Journal of Universal Computer Science, vol. 12, no. 5 (2006), 512-550
submitted: 2/5/05, accepted: 10/5/06, appeared: 28/5/06 © J.UCS

About an Algorithmic Approach to Tilings {p, g} of the
Hyperbolic Plane

Maurice Margenstern
(Laboratoire d’Informatique Théorique et Appliquée, EA 3097,
Université de Metz, I.U.T. de Metz,
Département d’Informatique,
Ile du Saulcy,
57045 Metz Cedex, France,
margens@sciences.univ-metz.fr)

Abstract: In this paper, we remind previous results about the tilings {p, ¢} of the hy-
perbolic plane. As proved in [Margenstern and Skordev 2003a], these tilings are com-
binatoric, a notion which we recall in the introduction. It turned out that in this case,
most of these tilings also have the interesting property that the language of the split-
ting associated to the tiling is regular. In this paper, we investigate the consequence
of the regularity of the language by providing algorithms to compute the path from
a tile to the root of the spanning tree as well as to compute the coordinates of the
neighbouring tiles. These algorithms are linear in the coordinate of the given node.
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1 Introduction

Hyperbolic geometry appeared in early nineteens after a long search for proving
the famous parallel postulate from the other postulates of Euclid’s geometry. It
appeared that the famous axiom could not be proved from the others because
a new geometry could be built on theses axioms together with a negation of
the parallel axiom. This new geometry independently built by Lobachevsky and
Bolyai assumes that in the plane, at least two distinct parallels to a given line
pass through a given point not lying on the line. A bit later, models where found
for the new geometry by Beltrami, then Klein, then Poincaré and many others.
Here, we shall use Poincaré’s disc model, today the most popular.

It follows from the well-known Poincaré’s theorem, that for any positive

1 1 1
numbers p and ¢ such that — + — < 3 there is a tiling of IH? by replicas of
P q

2
the regular polygon with p sides and with “T as the interior angle between

consecutive sides. Traditionally, these tilings ar(é denoted by {p, ¢}. In this paper,
we remember the proof that all these tilings are combinatoric, a notion which
we explain below. We also prove again that the language of the splitting attached
to combinatoric tilings turns out here to be regular. Opposite to the case of the
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pentagrid where good algorithms are a straightforward corollary of the regularity
of the language, here also we have good algorithms, but the property is far from
being an easy consequence of the regularity of the language attached to the
splitting. The reason can be explained in this way. In the pentagrid, there is no
difference between the notion of generation of a level of nodes in the tree and
the notion of generation by the recursive reflection of image polygons in their
sides. In the general case of the tilings {p, q}, there is a difference. As we shall
see in section 3, a new level in the tree gives access to several generations in
the reflection process. But it is not uniformly the same number of generations
which is accessed at each generation of a level. And so, we have a choice: either
to proceed according to the reflection process or to proceed according to the
tree process. We shall see that in the tree process, it is possible to have linear
algorithms to compute the path from a node of the tree to the root and to
compute the coordinates of the neighbours of the node. The algorithms are linear
in time and in space in the coordinate of the considered node. In this paper, I
consider the tree process, the reflection process being the goal of another paper
with G. Skordev.

Below, in section 1, we briefly remember the basic features of hyperbolic
geometry. Then, in section 2, we explain the splitting method, which is at the
basis of the results of this paper, explaining its main features on the example of
a particular case of the tilings {p, q}: the case of {5,4}, now called the penta-
grid which is constructed by reflection from the regular rectangular pentagon. In
section 3 we indicate the splitting of IH? giving rise to the tiling {p, ¢}, remem-
bering the results obtained for the matrix and the polynomial of the splitting. In
section 4, we describe the tools which are needed to define the algorithms which
are given in section 5 together with the analysis of their complexity.

2 Hyperbolic geometry

As mentioned in the introduction, Poincaré’s disc model is probably the most
popular model of the hyperbolic plane.

In Poincaré’s disc model, the hyperbolic plane is the set of points which lie in
the open unit disc of the Euclidean plane. The lines of the hyperbolic plane are
represented either by diametral segments (open segments as the points lying on
the unit circle do not belong to the hyperbolic plane) or trace in the open disc of
circles which are orthogonal to the unit circle. We shall say that the considered
circle supports the hyperbolic line. Later we shall say h-line for hyperbolic
line, and most often simply line when there is no ambiguity.

The points which are on the unit circle do not belong to the hyperbolic plane.
However, we call them points at infinity for obvious topological reasons. It is
not difficult to see that a line has exactly two points at infinity and, conversely
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two distinct points, either in the plane or at infinity, define a unique line passing
through them. As shown by figure 1 below, there are three cases for the intersec-
tion of two lines in the model: either the intersection is empty, and then we say
that the lines are non-secant; or the intersection consists of exactly one point. If
this point is in the plane, we say that the lines are secant and that they meet in
this point; if the point is at infinity, we say that the lines are parallel. Figure 1
shows that there are exactly two parallels to a given line through a point which
does not lie on the line.

N

Y

Figure 1 The lines p and q are parallel to the line £, with points at infinity P and Q.
The line m is non-secant with £.

The main reason for choosing this model lies in its definition of the angles.
The angle between two h-lines is defined as the Euclidean angle between the
tangents to the circles which support these h-lines. In particular, orthogonal
circles support perpendicular h-lines.

Another aspect of the parallel axiom lies in the sum of the interior angles
at the vertices of a polygon. In the Euclidean plane, the sum of the angles of
any triangle is exactly . In the hyperbolic plane, this is no more true: the sum
of the angles of a triangle is always less than 7. The difference from 7 is, by
definition, the area of the triangle in the hyperbolic plane. Indeed, one can see
that the difference of the sum of the angles of a triangle from 7 has the additive
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property of a measure on the set of all triangles. As a consequence, there is
no rectangle in the hyperbolic plane. Consequently two non-secant lines, say /¢
and m, have, at most, one common perpendicular. It can be proved that this is
the case: two non-secant lines of the hyperbolic plane have exactly one common
perpendicular, see for instance [Meschkowski 1964]. Indeed, this property is a
characterization of the property for lines to be non-secant. It is not difficult to
prove that secant or parallel lines have no common perpendicular.

Another deep difference between Euclidean and hyperbolic geometries is that
in the former we have the notion of similarity: in the Euclidean plane, there are
infinitely many triangles with the same interior angles and with different sizes.
This is no more true in hyperbolic geometry: given o, 8 and vy with a+8+v < 1,
all the triangles of the hyperbolic plane with the angles «, 5 and 7 are isomorphic.

However, there is an important tool which can be used in both planes: the
notion of reflection in a line. It is defined as follows in the disc model of IH?.
Let ¢ be a h-line and let {2 be the centre of the Euclidean circle which supports /¢
and let R be its radius. Two points M and M' are symmetric with respect
to £ if and only if 2, M and M’ belong to the same Euclidean line and if we
have 2M.Q2M' = R?. Moreover, M and M’ do not lie in the same connected
component of the complement of £ in the unit disc. We also say that M’ is
obtained from M by the reflection in £. It is clear that M is obtained from M’
by the same reflection. In elementary geometry, this transformation of M into
M’ is called inversion of M with respect to £.

All the transformations of the hyperbolic plane which we shall later consider
are reflections or constructed by reflections.

It can be proved that for any couple of two lines ¢ and m, there is a line n
such that £ and m are exchanged by the reflection in n. In the case when £ and m
are non-secant, n is the perpendicular bisector of the segment which joins the
intersections of ¢ and m with their common perpendicular.

2.1 Tessellations in hyperbolic spaces

Tessellations in the plane — the definition is independent of the geometry which
we consider — consist in the following operations. First, take a convex polygon P.
Let S(P) be the set of the lines which support its sides. If £ is a set of polygons,
one extends S to &£ by setting S(&) = PLéES(P). Given K a set of lines and

£ a set of polygons, we define pi(€) = keICUQEE pr(Q). Setting Top = {P}, we

inductively define Tp11 by Tit1 = ps(r)(Ti)- Finally, we define 7* = k‘fjo Ti to
be the tessellation generated by P. We say that the tessellation is a ‘;iling if
and only if any point of the plane belongs to at least one polygon in 7* and if
the interiors of the elements of 7* are pairwise disjoint.
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In this definition, the lines are defined according to the considered geometry.
It may have a consequence on the existence of a tessellation, depending on which
polygon is taken in the first step of the construction. As an example, starting
from a regular figure, there are basically three possible tessellations giving rise
to a tiling of the Euclidean plane: the three regular tilings which are based on
the square, the regular hexagon and the equilateral triangle.

We can now state the theorem:

Theorem 1, Poincaré’s Theorem, ([Poincaré 1882]) — Any triangle with the

interior angles w/¢,7w/m,m/n such that
1 1 1
Sy —+-<1
¢ m n

generates a unique tiling by tessellation.

As an immediate corollary of the theorem, tilings based on any regular polygon
2

with p sides and interior angle T o exist, provided that — + = < =. Such a
q

polygon and the corresponding tiling are denoted by {p, q}.

3 The splitting method: a combinatorial approach

The splitting method was first defined in two papers: in [Margenstern 2002a)
and in [Margenstern 2003a]. The definition runs as follows:

Definition 1 Let Sy, ..., Sk be finitely many parts of some geometric metric
space X which are supposed to be closed with non-empty interior, unbounded
and simply connected. Let Py, ..., P, with h <k be finitely many closed simply
connected bounded sets. Say that the S;’s and P;’s constitute a basis of splitting
if and only if:
(1) X splits into finitely many copies of Sy,
(ii) any S; splits into one copy of some Py, the leading tile of S;, and
finitely many copies of S;’s,
where copy means an isometric image, and where, in the condition (i), the
copies may be of different S;’s, S; possibly included.
As usual, it is assumed that the interiors of the copies of P; and the copies
of the S;’s are pairwise disjoint.
The set Sy is called the head of the basis and the Py’s are called the gener-
ating tiles and the S;’s are called the regions of the splitting.

Say that a tiling of X is combinatoric if X has a basis of splitting and if
the spanning tree of the splitting yields exactly the restriction of the tiling to
So, the head of the basis.
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Consider a basis of splitting of X, if any. We recursively define a tree A which
is associated with the basis as follows. The root of A is the leading tile of Sy.
Consider the region S; associated to the considered node, say v. Splitting S;
according to the condition (i7) of the above definition, we take the leading tiles
of the regions which are obtained as the sons of v. This defines an infinite tree
A with finite branching which we call the spanning tree of the splitting,
where splitting refers to the basis of splitting, with its regions Sy, ..., Sy and its
generating tiles Fy, ..., Py.

The fact that the hyperbolic plane is able to embed infinite trees is not new.
This is already known from Gromov’s works, see [De la Harpe et al. 1990] for
instance, which points at the tree structure as the key structure of a hyperbolic
space. However, before [Margenstern and Morita 2001], which exhibits the tree
in a natural way, no application of that idea was done.

This is what we see in the first sub-section by proving that the pentagrid is
combinatoric. In the second sub-section, we shall see the algebraic consequences
of the definition.

3.1 The classical example of splitting: the pentagrid

As already indicated, the pentagrid is defined as the tessellation {5,4} of the
hyperbolic plane, i.e., the tiling defined by the reflections of the regular rect-
angular pentagon in its sides and, recursively, of the images in their sides, see
figure 2.
The existence of the pentagrid is a direct consequence of Poincaré’s theorem:
. . . . . T
suitably displayed, ten copies of the hyperbolic triangle with the angles 12
T . s
and 3 constitute a regular pentagon with right angles.
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Figure 2 The pentagrid in the south-western quarter.

Consider figures 3 and 4, below. They represent a restriction of the pentagrid
to a quarter Q of IH? which we represent by the south-western quarter of the
unit disc. We place a tile Py with a vertex in O and two sides on the borders of
the quarter. Note that Ry, delimited by the support of the sides 1 and 2 is the
image of Q by the shift along 1 transforming 5 into 2. Similarly, R,, delimited
by the sides 2 and 3 is the image of Q under the shift along 4 transforming 5
into 3. Now, denote by R3 the closure of the complement in Q of Py U Ry U R»
and call it a strip. Say that we split the quarter Q in Py, which we call its
leading pentagon, and the regions Ry, Ry and Rs.

By recursion, we can now repeat this splitting in any region which is an
isometric image of Q.
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Figure 3 Splitting the quarter into four parts

First step: the regions Py, R1, R> and R3, where the region Rg is constituted of the
regions P1, S1 and S>;

Second step: the regions R1 and Ra are split as the quarter (not represented) while
the region Rs is split into three parts: Pi, S1 and S22 as indicated in the figure.

Now, consider the strip. It is what we obtain from a quarter when we remove
from it another quarter delimited by the leading tile. Indeed, let U be the image
of Q under a shift 7 along the side 5. Then Rz = U\Ry = U\(U N Ry) and it
is not difficult to see that U N R, is a quarter. Note that U\Rs is the image of
O\ R; under 7. Now, the strip contains a pentagon, Py, see figures 3 and 4, and
the complement of P, in R3 contains an isometric image of Q: it is denoted by Sy
in figures 3 and 4. Indeed, an appropriate shift along the side 3 of Py transforms
R, into a region which is the reflection of S; in the line which supports the
side 3 of Py. It is not difficult to obtain S; by a shift from Q: S is the image
of U under a shift along the side of P, which is adjacent to line 5 and which is
opposite to 4, the common side of Py and P;.

Now, it is not difficult to note that the closure of the complement in R3 of
P, U Sy, call it So, is again a strip: it is the image of Rz under T again.

Now, we can repeat the splitting of any region which is an isometric image
of the strip Rs.

As indicated above and illustrated by figure 4, now we can construct a tree A
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whose nodes are associated to the leading pentagons of the regions which are
defined by the recursive splitting of the already obtained regions.

Figure 4 Splitting a quarter and a strip: with the help of the generated tree.

As illustrated in figure 4, there are two kind of nodes in 4, depending on whether
the region which is associated with the corresponding leading pentagon is a copy
of a quarter or of a strip. In the case of a copy of a quarter, we say that we have
a white node. We also say a 3-node because it has three sons. In the case of a
copy of a strip, we say that we have a black node. We also say a 2-node because
it has two sons. Another representation of the tree is given by figure 5 below,
where another information is also displayed.

3.2 Algebraic consequences: the classical example of the pentagrid

In the general case, when a tiling is combinatoric, we represent the splitting of
the regions of the basis by an incidence matrix which we call the matrix of
the splitting. Each row i is associated to a region S; 1 and, on each column j,
we have how many copies of S;_; enter the splitting of S;_; according to the
condition (i) of the definition. Now, when we have a square matrix M, we can
attach to it its characteristic polynomial P. When M is the matrix of a splitting
of a combinatorial tiling, we call polynomial of the splitting the just defined
polynomial P possibly divided by the greatest power of X which it contains.
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Next, a new ingredient comes, which was first used in [Margenstern 2001].
Let us see what happens in the case of the pentagrid.

Number the nodes of the spanning tree: 1 is given to the root and the following
numbers to the next nodes, level by level and, on each level from the left to the
right. Easy computations show that the number w,, of nodes of the spanning tree
at the level n, the root being at the level 0, is fa,41, where f,, is the Fibonacci
sequence fixed by fo =1 and f; = 1.

oroocor
rooror

11
00
00
00
00
01

coocococor
rooocoor
oroococor

Figure 5 Numbering the nodes of the spanning tree. On the right-hand side: the prop-
erty of the mazimal Fibonacci representation.

This is why in [Margenstern 2001] I considered the representation of the numbers
of the nodes in the basis of the just mentioned Fibonacci sequence {f;}iso. It
is known that this representation is not unique but it can be made unique by
fixing the condition: 11 is ruled out from the representation. We get the so-called
maximal Fibonacci representation which, later on, we call the coordinate of the
considered node.

Let ay, ...ap be the coordinate of the node with number n. We call contin-
uator of n the node whose coordinate is ay ...a00. Accordingly, a node will
be called a continuator if it is the continuator of some node.

We obtain a very interesting property, first proved in [Margenstern 2001]:

Theorem 2 ([Margenstern 2001]) — For each node of the spanning tree of the
tiling {5,4}, its continuator occurs among its sons and there is no other contin-
uators among its sons.

The property is proved in [Margenstern 2001] to which we refer the interested
reader. Later on, we call preferred son property the property stated in the-
orem 2.
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We remark that this property is in tight connexion with the well known
property that the set of coordinates of the spanning tree constitutes a regular
language over {0, 1}*.

Coming back to the general case, we can perform a similar numbering of
the nodes of the spanning tree. Then, it turns out that in all cases which we
studied, the polynomial of the splitting has a positive greatest real root [,
with 8 > 1. Then, it is possible to represent the positive numbers in the ba-
sis of the sequence u, which we defined above and which observes the linear
recurrent relation defined by the polynomial of the splitting. It is known, see
[Fraenkel 1985, Hollander 1998], that any positive number n can be written as

k

n = Zakuk, where a € {0..b}, with b = |3]. In general, this representation
i=1
is not unique, but here also, it can be made unique by choosing the maximal

representation with respect to the lexicographic order on {0..b}*. We also call
coordinate of node v the maximal representation of the number attached to
it in basis {un}n>0. We call language of the splitting the language of the
coordinates of the nodes of the spanning tree of the splitting.

Many tilings of the hyperbolic plane turn out to be combinatoric with a
regular language of the splitting. There are detailed proofs for the tilings {p, 4}
and {p, 3}. See [Margenstern and Skordev 2003b] and [Margenstern et al. 2004b]
for, respectively {p,4} and {p,3}. In [Margenstern et al. 2004b], an interesting
connection is established between both families of tilings: the spanning trees of
the splitting of {p,4} and {p+2,3} are the same. There are also combinatoric
tilings for which the language of the splitting is not regular: most cases of the
triangular tessellations, see [Margenstern 2003¢], a tiling of the hyperbolic 3D
space, see [Margenstern and Skordev 2003¢], and a tiling of the hyperbolic 4D
space, see[Margenstern 2004].

4 The regular grids {p, q}

Now, we turn to the regular grids {p,q} which we defined in our introduction.
1 1
From the condition — + — < > we can see that the smallest value of ¢ is 3 and,

in that case, p > 7. Symmetrically, the smallest value of p is 3 and, in that case,
q>T.

As above indicated, the particular cases ¢ = 4 and ¢ = 3 are already fixed in
previous papers.

We shall see that in the other cases, the splitting method can always be
applied too. It also appears that the tilings are combinatoric and that the lan-
guage of the splitting is always regular. However, except the important case of
the tilings {p,3} and {p,4}, the splitting does not match the group approach
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definition of generation. In the general case, a generation according to the span-
ning tree of the splitting contains several generations defined by reflection in
sides. However, we have rather simple algorithms provided by a refinement of
our combinatoric approach.

4.1 Splitting a tiling {p,q}

We remember the following result:

Theorem 3 (Margenstern, Skordev [Margenstern and Skordev 2003a]) — The
tilings {p, q} are combinatoric and the language of the splittings is reqular when
p>4.

Note that this is the best result: as proved in [Margenstern 2003¢], the language
of the splitting is not regular for the tilings {3, ¢}, the case of equilateral triangles.

As later we need a precise information in the way in which we perform the
splitting, we repeat here the proof already given. This is also for completeness,
for the reader’s convenience.

It is well known that in hyperbolic geometry, several properties of the group
. . . 21
of symmetries of the regular polygons with p sides and an angle vertex of —

strongly depend on the parity of ¢. And so, it is not a surprise that the study %f
the general case splits into two sub-cases which are determined by the parity of q.
The case when g is even is rather easy. Thanks to a trick of [Margenstern 2002]
which was found in the study of [Margenstern 2003d], the case when ¢ is odd is
scarcely more complex.

4.1.1 The case when q is even

2
In this case, we take an angular sector with an angle “T as the head Sp of

q
the basis of splitting. Below, figure 6 illustrates the splitting of Sy. Along p—3
sides of the leading polygon IT of Sy and outside it, we can delimit h—1 copies
of Sp: indeed, the angle which is left outside IT and which is delimited by the

2
continuation of the other side has a value of (h—l).—W, where h = Lg]

When proceeding in this way from the left to the right, we see that when we
arrive at the other side of the angular sector Sy, we find a region S; which we
call a truncated angular sector, see [Margenstern 2002, Margenstern 2003a].

Therefore, the region Sy splits into one leading pentagon I, (p—3).(h—1)
regions Sy and one region S;. We represent this by:

(a) S() — (p—3).(h—1).50 + Sl
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And now, we have to split the truncated angular sector S; which we have
just found. The region is characterized by the complement of the vertex angles

T
to 7: it is — in both cases.
q

Figure 6 The splitting of So, when q is even.

The splitting of Sy is given by figure 7, below.

Figure 7 The splitting of S1, when q is even.

Now, the region S; splits into one leading pentagon II, (p—2).(h—1)—2 re-
gions Sp and one region S;. Thus, we write this:
(b) Sl — ((p—2).(h—1)—2).50 + Sl

It is important to note that the splitting of S; involves the same regions Sy
and Sl .

4.1.2 The case when q is odd

The case when ¢ is odd seems at first more difficult: if we take the same angular
sector as previously to play the role of Sy, we cannot divide the complement of
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the angle vertex into an integral number of copies of the angular sector. The
difficulty can be turned out by introducing right-hand and left-hand parts of Sy
in order to take into account the half term which appears when we divide ¢ by 2.

Figure 8 The splitting of Sy, when q is odd.

Fortunately, there is a simpler solution. Using a way which is indicated in
[Margenstern 2003a], we distort the previous regions in order to overcome the
problem of the half: we withdraw such a half on one side, and we give it back to
the region on the other side. The process is recursively repeated at each vertex
of the leading tiles. On each side, this allows us to have integral multiples of the
vertex angle. And so, we define the new line to be on the left-hand side of the
bisector of the vertex angle. The region which is defined in this way is called a
distorted angular sector Sp. Analogously, we define the region S; as indicated
in figures 8 and 9.

We obtain that the region Sy splits in a very similar way to the case when ¢
is even. Here we have:

(C) S() — (p—3).h.50 + S

This time, region the S; splits a bit differently as in the case when g is even.
For the new splitting of S; we can write:

(d) Sl — ((p—?).h—3).50 + Sl

It should be noted that in the odd case, this construction cannot be performed
when g = 3: the definition of the deviation which is introduced with respect to
the bisector of the vertex angle would lead us to a side of the same polygon. But
in [Margenstern et al. 2004a, Margenstern et al. 2004b], this situation is dealt
with enough details.

Here, we again remark that S; can be split in terms of II, So and S; only:
no additional region is involved.
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Figure 9 The splitting of S1, when q is odd.

4.2 Matrices and polynomials

And so, we can re-write the above relations (a), (b), (¢) and (d) using a matrix
which will be both and incidence- and a counting matrix as indicated below:

(p_3)'he 1
Me= 1 9)n—2-¢ 1)

where h = L%J and h = h — 1 + ¢, with € = ¢ mod 2. This allows us to give a
unique formulation, independent of the parity of g.

From this, we easily obtain the characteristic polynomial of M, with a unique
expression depending on the parity of ¢:

P.(X)=X?%—((p—3).he+1).X —h + 3,

It is not difficult to prove that P.(X) has a dominant root . which satisfies
the estimation b.—1 < 3. < b.+1, where we put b, = (p—3).h+1.

Indeed, as P,(1) = 1—b.—h+3, we easily obtain that P.(1) = —(p—2)h+2+e.
As we assume ¢ > 5, we get that h, > 2. As we have p > 4, we get (p—2).h, > 4,
hence P.(1) < —1.

Similarly, P.(—1) = 1 + b, — h + 3 from which we get the following value
P.(-1)=4+ ¢+ (p—4)h > 4. And so, P.(-1) > 0.

This is enough to conclude that there is a greatest real root . which is a Pisot
number. But easy computations give us P.(b.) = —h+3, P.(be—1) = P.(1) <0
and P, (b.+1) = P.(—1) > 0.

4.2.1 The language of the splitting

The proof of theorem 2 about the language of the splitting, when p, ¢ > 4 follows
from what we established in the previous section and also from theorem 8.1 of
[Hollander 1998] in the case when the polynomial has a Pisot number.
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And so, we know that the language of the splitting for the tilings {p,q} is
regular when p > 4. As in our case the polynomial of the splitting has a Pisot
number among its root, there is a general characterization of the language which
is given in [Lothaire 2002], chapter 7, proposition 7.3.6.

Theorem 4 — Let L be the language of the splitting corresponding to tiling
{p,q} when p > 4. Then, ai...ap € L if and only if oy ...a0 <p A(ur—1),
where < denotes the lexicographic order over the alphabet of the language, and
where A(n) is the representation of n in L.

Although we know that almost all languages of the tilings {p, ¢} are regular,
they are very different. In the classical case of the pentagrid, the consequence of
the above condition is that some pattern is ruled out, namely, any occurrence
of 11. Here, in the general case, we also have the interdiction of some pattern,
but we also have the opposite phenomenon.

This can be illustrated by the following example. Consider the case when
p =T and ¢ = 8. The polynomial is P(X) = X2 — 13X — 1. Accordingly, b = 13
and let b; = 12. It is not difficult to see that us,4+1—1 is represented by (b0)™
and that us,—1 is represented by (b0)"~'b;. And so, in this case, we can see
that b may appear and, when this is the case, it must be followed by 0. We shall
see other such cases in the next section.

5 Rules for the tree generation

As announced in the introduction, here we give the tools which are needed for
the algorithms which will be displayed in the next section. These tools take
the form of rules which, applied to a tile, allow us to get the coordinates of
its neighbours. The rules also allow us to restore the dual graph of the tiling,
starting from the spanning tree of the splitting.

To this purpose, we shall use the property that the polynomial has a Pisot
root and, as a consequence, that the language of the splitting is regular. Taking
advantage of theorem 3, we shall indicate rules to compute the neighbours of a
node. This time, there will be no difference between the cases odd ¢ and even
q: the characteristic polynomial behave in the same way in both cases. The
difference is in the values of the coefficients, not in the properties of the roots.

The polynomial can be rewritten as:

P(X)= X% —bX —k,
with b = (p—3)he+1 and k = h—3.

A priori, we have three cases, depending on the sign of k: k negative, k = 0
and k positive. Note that the case when k is negative contains the case h = 2
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only: h = 0 does not have a meaning, whatever the parity of ¢ is; h = 1 has no
meaning when ¢ is even and when ¢ is odd, it is a case which was studied in
already quoted papers; h = 2 was briefly reminded in section 2 when ¢ is even.
When ¢ is odd, this corresponds to ¢ = 5, a case which we shall study a bit
further. The case when h = 3 means ¢ = 6, when ¢ is even, and ¢ = 7, when
it is odd. In this case, the induction equation reduces to u,41 = bu,. We shall
start with this case. Later, we have the case when h = 4 which, independently
on the parity, is a bit different from the general case h > 4. We shall see that the
preferred son property is true when h < 4 and that it is not true when h > 4.

5.1 The particular cases
5.1.1 The case h =3

We know that w1 = bu,. This means that the language of the splitting is the
set of all the words on alphabet [0..b1], where b; = b—1, which starts with a
digit, different from 0.

Y \Y
\ \VRY v \VARY
2 0 1 2 0 1
\Y% Y
\ \VRY \ Y
2 0 1 2 0 1

Figure 10 The rules for the tree when h = 3.
Above, q = 7; below, even q = 6.

Above, figure 10 indicates the rules for finding the coordinates of the sons of
a node from its coordinate. Indeed, the rules of figure 10 do not depend on
the parity of g. The nodes have always b sons. If the node v is white, its last
son is black and all others are white. If the node is black, the black son is the
penultimate. The coordinates of the sons are: v;2 for the first, v1i for the i—lth,
vp for the penultimate and v1 for the last, where vy is the writing of v—1, again
taking the maximal representation. It is plain that the rule is true for the root
of the tree and the node 2. Then it is easily proved by induction on the nodes,
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as the number of the nodes is b whatever the node is white or black. From the
rules, it is clear that the preferred son property also holds in this case, whatever
the parity of ¢ is.

Next, figure 11 illustrates the splitting of the basic regions in these cases.

Figure 11 The splitting when h = 3.
Above, even q = 6; below, odd g =17.

5.1.2 The case h = 2, odd ¢q

We turn now to the case when ¢ = 5 which corresponds to h = 2 and odd gq.
In this case, it is useful to have a look at the writing of u,,—1, as suggested by
theorem 3. As, by definition, we take uy = 1, it is the root, a simple compu-
tation gives us u;—1 = by, again using b; to denote b—1. Next, us = bu; — ug

and so, us—1 = bju; +u1 —ug — 1 = byuy + bs, where b = b—2. As an in-
n—2
duction hypothesis, assume that u,—1 = bjup—1 + bgz u;. Then, applying the
i=0
induction hypothesis and the induction equation of u,, we obtain the following
computation:
n—1
Upt1—1 =bup —Uup—1 — 1 =brup +up — 1 —up_1 = bruy + b22 ;.
i=0
And so, the induction hypothesis is proved.
We shall summarise this result by writing u,, —1 ~ blbg_l.
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For this case, we have the rules which are illustrated by figure 12, below. A
bit further, figure 13 illustrates the splitting. Note that in this case, the white
nodes have b sons while the black ones have b; = b—1 of them.

It is not difficult to prove the following property, by induction:

&.%%

vV vV Vv vV v v
0 0 O 1 1 1
20120123012

v vV v

1 2 2

301 301

Figure 12 The rules when h = 2, with odd q.
Above, the rules for the white nodes, where a ¢ {0,1} and a = a1+1. Below, the

rules for the black nodes.

Figure 13 The splitting when h = 2, with odd q.
On the left-hand side, Sy, on the right-hand side: Sy.

Lemma 1 — When g = 5, which entails h = 2, the black nodes end in 1 or 2.
The preferred son property holds. The black son of a node is always the last one.
The continuator is the penultimate son for the black nodes and the white nodes
which do not end in 0 or 1. For the white nodes in 0 and 1, the continuator is
the son which is before the penultimate. Note that a black node in 1 follows a
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white node which ends with a single 0. A black node in 2 follows a white node
in 01 or in 11.

Proof. From the rules, a white node v with a single ending 0 occurs in a rule of
a white node which does not end in 0 or in a black node. Then, the node which
follows v is a black node in 1. From the rules, we can see that it is followed by
a white node in 2, hence with a standard white rule, i.e. which is applied to the
nodes which do not end in 0 or 1. From the rules, a white node with at least two
ending 0’s is followed by a white node in 1 and then a black node in 2. From the
rules we can see that the next white node, in 3, fits with the application of the
expected standard rule. |l

5.1.3 The case h = 4

Before turning to this case, we explain why we distinguish this case from the
general case h > 4.

First, as now k > 1, we remark that P(b) = —k and so, b < 3, where 3 is the
greatest real root of the polynomial of the splitting. Accordingly, the coordinates
of a node make use of the alphabet {0..b}. However, there is a difference between
the case k = 1, or h = 4, and the general case, when k£ > 1, or h > 4. The reason
is the following lemma about the writing of u,—1:

Lemma 2 — The sequence {uy,}nemn of the numbers of nodes on the levels of the
spanning tree of the splitting for a tiling {p, q} satisfies the following property:
u2n—1 2~ (bk1)™ and uspy1—1~ (bky)"by,

where ky = k—1.

Corollary 1 — Let U,, be defined by the following induction equations:
UO = Up;
Un+1 - Un + Upg1-
n+1
LTJ

Then: Up+1 = Un + Z ((b—l)un+2_2i + (k—2)un+1_2i)
i=1

with the convention that u_; = u_o = 0.

Proof of lemma 2. The proof is by induction and it is clearly true for u; and
us = buy + kug, from which we get us—1 = buy + (k—1)ug ~ bk;. Assume that
the lemma is true for usy,—1 and for uspy1—1. Now:
U2n+2_1 = bu2n+1 + k'UQn—l = b’U,Qn+1 + (k—l)’LLQn + U2n — 1
~ po2ntl 4 k102n + (bk‘l)n ~ bk102n + (bk‘l)n = (bkl)n+1.
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Replacing, uzny2, U2n+1 and uz, by, respectively, uan3, u2nt2 and uznq1,
we get the proof of the relation for usy, 1. W

Proof of corollary 1. It is easy to rewrite the computations of lemma 2 into a
single formula as follows:
By
up =1+ Z (bun_2i+1 + (k—l)un_gi) + blun—QL%J—l'
i=1
As ug = 1, taking u; from each term of the sum, we get the result. |l
And so, when h > 4, k — 2 > 0, and so, each term of the sum indicated in
corollary 5 is non-negative. Accordingly, the sum is positive, which proves that
Up + biuy < tpg1 < Upg1. The second inequality is obvious from the definition
of U,, and the first one is a direct consequence of corollary 1. Now, when h = 4,
k —2 < 0, and so, the relation U, + bju, < #,41 iS no more true.

1 b—2 b—1 be

va vai2 . vai by val val

b1 B v0 1613 . v160 00 01
b0 B v00 | 11502 v1b0b; v000 v001
by W v0 v1b12 .. v1b1by 100 00
b0 W v00 1601 .. vibiby | vibiby 000
1 e b—1e b b+1

b1 v00 | 110012 e v1000 v000 v001
b0 00 1601 e v160b; 000 001
vb10 | vbabi2 o vbyb0 | vbi00 | wvb,01

vb0 | vbi1b12 o vby b0 vb00 vb01

vl 01 . v0by v10 vll

vby vby2 . vb10 vb1 vb2

Table 1 Rules for the case h = 4:
first table: white nodes; a #0, a =a; + 1;
second table: black nodes; by = by +1.

Now, the inequality U,, + biu, < un4+1 means that the change from ¢ digits to
{+1 happens in the sub-tree of the spanning tree which is rooted in the last son of
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the root which is a black node. In the cases h = 2 and h = 3, we can see that the
change to an additional digit happens in the penultimate sub-tree, recursively
for the case h = 3. For the case h = 2, this change happens in the penultimate
tree for the first time and later, it always happens in the ante penultimate one,
recursively. When h = 4, we shall see that the change always happen in the
penultimate sub-tree, recursively. In case h > 4, we shall see that it happens in
the penultimate sub-tree of the root and later, it happens in the b2 sub-tree,
thanks to the relation U, + biuy, < Upt1-

Starting from this case, we display the rules in a table instead of a figure.
Above, the first row of the table indicates a number for the sons of the node:
this number is relative to the node. It runs from 1 up to b for the white nodes,
which is the case of the first table. It runs from 1 up to b+1 for the black nodes.
In both cases, the black son is signalized by a bullet: it falls on the last node
for the white nodes, on the node with rank b—1, the ante penultimate, for the
black nodes. Next, on each row, under each number, we schematically indicate
the writing of the coordinate of the corresponding son. In fact we indicate the
writing for the first node and for the two or three last ones as for the others, it
is obvious from the first one.

Now it can be understood that the relevant information is displayed in the
table in the same way as it is in the figures and in the same order. And so, all
what is significant is present. There is an advantage to this compact form: it
more efficiently allows us to check the properties indicated by the table itself,
by induction on the levels and, on each level, on the rank of the node.

Let us look at this point more precisely. With respect to the previous cases,
here, there is also another difference. As k > 0, black nodes have more sons than
white ones. In the case h = 4, white nodes have b sons and black nodes have b+1
of them. From the splitting, which is illustrated by the general figures 8 and 9,
we check that in white nodes the black son is the last and that in black nodes it
is the ante penultimate as just indicated above.

Now, in order to proceed to the above indicated induction, the rows of the
table indicate two additional informations on the father of the node whose co-
ordinates are indicated in the entries of the row in the table. We indicate in a
column which precedes the first one the information which concerns the father of
the node whose sons are displayed by the table. In the first table, the information
for the father is the writing of its coordinate, its status, i.e. white or black, and
the last or last two digits of the node which precedes the father on its level. In
the second table, as the father is a black node, it is not needed to indicate the
status of its preceding nodes on its level as it is always white. However, in a few
cases, it is useful to know the last digit of the preceding node, when there can
be an ambiguity. This is why we have two cases for the nodes ending in 00. Note
that in the first table, #0 means that the number of ending 0’s is odd and 00
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that this number is even.

Note that the first line of the first table applies for the root whose coordinate
is 1. For the level 1, we start from the leftmost node whose coordinate is 2: again,
the first row of the first table apply. It is easy to show, by induction, that the
leftmost son of the level n has the coordinate 1"~!2 and that the rightmost son
of the same level has the coordinate 1"*!. Now, from the leftmost son on the
level 1 which is written 2 and whose leftmost son is 12, we can easily check that
the first row of the first table applies to the node 2. The same row applies until
the node by, which give, for the sons: b22 ... baby b10 by 1. Next, come the node 10
for which we have the following sons: b12 ... biby b0 100, which corresponds to
the row 4 of the first table. Then we have the last node of the level 1 which is
11 and whose son are: 101 ... 10b; 110 111 which corresponds to the row 5 of
the second table. We check again the induction hypothesis on the leftmost and
rightmost nodes of a level and for the leftmost node on the next level, we clearly
have to apply again the row 1 of the first table.

Now, we can see that, in the row 1, the black son ends in 1, that in the
row 4, it ends in 00 and that in the row 5 of the second table, it ends in 0b;.
This indicates new lines in the second table which, in their turn give rise to new
endings in both tables. The induction process shows that this increasing of the
tables quickly converges to the tables which are displayed by table 1.

This induction process is a double induction on the level and the rank of a
node in its level that these rules allow to construct the spanning tree. Note that
the coordinate of the previous node is easy to compute thanks to lemma 4. In
this case, also note that the alphabet is {0..b} and that b occurs except as a last
digit which is always different from b. When b occurs, it is immediately followed
by 0 and only this digit.

However, the status of a node, white or black, is not easily inferred from
the numbering. We shall give more precision, later, in the case h > 4. The
simplest solution is to consider that the status is a part of the coordinate. In
order to avoid a rather complex computation, the simplest way is to store the full
coordinate of a node and both its status and the status of its previous neighbour
on the same level. The rules allow to compute for each son its coordinates and
its status together with the same information for the previous son or neighbour
of the same level. Using the tables and the same induction, we can prove that
two consecutive white nodes in 0 are followed by a black node which, of course,
isin 1.

The rules show that the preferred son property is true also in this case.
However, we can see a phenomenon which will be amplified in the general case
and which will alter the preferred son property. When a node in 0 follows a
node in by, the rules show that the node in 0 has two sons ending in 0 which
are consecutive. If the node has coordinate v0, these sons have coordinates v b0
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and v00. This comes from the fact that bl is rewritten 100 in the maximal
representation as buy 1 + U, = Up42 is the basic induction equation. We remark
that v1b ~ v0 but 1100 # v00 which can easily be checked.

5.2 The general case

Now, we turn to the case when h > 4.

As already indicated with the case h = 4, this case has the property that U, +
b1y, < Upy1. This means that the change in the number of digits which occurs at
each level happens in the last sub-tree of the spanning tree. The intuitive reason
is that before going to 10, we have to mark b0, b1 and so on until we arrive
at bk1. And we have to write 100 just after bk; in the maximal representation.
Again, note that bk ~ 100. Another difference with the previous cases is that the
white nodes still have b sons while the black ones have much more of them: b+k.
This explains the alteration for the preferred son property: take a white node
vb0 and assume that its first son is v1b1b;2, as indicated in tables 2 below, where
v = v1+1. Then, the single son ending in 0 is v1b1b0 and it is the penultimate.
If the preferred son property were true, we would find vb00 and it is plain that
vb00 % v1b100. However, as v1b1b ~ vb0, we can say that the node ;5,00
contains the number of its father as a shortened representation of this number.
But there is a worse situation which is indicated in the table for a sub-class of
white nodes ending in 1. For such a node val, the first node is va;b2 and the
single node in 0 is ¥a00 which has rank k—1 among the sons of the node. This is
not the preferred son property which would require va10 somewhere among the
sons and also va00 does not contain the number of the father. Here, there is a
delay in the numbering of the sons with respect to the fathers. We shall explain
this a bit further. We can see from the table that besides these two cases, for all
other nodes, the preferred son property is true.

Also in the general case, the notion of status of a node is a bit more complex.
We define nodes with b sons as white and nodes with b+k sons as black, as previ-
ously. However, we append an additional information concerning the coordinate
of the first son of the node and its last one. It is not difficult to check that for
most white nodes va, a # 0, belonging to the levels 1, 2 and 3, the first node is
vai2 where a = a;+1, and the last one is val. But there are other possibilities:
for instance, the first son can be va k" where k' = k+1 and k" = k+2, and the
last one is then most often vak’. A third class of white nodes have the following
pattern: the node is still va, the first son is va;a’ and the last one is vaa'. We
shall use letters o, 1 and 2 to denote these patterns as follows:

denotation first node last node
o 2 1
1 kll kl

2 all al
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As we shall see, for a few nodes, the patterns can be mixed: the first son can
follow one pattern and the last one can follow another. This is why in the table
we write node v as y Vv, where u denotes the pattern followed by the first son
and v denotes the pattern followed by the last son.

Now we can precisely define the status of a node: it is the indication of its
colour and of the patterns followed by its first and last sons. It can be denoted
as uCy, where C' € {B, W} is the colour of the node, u is the pattern followed
by the first son and v is the pattern followed by the last one.

1 o b1 b .
oVao oidi2o ovalo oV01o
o000 | ovibi26 o1b0o | oviblo
oV00o6 | ov1bk126]... | 070000 | 07001,
1 e | a—1 Q b—1 b °
Lvaq ovark" o ovale | ovals svaka | avak' o
11006 | ovibik" o oVib0o | ov1bl o 2100 o 201 ¢
1 k—1 k b—1 b .
2 Va2 L vasa 4 1va106 | ovaile o100 | ovaia' 1
o002 | bk 1]... | 170006 | o ¥001 ¢ o V00ao | o000’ 1
ovals | ora1b2, oval0o | ovallo ovalae | o vala' 1
1]... k—1 b—1e b+k—1 b+k
olVlo o020 o000 o o V01 1106 oVllg
21014 |1 10k’ ¢ 10006 .| 0 ¥00cx 1 170106 | ov011l,
o1 | ov0126 A ov0aik o | o70a0o Jov0ako | o v0ak’ o
2vk' o | 1vkia" 1 1vkO o ovka 1vk'0o olVk'l,
ova'q oVa2o ovak o ova'lo ovd'ko | ovd'k' o
oo | oveibi20 Jdoveibiko Joverb0o o vc00 o ovcll g

Table 2 Rules for case h > 4:
first table: the ordinary white nodes, with pattern o for the first and the last sons;
note that a # 0; when a1 =0, v0 ~ pd, d € {b,k}; when a1 #0, p =v and di = a1;
second table: the white nodes in pattern 1 for the first and last sons; also white
nodes v with 1Vo;
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third table: the white nodes in pattern 2 for the first and last sons; also white nodes
v with ov 2; here, az = a—2;
fourth table: the black nodes; in the last row, ¢ stands for a, o orb.

In these tables, we also use the following convention: we write x; for z—1. This
is due to the fact that we consider z; as a digit. We also defined o = b—Fk, again
a digit.

For most white nodes, as the number of nodes is b and as adding b changes
the penultimate digit to its successor, this is the reason why the first and last
sons follow the same pattern, most often. There are two reasons for the change of
one pattern to another. The first reason is that the change of the last digit into 0
may occur much sooner: at rank k—1 for a node with a first node in pattern o.
Usually, this will then entail pattern 2 for the last son. Another reason is the
presence of a black node. As it has b+k nodes, this breaks the b-periodicity of
the white nodes.

However, black nodes are rare in comparison with white ones and most often,
they occur at the right place: with a first node following pattern o, when rank
b—1 is reached, we turn to 0 as under a standard white node. But, this time, the
penultimate digit turns from b; to b. Accordingly, k£ nodes further, we have bk
as the last two digits and so, this turns to 00 with a carry, possibly propagating
to other digits. Consequently, the last node is in 01, again pattern o. However,
this is not always the case, and tables 2 indicate all the possibilities.

Note that for the white nodes in 0, the indication of the table are in agreement
with the parity of the number of ending 0’s: 00 indicates an even positive number
of 0’s; a single 0 indicates an odd number of them.

Now, it is a tedious but not difficult exercise to check that the rules of the
table allow to construct the tree, by induction on the levels and, for each level, on
the rank of the nodes in the level. The beginning of the argument is exactly the
same as what we did in the case h = 4. We can observe that all configurations
of nodes which appear in the table also appear as first entry of a line. We can
also check that the patterns match: the pattern of the last son of a node is the
pattern of the first son of the next node on the same level or, if we are at the
last node on the level, with the first node on the next level.

Note that if we know the coordinates and the status of a node and the status
of its predecessor on the level, we can compute the coordinates and the status
of the next node on this level.

As a final remark, let us consider the number of rules which are used for the
generation of the spanning tree according to the method which is indicated here.
In the case h = 3, there are four rules, independently of p. In the case h = 2
with odd ¢, the number of rules depends on b. Note that in figure 12, the rules
for the nodes va with a ¢ {0,1} are represented by a single picture which we
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define as a scheme rule. Note that we could replace this scheme rule by the
following one:

1 .. b—1 b .

v V12 ... | v0 vl

where v = v;+1. This new rule is used with the others according to the following
priority principle: first apply rule v1 if the node matches this form; if not, apply
v0 with the same condition; if none of the previous rules matches the form of
the node, apply the above rule. Call mutification the above transformation of
the rule for the nodes va, a ¢ {0,1} and priority scheme the use of priority
with mutification of rules.

Similar remarks can be formulated for the cases h = 4 and h > 4. In the
previous case, the number of rules depends on p and it depends on b in the
second case, i.e. it is bounded by p.q. The number can be made independent
of p and ¢ by mutification of the three rules for nodes ¢ va o, nodes 1 va o, and
2 va 2 and the corresponding priority scheme.

Accordingly, we proved the following result:

Theorem 5 The spanning tree of the splitting of the tiling {p,q} can be gener-
ated by a finite number of rules. The number of rules is linear in p.q but it can
be made independent of p and q by three scheme rules at most or by mutification
of the three corresponding rules and the appropriate priority scheme.

6 Neighbours and dual graph: the algorithms

With the previous algorithms, it is now possible to consider the computation of
the neighbours of a node starting from the coordinate of the node.

In [Margenstern 2003b], it is proved that there is an algorithm to compute
the path from a node to the root of the spanning tree for the splitting of the
pentagrid which is linear in time and space in the coordinate of the node. I have
an extension of this proof to {p,4} which was not yet published and which
makes use of a different idea. This idea is followed by the present algorithm, the
implementation details being here a bit more complex due to the generality of
the problem. The idea consists in constructing three paths and the corresponding
lists of statuses of the nodes belonging to the paths. The last item in the list
is the status of the node and the penultimate is the status of the father of the
node. This information is enough to compute the coordinate of the father from
the coordinate of the node.

Let us examine tables 2 again. The number of possible statuses for a node is
eight:
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0W07 1W17 2W27 1W07 0W27 0B07 2307 OBl-

We call characteristic of node v the last digit of its coordinate and we
denote it by x(v). Call characteristic configuration of v the sequence of the
characteristics of its sons, from the first one to the last one. For all statuses,
except the status ¢ B o, there is a single characteristic configuration. For the
status ¢ B o, there are two characteristic configurations which depend on the
characteristic of v. All characteristic configurations are given by table 3, below.
In the table, the characteristic of v is indicated only when it is relevant. For each
configuration, it can be checked that the number of characteristics is the number
of sons of the node.

From this table, it is possible to find out the place of a node which belongs
to the path going from the root to v. This depends on the status, and the char-
acteristic of the node. The table indicates that the range of characteristics of
a given configuration consists of two or three intervals of remainders modulo b.
Accordingly, these intervals do overlap in the case of a black node. In the case
of a white node, they may not overlap. When the intervals do not overlap, the
range of the characteristics is the set of all possible remainders. And so, the defi-
nition of the next element to append to the path as well as the new digits is easy
to determine and needs only a constant amount of information. Note that this
situation is the case for the statuses o W, 1 W1 and o W ». For all the other
statuses, we have a situation of overlap between the intervals of characteristics.

When an overlap occurs in a configuration, this is caused by a change in the
previous digit of the coordinate which turns from one value to the next one.
This necessarily happens in the black nodes which have b+k sons. This also
happens in white nodes which have different patterns for the first son and for
the last one, namely 1 Wo and oWs. From table 2, we know that for most nodes,
the penultimate digit of the coordinate of the first node of a node v, say p(v),
is the predecessor of x(v). There are a few exceptions: the nodes in 0 and the
nodes with the status 2Ws. For the nodes in 0, in fact p(v) = x(v—1). For the
nodes with status 2Ws, we have p(v) = x(v)—2 when the current digit ¢ satisfies
1<d< k"
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status x(v) configuration

oWo - 2...101

1 W1 - E' . o0bi 0. K

2 W o _ " ...b1 0.«
1Wo - E'...b10...k 01
oW _ 2...k0...d
oBo 1 2...k0...0:01
oBo 0 2. b 0... k01
2Bo - o ob0...5101
oB1 - 2...010... K

Table 3 Characteristic configurations.

The promised algorithm is given below, in figure 14.

The body of the loop makes use of a complex procedure which indicates
three new nodes. Most often, the third node is useless, but it becomes useful
when the previous node had status 1 W or 1 W and when one of the nodes to
be selected has status 9Ws. The three nodes are consecutive nodes on the level
and the procedure indicates in ¢, where ¢ € {0..b+k—1}, how to find the first
node among the sons of its father. The father is one of the previously computed
nodes and it is indicated by f;, ¢ € {0,1,2} as the index of the path whose last
node is the expected one.

We have now to explain how the procedure select is working in order to check
that the algorithm is linear in time and space. The procedure works as follows.
The last three digits which where obtained by reading the word w are stored in
the internal variables as, a; and ag. These digits are compared with the last
three ones of the first and of the last sons of the node indicated by 7o, then by
m and, at last, by m. Table 2 allows us to compute these last digits, using the
last three digits of wg, wy, ws. At this point we use the following trick: when a
carry occurs by decrementing a number, the right writing is present in wg or in
wy if wy is used, and so we have simply to switch to the appropriate w; and only
rewrite its last three digits. From this computations we know the arc to add to
which path. Indeed, the number of the arc, in {0..b—1} for the white nodes, in
{0..b+k—1} for the black nodes, is appended to the path 7; for the right value
of j. The affiliation of the selected new nodes to the last one of the paths to
which they are appended is also fixed at this step of the computation. All of this
is performed in constant time.
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input : w the digits of v ;
d := pop(w) ;
case d is
when 1 >m:=0;m:=0;
wo :=1;wy :=2; sty : = oWo ; st1 : = oWo ;
when 2|...|by = 1o :=d-2;m :=d-1;
wo :=d ; wy = A(d+1) ;
sto 1= oWo ; st1 : = oWo ;
when b = mp :=b—2;m :=b-1;
wo =10 ; wy =11
stg := oWo ; st1 : = oBo ;

end case ;
Ty 1= T ; Wa = Wy; Sty := St ;
while w # 0}
loop d := pop(w) ;
(fo, f1, f2, ¢, nsto, nsty, nsta) := select(wo, w1, ws,d, sto, st1, sta) ;
mo = Typ, & {c} ; wo == wy,.d;
if fi =fo then m =7y & {c+1}; wy = wy, A(d+1) ;
else m = mp & {0} ; wi := wy, .first(top(stys,)) ;
end if ;
if fo=/fi=/fo then m = 7wy, & {c+2}; we := wy, . A(d+2) ;
else if fy =f1 then m :=mp & {1};
wy = wy, .second(top(sty,)) ;
else m :=mp, & {0} ; wo := wy,.first(top(stys,)) ;
end if ;
end if ;
end loop;
output : m, wo, Sto ;

Figure 14 The linear algorithm for the path to the root. Recall that A(n) is the
coordinate of n.

At last, the selection of three digits at each step insures the continuity of the
path and that the last node which will be found at the end of the computation
is the node whose coordinate was given as an input.

Now, consider the coordinates of the father. The path from the root to the
node is associated with the list of the statuses of the nodes belonging to the tree.
As the father is the penultimate node on the path, its status is the penultimate
element of the list. Now, from the status and the last digits of the coordinates
of the nodes, it is possible to compute the coordinate of the father. Let va be
the coordinate of the node. For nodes for which the preferred son property is
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true, the coordinate of the father is v or A(r—1) depending on a and on the
patterns of the node. The preferred son property is not true for the nodes with
the status oWy in 0, i.e. which ends in an odd number of 0’s and for the nodes
with the status oWa. For the first case, the penultimate digit of the node is
by or b. Erasing the last digit gives v1b1 or v1b. Now, A(v1b) = v0 and in the
other case, we append 1 to v1b; and again we use A. For a node in W5, the
computation is easy: we erase the last digit ay and append 1 or 2, depending
on . For nodes with the same status ending in 00, we apply a similar argument
as we obtain v, by or v1by after erasing ap.

We remain with the problem of finding the other neighbours of the node in the
tiling. As the solution of this question is tightly connected with the construction
of the dual graph of the tiling, we postpone this part after the statement of
theorem 6. The result will be completely proved when the discussion about the
dual graph will be completed.

Up to the last neighbours which we have still to characterize, we proved the
following result:

Theorem 6 For each tiling {p,q}, when p > 3, there is an algorithm linear in
the coordinate of a node v in order to compute the path from the root to v, to
compute the status of the node, the coordinate and the status of its father and,
more generally of its sons in the tree and among them, which are its neighbours
in the tiling.

What remains to prove of theorem 6 is connected with the dual graph of the
tiling and it will give us an algorithmic way to determine the dual graph by
placing the missing arcs which will transform the tree of the splitting into the
restriction of the dual graph to the considered region.

First, let us formulate a general remark. Consider a region R with its leading
tile T'. The splitting gives us in one round several regions whose leading tiles are
not neighbours of 7. This means that only a few nodes among the sons of T" are
its neighbours in the tiling. The second remark is that there are also other nodes
which are not on the same level which are also neighbours of 7": this is the case,
for instance, when the father of a node is also one of its neighbours. We shall see
that this observation is general. The fact that we have several tiles around a tile
in one round entails that the standard representation of the tree with horizontal
levels has a cost: as we shall see, it entails a distortion with the neighbours of
certain kinds of nodes.

Secondly, let us make another remark about the splitting. As can easily be
seen from figures 6 up to 9, several regions defined by the splitting of R share a
vertex of T'. Let us call a chain a maximal subset of the sons of T such that the
corresponding leading tiles share the same vertex of 7. Up to now, we did not
make it completely exact how the sons of the tree are displayed. Taking again
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figures 6 up to 9, we consider that the sons of a node are given in the following
way, also see figure 15 below, which zooms at figures 8 and 9.

Figure 15 Zooming on figures 8 and 9. Note the counting of the nodes which belong
to a chain.

On the left-hand side: the chain around an ordinary vertex: between two regions which
are copies of So. The main leading tile may be a white or a black node.

On the right-hand side: the chain around the vertices shared by the leading tile of a
copy of Di. The main leading tile is a black node.

For a white node v, going from the left to the right we have p—3 chains, each
one containing h. nodes, € depending on the parity, as defined previously. Each
chain is displayed in this way: this time from the right to the left, we have the
son of v which shares a side with v: it is a neighbour of v; next we have nodes of
the chain which share a side with the following node of the chain, except for the
last one of the chain. Call this last node of the chain an end-node son of v. The
node of the chain which is a neighbour of v, in the display, it is the rightmost
node of the chain, is called a marked son of v. The other white sons of v are
called ordinary sons and they are not neighbours of v.

It is not difficult to characterize these different kinds of nodes among the
sons of v. It is rather easy to compute them from the status of v and the char-
acteristics of its sons. As an example, let us explain this computation on a white
node with the status oWo. Then, v has p—2 neighbours among its sons. Their
characteristics have the form 1+4j.h. with j € {1..p—4}, or 0 or 1. Indeed, 1 is
the characteristic of the black son of v which is a neighbour. From the display
which we adopted, 0 is the first node of a chain and so, it is also a neighbour of v.
We easily check that b = 1+(p—3)h. which explains the above characterization
of the marked sons of v. For white nodes with other statuses, we have a different
situation.

For a black node v, the computation is similar up to the following difference.
In the splitting defined by figures 6 up to 9, the black son of v is no more the
rightmost one: also see figure 15. The rightmost sons are white and they belong to



544 Margenstern M.: About an Algorithmic Approach to Tilings...

a chain which is displayed in another direction: the marked son which starts the
chain is the right-hand neighbour of the black son of v and the successive nodes
of the chain are displayed from the left to the right and the end-node of this chain
is the rightmost son of v. On the left-hand side of the black son of v, the display
is exactly the same as for a white node. There is still a difference in the number
of nodes in a chain: the leftmost chains contain h.—1 nodes, the rightmost chain
contains h—2 nodes and the other chains contain each one h. nodes, see figures 6
up to 9. As an example, the marked sons of a black node of status oBo which
ends in 0 have the following characteristics: jh. for j € {1..p—3}, or 0 or 1.

Below, table 4 gives the form of marked sons of a node for all possible con-
figurations.

At this point, as the computations of the characteristics and the matrix of
the splitting indicates, we remark that we have all the neighbours of a black
node. Indeed, we know that a black node is always a neighbour of its father and
table 4 indicates that a black node has p—1 marked sons. Accordingly, all the
neighbours of a black node are known and the proof of theorem 6 is complete
for this case.

We remain with the neighbours of a white node v. Let u denote the father
of v. If v is an ordinary son of p, it is in a chain. As it is not a marked son,
it is not the first element of the chain. As it is not an end-node it is not the
last. Accordingly, it has a left-hand neighbour in the chain and also a right-hand
one. If a is the characteristic of v and if v is written v, a, then the just indicated
nodes have via; and via' as coordinates where @ = a;+1 and o’ = a+1. We
may have to compute the predecessor of v; when a =0, a = k; or a = by. This
computation is linear in v;. And so, in this case we have the missing neighbours
and the theorem is proved for ordinary white sons of a node.

The case of marked nodes is also simple. One neighbour is the father, the
other is the left-hand neighbour on the chain which is started by the marked
node. If v is the coordinate of the marked node, the above algorithm allows
us to compute the coordinate of the father, and the coordinate of the other
neighbour is A(v—1).

And so, we remain with the case of an end-node of a chain.

We have three cases: the leftmost son of a node, the rightmost son of a black
node and the other end-nodes among the sons.

Let us start with an end-node v which is neither the leftmost son nor the
rightmost son of the father p of v.

There are 2h.+2—e tiles around a vertex. Let V' be the vertex which belongs
to all nodes of the chain of which v is an end-node. Of course, u shares V" also, by
definition of a chain. With the members of the considered chain, we have h.+1
nodes. We still need h.+1—e = h nodes, which no more depends on the parity
of ¢. We obtain these nodes as follows: let @ be the son of p which is on the
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left-hand of v. We know that w is a marked son. Looking at figures 6 up to 9,
we see that the expected nodes are on the chain to the right which comes from
the black son of w which is also the rightmost son of w as w is a white node.
The chain has h—2 nodes. Adding w and its black son, we have the required
number of nodes. It is not difficult to see that all these nodes have V' as a vertex
and so we have the expected nodes. As we know the father of v from the above
algorithm, we also have w which is a son of y and, unfolding the loop of the
algorithm for two more steps, we get the coordinates of the black son ¢ of w
and of the rightmost son ¥ of ¢.

Now, let us turn to the case of the leftmost and rightmost sons of a node.

In order to handle these situations, first we look at another problem which
we already met: define an elementary cycle of the dual graph of the splitting
to be the set of all the tiles which share a common vertex. We shall distinguish
between within-tree and inter-tree cycles. Within-tree cycles are illustrated,
below, by figure 16 both in the case of a white node and of a black node. We can
see from the figure that all cases of within-tree cycles are indicated by the black
node case. Inter-tree cycles can be obtained by looking at how we continue with
within-tree cycles. When nodes are neighbours of the next one, we have again
ordinary cycles which we shall define a bit later. Now, the connections between
subtrees are the same as between trees. This is why this continuation gives us
the required information which is displayed by figure 17. Both pictures of the
latter figure show up a new type of cycle which we call inter-leave cycle.

Now, we describe these configurations.

There are five configurations for an elementary cycle, four of them are within-
tree and the last one is inter-tree.

An ordinary cycle is defined by two consecutive nodes in a chain, say @ and
w. It consists of @, u, the leftmost chain of sons of p and the rightmost chain of
sons of 1, the rightmost son of . This givesus 1 + 1+ h. + h—2+ 1 = 2h+e¢
nodes, as h = h—1+¢€. As € is 0 when ¢ is even and 1 when it is odd, we have
the right number of nodes.

A second configuration is characterized by @ and u being again consecutive
white nodes but w is the first node of a chain x and p is the end-node of the
chain which is on the right-hand side of «. In this case, @ and p have the same
father w and so, the cycle consists of w, the chain of sons of w with p as its end-
node, the rightmost chain of 1}, the rightmost son of w together with ¢ and w.
We again have 14+ h.+h—2+1+1 = 2h+e€ nodes, which is the required number.
Call such a configuration end-point.

A third configuration is characterised by two consecutive nodes, w and p
which have the same father w, with @ white and p black, u being on the right-
hand side of w. The cycle is then defined by w, u, its leftmost chain, the rightmost
chain of ¥, the rightmost son of w, ¢ and w. The counting is 1 + 1 + h.—1 +
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h—2 414 1 = 2h+e, as required. Call such a configuration left-hand black.

The fourth configuration is right-hand black: it is defined by two consecu-
tive nodes, @ and p with the same father w and p on the right-hand side of w.
But, this time, w is black and pu is white. The cycle consists of w, u, the leftmost
chain of sons of u, the rightmost chain of sons of @w and w. The counting is
1+1+he+h—2+1=2h+e, as required.

Figure 16 The configurations of elementary cycles of the dual graph.

From the left to the right, on the lower picture:

ordinary cycle, end-node cycle, left-hand black cycle, right-hand black cycle.

Note the indication of the number of nodes in an end-node cycle. The same counting
holds for the ordinary cycles.

Consider the sub-trees of the tree rooted in v which are rooted in the sons of v.
The four within-tree configurations can also be viewed as the starting point of
inter-tree cycles by only considering the leftmost and rightmost nodes of each
level of the sub-trees. This is done in figure 17 for the ordinary and the end-
node cycles, and it appears that the continuation gives always rise to the same
type of cycle which we call inter-leave. Strictly speaking, there are infinitely
many patterns of inter-leave cycles. However, they can be described by a single
rule. An inter-leave cycle is defined by two white nodes p and w. The node u
is the leftmost node of its level in a sub-tree B and w is a rightmost node of
another deeper level, of the neighbouring sub-tree of B, C. We consider that
the roots of B and C are consecutive nodes on some level of the spanning tree.
Let ¢ be the difference between the level of y and the level of . Then, let v
be the leftmost son of u. Then the rightmost son of w is a black node which,
consequently, cannot share a side with a node which does not belong to C. Let ¢
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be the rightmost son of the black son of w. Then ¥ is a white node, and a simple
counting argument shows that we have a new inter-leave cycle which consists
of w, p, the leftmost chain of p which ends in v, the black son of w and the
rightmost chain of this black node which ends in 9. Now, the difference of levels
between v and ¥ is £+2. And so, measured from the original level of the roots of
the subtrees, the depth of the bottommost node of an inter-leave cycle is twice
the depth of its upmost node.

%

Figure 17 The continuation of end-node and ordinary cycles.
Note the increasing in the distance between the closing nodes.

This remark shows that the algorithm described above is still linear in this
case: we have to repeat the body of the loop until ¢ is found. This can be
performed without counting: when the node v is reached, we repeat again the
path starting from the root in order to find the point starting from which all the
nodes downto v are leftmost nodes of their level. As we know the status at each
step of the process this raises no problem. Starting from the first leftmost node
on the path, we compute the other path, each step requires a constant time, and
we go down two steps on the new path when we go down by one step on the
path to v. This way, ¥ is reached when v is reached.

Now, we can see that this situation is general for inter-tree cycles. Indeed, call
closing nodes the rightmost son ¢ of a black node which is the neighbour of the
leftmost son v of a white node such that the grandfather of ¥ shares a side with
an ancestor of v. Then, from the closing nodes of an inter-tree cycle, as shown
by figure 16, we can construct another inter-tree cycle, and so this generates an
infinite sequence of inter-tree cycles. Figure 17 shows that the closing nodes of
an end-node cycle or an ordinary cycle are the starting point of an inter-tree
cycle. Now, the configuration of left- and right-hand black cycles allow us to



548 Margenstern M.: About an Algorithmic Approach to Tilings...

construct inter-tree cycles: this is clear for the closing nodes of a left-hand black
cycle. For a right-hand black cycle, the closing nodes are the starting nodes of
an ordinary cycle and the closing nodes of this ordinary cycle start an infinite
sequence of growing inter-tree cycles.

Note that we have in fact two left-hand black cycles: one where the top node
is white, the other where it is black.

config. x’s for the sons marked sons

oWo 2.0101 1+jhe, 0,1, 5 € {1.p—4}
1W1 E'..b 0K E' + jhe, k, k', j € {1..p—4}
2Wa a’ . b 0. o 3+ e+ jhe, o, j€{0..p—4}
1Wo E' . b10..k 01 k' + jhe, 0,1, j € {1..p—4}
oWa 2.k 0. d 3+ e+ jhe, o, j€{0..p—4}
oBo 1 2.k 0..0101 2+ e+ jhe, a,d, j€{0.p—4}
oBo 0 2.010..k01 jhe, 0,1, 5 € {1..p—3}

2Bo a" b 0.0 01 jhe, 0,1, 5 € {1..p—3}

oB1 2.0,0.F jhe, 0,1, € {1..p—3}

Table 4 The marked sons of a node:
the neighbours among the sons.

situation of v non-son neighbours
leftmost son v+1, pt(v—1)
rightmost son v—1, f{(v+1)
end-node v+1, pt(v—1)
lrjriggieéidrlleft—hand of v—1, f(v)
g%aﬁ;ecdk, 1S“iogg1t—hand fv), v+1
ordinary v—1, v+1

Table 5 The neighbours of a white node not among the sons.
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With this study the proof of theorem 6 is completed for what is the general
case. We collect the information about the neighbours in table 5, above. Note
that table 5 makes use of two auxiliary functions: f(v) denotes the coordinate
of the father of v and p(v) denotes the rightmost son of v.

It remains to prove that theorem 6 is also true for the particular cases. Re-
mind that in these cases, the preferred son property is true. Accordingly, finding
the coordinates of the father is very easy. For the path from the root to the node,
it is enough to repeat the same algorithm but this time, things are much simpler
as the reader may easily realize.

7 Conclusion

Theorem 6 completely answers a complexity question about the tilings {p, ¢}.
This indicates that if we wish to implement cellular automata on such tilings,
it is in principle easily feasible thanks to the construction of the algorithms of
section 5.

However, the situation is not always this one in tilings of hyperbolic spaces.
In dimensions 3 and 4, it seems that we have not such efficient algorithms. First,
note that when we speak about tilings constructed by tessellation, we have only
finitely many ones in dimensions higher than 2. There are four such tilings in
the hyperbolic 3D space and five of them in the hyperbolic 4D space. Starting
from dimension 5, there are no such tilings, see [Sommerville 1958].

But the hyperbolic plane gives us infinitely many tilings in which the tilings
{p, q} certainly constitute a small family. It is certainly interesting to investigate
which families consist of combinatoric tilings. This is a broad field completely
open.

Acknowledgement

The author is very much in debt to the anonymous referee for remarks which
helped him to make the paper better readable.

References

[De la Harpe et al. 1990] Sur les groupes hyperboliques d’aprés Michael Gromov, E.
Ghys, P. de la Harpe (ed.), Progress in Mathematics, 83, Birkhauser, (1990).

[Margenstern et al. 2004a] Chelghoum K., Margenstern M., Martin B., Pecci I.: Cel-
lular automata in the hyperbolic plane: proposal for a new environment, Lecture
Notes in Computer Sciences, 3305, 2004, 678-687, proceedings of ACRI’2004,
Amsterdam, October, 25-27, 2004.

[Margenstern et al. 2004b] Chelghoum K., Margenstern M., Martin B., Pecci I., Sko-
rdev G.: Tilings {p, q} of the hyperbolic plane are combinatoric, WTCA’2004,
International Workshop on Tilings and Cellular Automata, in DLT’04, Auck-
land, New-Zealand (Aotearoa), December, 12, 2004, Proceedings of WTCA, 2004,
CDMTCS 253, Research Report Series.



550 Margenstern M.: About an Algorithmic Approach to Tilings...

[Fraenkel 1985] Fraenkel, A.S.: Systems of numerations, American Mathematical
Monthly, 92, 1985, 105-114.

[Hollander 1998] Hollander, M.: Greedy numeration systems and regularity, Theory of
Computing Systems, 31, 1998, 111-133.

[Lothaire 2002] M. Lothaire, Algebraic combinatorics on words, Cambridge University
Press, 2002.

[Margenstern 2002a] Margenstern, M.: A contribution of computer science to the com-
binatorial approach to hyperbolic geometry, SCI’2002, Orlando, USA, July, 14-19,
(2002), vol. 5, 423-428, ISBN 980-07-8150-1.

[Margenstern 2001] Margenstern, M.: New tools for cellular automata in the hyperbolic
plane, Journal of Universal Computer Science, 6(12), 2000, 1226-1252.

[Margenstern 2002] Margenstern M.: The splitting method and Poincaré’s theorem: (I)
— the geometric part, Computer Science Journal of Moldova, 10(3), 2002, 297-319.

[Margenstern 2003a] Margenstern, M.: Revisiting Poincaré’s theorem with the split-
ting method, Bolyai’200, International Conference on Geometry and Topology,
Cluj-Napoca, Romania, October, 1-3, 2002, (2003), 81-108, Cluj, University Press,
ISBN 973-610-205-X.

[Margenstern 2003b] Margenstern M.: Implementing Cellular Automata on the Tri-
angular Grids of the Hyperbolic Plane for New Simulation Tools, Proceedings of
ASTC’2003, March, 29 — April, 4, 2003, Orlando, Florida, USA.

[Margenstern 2003¢c] Margenstern M.: The splitting method and Poincaré’s theorem:
(II) — matrix, polynomial and language, Computer Science Journal of Moldova,
11(1), 2002, 3-27.

[Margenstern 2003d] Margenstern, M.: On the Infinigons of the Hyperbolic Plane, A
combinatorial approach, Fundamenta Informaticae, 56(3), 2003, 255-272.

[Margenstern 2004] Margenstern, M.: The tiling of the hyperbolic 4D space by the
120-cell is combinatoric, Journal of Universal Computer Science, 10(9), 2004, 1212-
1238.

[Margenstern and Morita 2001] Margenstern, M., Morita K.: NP problems are
tractable in the space of cellular automata in the hyperbolic plane, Theoretical
Computer Science, 259, 2001, 99-128.

[Margenstern and Skordev 2003a] Margenstern M., Skordev G., The tilings {p, g} of
the hyperbolic plane are combinatoric,“Proceedings of SCI’2003, July 27-30, Or-
lando, Florida, USA”.

[Margenstern and Skordev 2003b] Margenstern, M., Skordev, G.: Fibonacci Type Cod-
ing for the Regular Rectangular Tilings of the Hyperbolic Plane, Journal of Uni-
versal Computer Science, 9(5), 2003, 398-422.

[Margenstern and Skordev 2003¢] Margenstern, M., Skordev, G.: Tools for devising
cellular automata in the hyperbolic 3D space, Fundamenta Informaticae, 58(2),
2003, 369-398.

[Meschkowski 1964] H. Meschkowski, Noneuclidean Geometry, translated by A. Shen-
itzer. Academic Acad. Press, NY, 1964.

[Poincaré 1882] Poincaré H., Théorie des groupes fuchsiens. Acta Mathematica, 1, 1—
62, (1882).

[Sommerville 1958] Sommerville, D.: An introduction to the geometry of N dimensions,
Dover Publ. Inc., New-York, 1958.



