
Pareto-Optimal Hardware for
 Substitution Boxes

Nadia Nedjah
(Department of Electronics Engineering and Telecommunications,

Faculty of Engineering,
State University of Rio de Janeiro, Brazil

nadia@eng.uerj.br)

Luiza de Macedo Mourelle
(Department of Systems Engineering and Computation,

Faculty of Engineering,
State University of Rio de Janeiro, Brazil

ldmm@eng.uerj.br)

Abstract: In this paper, we propose a methodology based on genetic programming to
automatically generate hardware designs of substitution boxes necessary for many
cryptosystems such as DES encryption system. We aim at evolving minimal hardware
specifications, which minimise both space (i.e. required gate number), response time (i.e.
encryption and decryption time) and dissipated power. We compare our results against existing
and well-known designs, which were produced by human designers using conventional
methods.

Keywords: S-box, cryptography, genetic algorithms, evolvable hardware, multi-objective
optimisation.
Categories: I.2.2, C.3, B.5.2, E.3

1 Introduction

In cryptography, confusion and diffusion are two important properties of a secure
cipher as identified in [Shanon, 49]. Confusion allows one to make the relationship
between the encryption key and ciphertext as complex as possible while diffusion
allows one to reduce as much as possible the dependency between the plaintext and
the corresponding ciphertext. Substituting a symbol in the plaintext by another has
been used as a technique of confusion and rearranging the order of the symbols has
been used as a mechanism of diffusion. Here we concentrate on confusion using
substitution boxes or simply S-boxes. Here, we concentrate on evolutionary design of
hardware for s-boxes.

Designing a hardware that fulfils a certain function consists of deriving from
specific input/output behaviours, an architecture that is operational (i.e. produces all
the expected outputs from the given inputs) within a specified set of constraints.
Besides the input/output behaviour of the hardware, conventional designs are
essentially based on knowledge and creativity, which are two human characteristics
and too hard to be automated. Evolutionary hardware is a design that is generated

Journal of Universal Computer Science, vol. 12, no. 4 (2006), 395-407
submitted: 31/10/05, accepted: 15/03/06, appeared: 28/4/06 © J.UCS

using simulated evolution as an alternative to conventional-based electronic circuit
design. Genetic evolution [Haupt, 98] is a process that evolves a set of genotypes, i.e.
population, producing a new population at each iteration process. Here, individuals
are hardware designs. The more the design obeys the constraints, the more it is used
in the reproduction process. The design constraints can be expressed in terms of
hardware area and/or response time requirements. The freshly produced population is
yield using some genetic operators such as crossover and mutation that attempt to
simulate the natural breeding process in the hope of generating new design that are
fitter, i.e. respect more the design constraints. Genetic evolution is usually
implemented using genetic algorithms.

The remainder of this paper is organised in five parts. In Section 2, we introduce
symmetric cryptography and the use of substitution boxes. In Section 3, we describe
the principles of evolvable hardware. In Section 4, we describe the methodology we
employed to evolve new compact, fast and less demanding s-boxes. In Section 5, we
compare the discovered novel hardware against existing most popular ones. Finally,
in Section 6, we draw some conclusions.

2 Substitution Boxes

S-Boxes play a basic and fundamental role in many modern block ciphers such as
DES [Des, 93]. In block ciphers, they are typically used to obscure the relationship
between the plaintext and the ciphertext. Perhaps the most notorious S-boxes are
those used in data encryption standard (DES). S-boxes are also used in advanced
encryption standard (AES) and Kasumi. All three are Feistel [Menezes, 96]
cryptographic algorithms and have the simplified structure depicted in Figure 1.

An S-box can simply be seen as a Boolean function of n inputs and m outputs,
often with n > m. Considerable research effort has been invested in order to design
resilient S-boxes that can resist the continuous cryptanalyst’s attacks. In order to resist
linear and differential cryptanalysis [Matsui, 94a, Matsui, 94b], S-boxes need to be
confusing i.e. non-linear and diffusing, i.e. non-differential or non auto-correlated.

Due to the high non-linearity and low auto-correlation of substitution functions,
the conventional methods for algebraic expression [Rhyne, 73] have small
simplification impact. The corresponding digital circuit is of thus large, slow and
power-demanding.

In the rest of the paper, we design efficient design using evolutionary
computations. The design are compact, i.e. requires minimal hardware area, efficient,
i.e. propagates the output signal within minimal time and easy, i.e. dissipates minimal
power.

396 Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

Figure 1: The simplified structure of Feistel cryptographic algorithm

3 Principles of Evolutionary Computation

Starting form random set of solutions, which is generally called initial population,
evolutionary computation breeds a population of chromosomes through a series of
steps, called generations, using the Darwinian principle of natural selection,
recombination also called crossover, and mutation. Individuals are selected based on
how much they adhere to the specified constraints. Each evolved solution is assigned
a value, generally called its fitness, which mirrors how good it is in solving the
problem in question. Evolutionary computation proceeds by first, randomly creating
an initial population of individuals; then, iteratively performing a generation, which
consists of going through two main steps, as far as the constraints are not met. The
first step in a generation assigns for each chromosome in the current population a
fitness value that measures its adherence to the constraints while the second step
creates a new population by applying the three genetic operators, which are selection,
crossover and mutation to some selected individuals. Selection is performed on the
basis of the individual fitness. The fitter the individual is, the more probable it is
selected to contribute to the new generational population. Crossover recombines two
chosen solutions to create two new ones using single-point crossover or double-point
crossover [Haupt, 98]. Mutation yields a new individual by changing some randomly

397Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

chosen genes in the selected one. The number of genes to be mutated is called
mutation degree and how many individuals should suffer mutation is called mutation
rate.

4 Pareto-Optimal Evolvable Hardware

In the context of this paper, an individual is a circuit design of an S-box, which is
specified using its truth table form. In the rest of this section, we present the circuit
design encoding used, the genetic operators and last but not least, the fitness
evaluation of an evolved solution.

4.1 Circuit encoding

We encode circuit schematics using a matrix of cells that may be interconnected. A
cell may or may not be involved in the circuit schematics. A cell consists of two
inputs or three in case of a MUX, a logical gate and a single output. A cell may draw
its input signals from the output signals of gates of previous rows. The gates includes
in the first row draw their inputs from the circuit global input signal or their
complements. The circuit global output signals are the output signals of the gates in
the last raw of the matrix. A chromosome with respect to this encoding is given in
Figure 2.

Figure 2: Encoded circuit

4.2 Circuit specification reproduction

Crossover of circuit specification is implemented using a variable four-point
crossover [Haupt, 98] as described in Figure 3.

A gene is a circuit gate together with its inputs. So, mutation may occur by
changing the gate or one of its input signals, as depicted in Figure 4. In the former
case, the gate may be mutated to another of smaller (e.g. AND to NOT), the same (e.g.
AND to XOR) or bigger arity (e.g. AND to MUX). In the last case, a new signal is
randomized to fill in for the new input signal.

398 Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

Figure 3: Four-point crossover of circuit schematics

Figure 4: Operand node mutation for circuit specification

399Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

4.3 Circuit evaluation

Each circuit within the population is assigned a value, generally called fitness. A
circuit design is fit if and only if it satisfies the imposed input/output behaviour. In
single objective optimisation, a circuit design is considered fitter than another if and
only if it has a smaller size, shorter response or consumes less power, depending of
the optimisation objective size, time or power consumption minimisation respectively.
In multi-objective optimisation, however, the concept of fitness is not that obvious. It
is extremely rare that a single design optimises all objectives simultaneously. Instead,
there normally exist several designs that provide the same balance, compromise or
trade-off with respect to the problem objectives. We consider three objectives
hardware area (objective A), response time (objective T) and power dissipation
(objective P). Of course, the circuit evolved need to be sound (mandatory objective
S).

Objective A is estimated by the total number of gate equivalent required to
implement the evolved circuit and objective T by the maximum delay occasioned by
it. Objective P is evaluated by approximating the switching activity of each gate and
the respective fanout [Monteiro, 97].

Name Gate Equivalent Delay
NOT 1 0.0625
AND 2 0.2090
OR 2 0.2160

XOR 3 0.2120
NAND 1 0.1300
NOR 1 0.1560

XNOR 3 0.2110
MUX 3 0.2120

Table 1: Gates, size and delay

Let C be a digital circuit that uses a subset (or the complete set) of the gates given
in Table 1. Let gates(C) be a function that returns the set of all gates of circuit C and
levels(C) be a function that returns the set of all the gates of C grouped by level.
Notice that the number of levels of a circuit coincides with the cardinality of the set
expected from function levels. On the other hand, let B(X) be the Boolean value that
the considered circuit C propagates for the input Boolean vector X assuming that the
size of X coincides with the number of input signal required for circuit C. The fitness
function, which allows us to determine how much an evolved circuit adheres to the
specified constraints, is given as in (1), wherein S(C) evaluates the soundness of the
evolved circuit C and is defined in (2), A(C) is the occupied hardware area by circuit
C as defined in (3), T(C) gives the response time of circuit C as defined in (4), and
P(C) evaluates the power dissipated by circuit C, which is defined in (5).

F(C) = S(C) + ω1A(C) + ω2T(C) + ω3P(C) (1)

400 Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

() ∑ ∑
= ≠ ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
ξ=

n

j j,iy)ix(Bi

CS
1

 (2)

() ()
()

∑
∈

=
Cgatesg

gGECA (3)

() ()
()

∑
∈ ∈

=
Clevelsl lg

gDEmaxCT (4)

() ()
()

()gFNgSWCP
Cgatesg

∑
∈

= (5)

In (1), x represents the input values of the input signals while y represents the
expected output values of the output signals of circuit C, n denotes the number of
output signals that circuit C has. For a gate g, functions GE, DE, SW and FN return
the number of gate equivalent, propagation delay, number of switches and fanout
respectively. For each error in the evolved circuit, the individual pays penalty ξ.
Constants ω1, ω2 and ω3 are the weighting coefficients that allow us to consider area,
response time and power dissipation to evaluate the performance of an evolved
circuit, with ω1 + ω2 + ω3 = 1. For implementation issue, we minimised the fitness
function below for different values of ω1, ω2 and ω3.

5 Evolutionary vs. Conventional Designs for S-Boxes

For comparison purposes, we evolved the S-boxes of the data encryption standard
(DES) and obtained the characteristics (area, time and power) of the evolved circuit.
However, for existing work on designing hardware for DES S-boxes, we could only
obtain the size in terms of gate equivalent. In Table 2, we give the characteristics of
the S-boxes of the fastest implementation of DES known as bitslice DES [Kwan, 00].
In Table 3, we present the characteristics of the evolved DES S-boxes.

 area time power
S1 167 2.2010 981
S2 149 3,8290 761
S3 153 2.4675 992
S4 119 1.5505 571
S5 161 2.1170 884
S6 162 2.2395 831
S7 148 2.6180 716
S8 152 2.7915 1009

Table 2: Characteristics of the bitslice DES S-boxes

401Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

The parameters used in the evolutionary algorithms were 0.9 as mutation rate, 16 as
mutation degree and a population of 100 circuits. It took us about a couple of hours to
evolve the designs of DES S-Boxes S1, S2, S3 and S4, given in the appendix.
However, we believe that given time, the circuit designs for the S-Boxes will much
more efficient in all of the three aspects: hardware area, response time and power
consumption (switching activity only).

 area time power

S1 124 1.2880 1071
S2 117 1.1005 981
S3 102 1.7145 412
S4 92 0.7660 771
S5 126 1.2760 514
S6 111 1.9115 959
S7 108 1.2220 801
S8 137 0.9895 897

Table 3: Characteristics of the evolved DES S-boxes

The chart of Figure 5 relates the performance factor of the bitslice DES S-Boxes
versus those obtained by the evolutionary process described. The performance factor
is the product area×time×power. It is clear that the evolutionary S-boxes designs are
far better than those designed using conventional methods.

Figure 5: Performance factor of DES S-boxes: bitslice DES S-boxes vs. evolutionary
S-boxes

402 Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

6 Conclusion

In this paper, we proposed a methodology based on evolutionary computation to
automatically generate data-flow based specifications for hardware designs of
substitution boxes usually used in modern cryptography such as data encryption
system (DES) and advanced encryption system (AES). Our aim was evolving
minimal hardware specifications, i.e. hardware that minimises the three main
characteristics of a digital circuit, which are space (i.e. required gate number), time
(i.e. encryption and decryption time) and power dissipation. We compared our results
against the fastest existing design. The S-boxes hardware evolved is more compact in
terms of the required hardware area.

References

[Shanon, 49] Shanon, C. E., Communication theory of secrecy systems, Bell Sys. Tech. J. vol.
28, no. 4, pp. 656-715, 1949.

[Haupt, 98] Haupt, R. L. and Haupt, S. E., Practical genetic algorithms, John Wiley and Sons,
1998.

[Des, 93] National Institute of Standards and Technology, Data Encryption Standard (DES),
FIPS 46-2 edition, December 1993.

[Menezes, 96] Menezes A. J., Van Oorschot, P. C. and Vanstone, S. A., Handbook of Applied
Cryptography, CRC Press, 1996.

[Matsui, 94a] Matsui, M., Linear cryptanalysis method for DES cipher, T. Helleseth (ed.),
Advances in Cryptology, vol. 765, Lecture Notes in Computer Science, pp. 386-397, Springer-
Verlag, 1994.

[Matsui, 94b] Matsui, M., The first experimental cryptanalysis of the Data Encryption
Standard, Y. Desmedt (Ed.), Advances in Cryptology, vol. 839, Lecture Notes in Computer
Science, pages 1-11, Springer-Verlag, 1994.

[Rhyne, 73] Rhyne, V. T., Fundamentals of digital systems design, Prentice-Hall Electrical
Engineering Series, 1973.

[Monteiro, 97] Monteiro, J., Devadas, D., Gosh, A., Keutzer, K. and White, J., Estimation of
average switching activity in combinational logic circuits using symbolic simulation, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 1, pp.
121-127, January 1997.

[Kwan, 00] Kwan, M., Reducing the gate count of bitslice DES,
http://eprint.iacr.org/2000/051.ps, 2000.

403Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

Appendix

The evolved DES S-boxes (S1, S2, S3 and S4) specifications are given below. The 6-
bit input signal is X = 〈x5x4x3x2x1x0〉 and the 4-bit output signal is
Y = 〈y3y2y1y0〉.The most significant two bits x5 and x4 are used as the row indices.

S-box S1 specification

t0 ⇐ XOR(NOR(NOR(1x , x0),XOR(0x , x2)),NAND(OR(XOR(2x , 3x), x1), x3))

t1 ⇐ MUX(XNOR(x1, x3),NAND(OR(XOR(2x , 3x), x1),NAND(NOR(1x , x0),

 XOR(0x , x2))),NAND(NAND(NOR(1x , x3), x0), x0))

t2 ⇐ MUX(AND(OR(XOR(2x , 3x), x1),NAND(NOR(1x , x0),XOR(0x ,x2))),NAND(NAND(NAND(

 NOR(1x , x3), x0), XOR(0x , x2)), NAND(1x ,OR(XOR(2x , 3x), x1))), NAND(XOR(x1, x3),

 NAND(NOR(1x , x3), x0)))

t3 ⇐ XOR(NOR(XOR(0x , x2), 0x),NAND(NAND(NAND(NOR(1x , x3), x0), x0),

 NAND(XOR(x1, x3),NAND(NOR(1x , x3), x0))))

t4 ⇐ AND(MUX(2x ,NAND(2x , 3x),XOR(NAND(x1, x3), x0)),OR(XOR(NAND(x1, x3), x0),MUX(3x ,

 NOR(1x ,AND(2x , 3x)), x1)))

t5 ⇐ NAND(OR(XOR(NAND(x1, x3), x0),MUX(3x ,NOR(1x ,AND(2x , 3x)), x1)),MUX(MUX(3x ,

 NOR(1x ,AND(2x , 3x)), x1),MUX(x3, 1x ,MUX(0x , x1, 3x)),MUX(2x ,NAND(2x , 3x),
XOR(NAND(x1, x3), x0))))

t6 ⇐ XNOR(MUX(XOR(MUX(0x , x1, 3x),NOR(0x , x2)), 3x , x2),

 NAND(NOR(1x ,AND(2x , 3x)),MUX(0x , x1, 3x)))

t7 ⇐ MUX(XOR(MUX(0x , x1, 3x),NOR(0x , x2)), x2,MUX(x3, 1x ,MUX(x3, 1x ,

 MUX(0x , x1, 3x))))

t8 ⇐ MUX(MUX(1x , x1, 3x),XNOR(2x ,NAND(XOR(x0, 1x), 3x)), 0x)

t9 ⇐ XOR(NOR(1x , x0),MUX(2x ,MUX(x2, 1x ,XOR(x0, 1x)), 3x))

t10⇐ NAND(NAND(MUX(OR(0x , x1), x2, 3x),NOR(NOR(3x , 2x), 0x)),

 OR(NOR(NOR(3x , 2x), 0x),MUX(x1, 1x , 3x)))

t11⇐ MUX(AND(MUX(OR(0x ,x1), x2, 3x),XOR(x0, 1x)),XNOR(MUX(x2, 1x ,XOR(x0, 1x)),

 NOR(NOR(NOR(3x , 2x), 0x), 2x)),MUX(x1, 1x , 3x))

t12⇐ XNOR(1x ,MUX(OR(XNOR(NOR(3x , 1x), 0x),XOR(NOR(3x , 1x), 0x)),NOR(0x ,AND(3x ,

 XNOR(2x , 1x))),OR(MUX(x3,XNOR(2x , 3x), 1x), AND(3x ,XNOR(2x , 1x)))))

t13⇐ XNOR(XNOR(NOR(3x , 1x), 0x),MUX(AND(3x ,XNOR(2x , 1x)),

 NAND(1x ,XNOR(2x , 1x)),NOR(x0,XOR(2x , 3x))))

t14⇐ MUX(MUX(2x , x2,AND(3x ,XNOR(2x , 1x))),MUX(x3,XNOR(2x , 3x), 1x), 0x)

t15⇐ MUX(XOR(2x , 3x),XNOR(2x , 1x),NOR(XNOR(NOR(3x , 1x), 0x),

 XNOR(NOR(3x , 1x), 0x)))
y0 ⇐ MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5)
y1 ⇐ MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5)
y2 ⇐ MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5)
y3 ⇐ MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5)

404 Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

S-box S2 specification

t0 ⇐ XOR(XNOR(NOR(MUX(x0,NOR(x0,x2),x3),MUX(2x , 1x , 0x)),

 OR(NOR(MUX(X0,NOR(x0,x2), x3),MUX(x0,x3, 1x)),NOR(x0,x2))), XOR(2x ,x1))

t1 ⇐ MUX(x0,NOR(MUX(x0,NOR(x0,x2),x3),AND(x0,MUX(MUX(x2,x1, 0x),

 AND(x1, 3x), 3x))),NAND(x1, 3x))

t2 ⇐ XOR(MUX(x0, x3, 1x),NAND(OR(x0, x1),XNOR(NAND(x1, 3x),XOR(2x ,x1))))

t3 ⇐ NOR(NOR(x0,XOR(2x ,x1)),AND(x0,MUX(MUX(x2, x1, 0x),AND(x1, 3x), 3x)))

t4 ⇐ MUX(XNOR(2x , x0),MUX(NOR(x2, 3x),XOR(2x , x0),NAND(x1, x3)),MUX(x0, x3, 1x))

t5 ⇐ XNOR(XNOR(0x , 1x),NAND(2x ,MUX(3x ,AND(x1, x3),MUX(x0, x3, 1x))))
t6 ⇐ AND(x1, x3)
t7 ⇐ MUX(MUX(3x , x3, x2),MUX(x1, 1x , 3x), 0x)

t8 ⇐ XNOR(XNOR(1x ,x0),NAND(OR(1x ,XOR(3x ,x2)),NAND(2x , 1x)))

t9 ⇐ XOR(XNOR(1x ,x0),NOR(3x ,NOR(XNOR(x2, x1), x0)))

t10⇐ MUX(NAND(1x ,x3),AND(NAND(2x , 1x),XOR(3x ,x2)),NAND(XNOR(0x ,x2),NAND(3x ,x1)))

t11 ⇐ NAND(NAND(NAND(XNOR(0x ,x2),NAND(3x ,x1)),AND(NAND(2x , 1x),

XOR(3x ,x2))),MUX(NAND(1x ,x3),NAND(3x ,x1),NAND(1x , 0x)))

t12 ⇐ MUX(MUX(x0,MUX(x1, 1x , 3x),MUX(x2,x1, 3x)), NAND(XNOR(0x ,x1),NAND(3x , 2x)),

 NOR(x2,NOR(1x , 0x)))

t13 ⇐ OR(AND(MUX(x1, 1x , 3x),NOR(XNOR(0x ,x1),x2)),AND(XNOR(0x ,x1),NAND(3x , 2x)))

t14 ⇐ NAND(XNOR(AND(x2, 3x),NOR(1x ,x0)),NAND(x3,NOR(x2,NOR(1x , 0x))))

t15 ⇐ XNOR(x0,MUX(MUX(x2, x1, 3x),AND(XNOR(0x ,x1),NAND(3x , 2x)),AND(x2, 3x)))
y0 ⇐ MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5)
y1 ⇐ MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5)
y2 ⇐ MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5)
y3 ⇐ MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5)

S-box S3 specification

t0 ⇐ MUX(0x ,MUX(2x , x0, x3),XNOR(3x ,XNOR(x1, 2x)))

t1 ⇐ MUX(x3,MUX(MUX(MUX(2x , x0, x3), x2,XOR(3x , x1)),NOR(0x , x1), 3x),

 OR(NAND(0x , 2x),MUX(MUX(x2, 0x , x3), 2x ,XOR(3x , x1))))

t2 ⇐ AND(MUX(x2,OR(0x , x1),MUX(2x , x0, x3)),NAND(XNOR(0x , 2x), x1))

t3 ⇐ XOR(XOR(3x , x1),NAND(XNOR(x1, 2x), x0))

t4 ⇐ AND(NAND(OR(1x , 0x),XOR(NOR(x2, x0), 3x)), NAND(XNOR(XNOR(NAND(3x , x0), 2x),

 XNOR(x3, 1x)), XOR(OR(1x , 0x), x3)))

t5 ⇐ XOR(3x ,NOR(MUX(x0,NOR(XNOR(x1, x0),XNOR(NAND(3x , x0), 2x)),

 OR(2x ,XNOR(x3, 1x))),AND(2x , 1x)))

t6 ⇐ MUX(MUX(XNOR(NAND(3x , x0), 2x),NOR(XNOR(x1, x0),XNOR(

 NAND(3x , x0), 2x)),OR(1x , 0x)),AND(OR(1x , 0x), XOR(NOR(x2, x0), 3x)),NOR(x0, x1))

t7 ⇐ MUX(XOR(NAND(3x , x0), 2x),XOR(x3, 1x), 0x)

t8 ⇐ XOR(NOR(NOR(NOR(XOR(x2, x3), x0), 2x), x0),XNOR(2x , x1))

t9 ⇐ MUX(MUX(x1, 1x ,NOR(x3, 0x)),NOR(XOR(x2, x3), x0), 0x)

405Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

t10 ⇐ AND(NAND(NOR(XOR(x2, x3), x0),XNOR(2x , x1)), MUX(MUX(x1, 1x ,NOR(x3, 0x)),

 NAND(2x , x0), x3))

t11 ⇐ XNOR(MUX(x1, 1x ,NOR(x3, 0x)),NOR(NOR(XOR(x2, x3), x0), 2x))

t12 ⇐ MUX(XOR(1x , 0x),XNOR(x2,XNOR(1x , 0x)), x3)

t13 ⇐ XNOR(NAND(3x , 1x),XOR(NAND(NAND(1x , 2x), x0), x2))

t14 ⇐ XOR(NOR(NOR(x1,NAND(1x , 2x)),XOR(1x ,NAND(3x , 0x))),NAND(XOR(2x ,

 AND(NAND(1x , 2x), x3)),XNOR(1x , 0x)))

t15 ⇐ XNOR(x0,MUX(NAND(XNOR(1x , 0x), x3), x3, 2x))
y0 ⇐ MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5)
y1 ⇐ MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5)
y2 ⇐ MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5)
y3 ⇐ MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5)

S-box S4 specification

t0 ⇐ OR(NOR(1x ,MUX(0x , x0, 2x)),NOR(XNOR(MUX(x0, x3, x2), x1),AND(2x , x3)))

t1 ⇐ MUX(NAND(NAND(2x , 1x),MUX(0x , x0, 2x)),

 AND(XNOR(MUX(x0, x3, x2), x1),NAND(2x , 1x)),OR(AND(2x , x3),NOR(2x , 1x)))

t2 ⇐ XNOR(MUX(MUX(0x , 3x , x2),NAND(0x ,AND(x2, 3x)),OR(3x ,NOR(2x , 1x))),

 MUX(OR(x1, x2), 3x , 0x))

t3 ⇐ MUX(XOR(x0,NAND(XNOR(MUX(x0, x3, x2), x1),NAND(2x , 1x))),

 NOR(AND(0x ,x1),AND(x2, 3x)),MUX(MUX(0x , 3x , x2), NAND(0x ,AND(x2, 3x)),

 OR(3x ,NOR(2x , 1x))))

t4 ⇐ MUX(x0,XNOR(NOR(OR(1x , 0x), x2),MUX(3x , x3, 2x)),NAND(x2, 1x))

t5 ⇐ XOR(NAND(x2, 1x),MUX(OR(XNOR(x1, 0x),NOR(2x , x3)),

 MUX(x2, 3x ,OR(1x , 0x)),NAND(0x , 2x)))

t6 ⇐ AND(OR(MUX(AND(0x , 2x), x0,XOR(NOR(OR(1x , 0x), x2),

 MUX(3x , x3, 2x))),NAND(3x ,NAND(x2, 1x))),OR(XNOR(x1, 0x), NOR(2x , x3)))

t7 ⇐ OR(MUX(AND(0x , 2x), x0,XOR(NOR(OR(1x , 0x), x2),MUX(3x , x3, 2x))),

 NOR(XNOR(x1, 0x),MUX(3x , x3, 2x)))

t8 ⇐ XNOR(MUX(NOR(3x , 1x), 3x , x2),NAND(0x ,NAND(1x , x2)))

t9 ⇐ XNOR(MUX(x2, 1x , x3),NAND(x0,OR(1x , x3)))

t10 ⇐ NAND(NAND(NOR(2x ,OR(1x , x3)), 0x),MUX(MUX(NOR(1x , x3), 1x ,

 NOR(0x , 3x)),OR(0x ,NAND(1x , x2)), x2))

t11 ⇐ MUX(x3,MUX(0x , 3x , x2),OR(NOR(0x ,NAND(1x , x2)), x1))

t12 ⇐ XOR(MUX(2x ,AND(0x , x1), x3),NAND(1x , x0))

t13 ⇐ MUX(OR(NOR(1x , x3),XNOR(NAND(1x , x0),MUX(x0,

 NOR(1x , x3), 2x))), x3,XNOR(2x ,AND(0x , x1)))

t14 ⇐ XOR(NOR(1x ,XNOR(2x ,AND(0x , x1))),XOR(3x ,MUX(x0,NOR(1x , x3), 2x)))

t15 ⇐ XOR(NOR(NOR(1x , x3),NOR(3x ,NOR(NOR(1x , x3),XNOR(NAND(1x , x0),

 MUX(x0,NOR(1x , x3), 2x))))),NOR(2x , x0))
y0 ⇐ MUX(MUX(t 0, t 4, x4),MUX(t9, t 13, x4), x5)
y1 ⇐ MUX(MUX(t 1, t 5, x4),MUX(t 10, t 14, x4), x5)

406 Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

y2 ⇐ MUX(MUX(t 2, t 6, x4),MUX(t 11, t 15, x4), x5)
y3 ⇐ MUX(MUX(t 3, t 7, x4),MUX(t 12, t 16, x4), x5)

407Nedjah N., de Macedo Mourelle L.: Pareto-Optimal Hardware ...

