊T)) is 9.

• m2 of (¬(S ∧ ○◊T)) is 3.

• size of (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) ∨ (¬(S ∧ ○◊T))) is 63

+ 9 + 1 = 73, and size of Q → (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) ∨

(¬(S ∧ ○◊T))) is 75.

• m of (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) ∨ (¬(S ∧ ○◊T))) = (11-

1)*(3-1)+1 = 21, and m of Q → (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P)

∨ (¬(S ∧ ○◊T))) is 21.
• Therefore size(ψ) = 21*75 = 1575.

The REM traversal of an average p-tree node can be implemented with 20 lines of C
or Java code. Hence, if we assume five instructions per C line of code, and execution
on a 1-GHz CPU, ψ formulae for rows 2 and 6 can be evaluated at a rate of 60,000
and 6,000 cycles per second, respectively. Clearly, this estimation is for the largest
possible p-tree for ψ, whereas for many inputs sequences, and for many cycles during
each sequence, the actual size is possibly smaller.

9 Conclusion

We presented a technique for run-time monitoring of extended PLTL using dynamic
and-or trees called p-trees based on AFA. This technique lends itself to extentions of
PLTL in which sattelite information such as real-time and time-series measurements
is stored in p-tree nodes. Further investigation into the suitablity of this technique to
other extentions of PLTL is required.

496 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

We presented certain optimization techniques for capping the size of p-trees
during on-line PLTL monitoring. Further investigation is required into more effixient
optimization techniques.

References

[1] R. Alur and T. Henzinger, Realtime Logics: Complexity and Expressiveness, proc. LICS
1990.

[2] G.S. Avrunin - J. C. Corbett, M. B. Dwyer, Property Specification Patterns for Finite-State
Verification, 2nd Workshop on Formal Methods in Software Practice, March, 1998.

[3] E. Chang, A. Pnueli, Z. Manna, Compositional Verification of Real-Time Systems, Proc.
9'th IEEE Symp. On Logic In Computer Science, 1994, pp. 458-465.

[4] D. Drusinsky, The Temporal Rover and ATG Rover. Proc. Spin2000 Workshop, Springer
Lecture Notes in Computer Science, 1885, pp. 323-329.

[5] D. Drusinsky , Formal Specs Can Handle Exceptions, Embedded Developers Journal, Nov.
2001, pp., 10-14.

[6] D. Drusinsky, Monitoring Temporal Rules Combined with Time Series, Computer Aided
Verification Conference 2003, pp. 114-117.

[7] D. Drusinsky and J. Fobes - Real-time, On-line, Low Impact, Temporal Pattern Matching,
7th World Multiconference on Systemics, Cybernetics and Informatics , Orlando FL, 2003, p.
345-348.

[8] D. Drusinsky and G. Watney, Applying Run-Time Monitoring to the Deep-Impact Fault
Protection Engine, 28’th IEEE/NASA Software Engineering Workshop, 2003.

[9] D. Drusinsky, B. Michael and M. Shing, Behavioral Modeling and Run-Time Verification
of System-of-Systems Architectural Requirements, CCCT 2004.

[10] D. Drusinsky and M. Shing, Verification of Timing Properties in Rapid System
Prototyping, Proc. Rapid System Prototyping Conference 2003 (RSP'2003).

[11] B. T. Hailpern, S. Owicki, Modular Verification of Communication Protocols. IEEE Trans
of comm. COM-31(1), No. 1, 1983, pp. 56-68.

[12] K. Havelund, G. Rosu, Monitoring Programs using Rewriting. In Proc. IEEE Conf. on
Automated Software Engineering (ASE), 2001.

[13] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory Languages and
Computation, Addison Wesley, second edition.

[14] J. Kovacs, G. Kusper, R. Lovas, and W. Schreiner, Integrating Temporal Assertions into a
Parallel Debugger, Parallel processing. 8th international Euro-Par conference. Paderborn, 2002.
Berlin, Springer-Verlag, 2002. pp. 113-120.

[15] O. Kupferman and S. Zuhovitzky, An Improved Algorithm for the Membership Problem
for Extended Regular Expressions, Proc. 27th International Symposium on Mathematical
Foundations of Computer Science, Springer LNCS 2420, p. 446, 2002.

[16] Z. Manna and A. Pnueli, Verification of Concurrent Programs: Temporal Proof Principles,
Proc. of the Workshop on Logics of Programs, Springer LNCS 1981, pp. 200-252.

497Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

[17] A. Pnueli, The Temporal Logic of Programs, Proc.18th IEEE Symp.. on Foundations of
Computer Science, pp. 46-57, 1977.

[18] G. Rosu and R. Thati, Monitoring Algorithms for Metric Temporal Logic Specifications,
Electronic Notes in Theoretical Computer Science, Elsevier, 2004.

[19] A. P. Sistla and O. Wolfson, Temporal Conditions and Integrity Constraints in Active
Database Systems, Proceedings of the ACM-SIGMOD 1995, International Conference on
Management of Data, San Jose, CA, May 1995.

[20] A. P. Sistla and O. Wolfson, Temporal Triggers in Active Databases, IEEE Transactions
on Knowledge and Data Engineering (TKDE), June 1995 pp. 471-486.

[21] A. Tuzhilin, Extending Temporal Logic to Support High-Level Simulations, ACM
Transactions on Modeling and Computer Simulation, vol. 5, no. 2, 1995.

[22] M. Vardi and P. Wolper, An Automata-theoretic Approach to Automatic Program
Verification, In Proc. Symp. On Logic In Computer Science, pp. 322-331, Cambridge, June
1986.

498 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...

