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Abstract: The paper concerns the design of evolutionary algorithms and pattern
search methods on two circuit design problems: the multi-objective optimization of
an Operational Transconductance Amplifier and of a fifth-order leapfrog filter. The
experimental results obtained show that evolutionary algorithms are more robust and
effective in terms of the quality of the solutions and computational effort than classical
methods. In particular, the observed Pareto fronts determined by evolutionary algo-
rithms has a better spread of solutions with a larger number of nondominated solutions
when compared to the classical multi-objective techniques.
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1 Introduction

In this research work we experimentally compare the effectiveness of multi-
objective evolutionary algorithms and standard optimization techniques applied
to problems arising from Analog Circuit Design: the optimization of a Opera-
tional Transconductance Amplifier and of a fifth-order leapfrog filter. The for-
mer problem is dealt with multi-objective optimization, the latter with multi-
objective optimization for constraint satisfaction based on a simulation-based
synthesis of circuit [1]. Both problems are real world applications which have
been supplied by STMicroelectronics.

Classical methods are characterized as being approximation-based, or better
by the fact that they find an individual solution in a single run. On the contrary,
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Figure 1: OTA circuit model.

evolutionary algorithms are stochastic population-based, optimization methods,
inspired by natural selection and able to find several solutions in a single run.
Thus they are considered a good alternative to standard methods [2]. To assess
the quality of experimental results a class of metrics has been used to characterize
the various approaches and to make proper comparisons.

In section 2, we present the design of an analog circuit, the Operational
Transconductance Amplifier, modeled as multi-objective optimization problem.
In this section we describe the algorithms and metrics used, and report compar-
isons among the various algorithms. In section 3, the circuit design problem of
pass-band filter will be introduced and a comparison with an industrial design
tool will be made. Finally, section 4 concludes the article with some general
remarks.

2 Two-Stage Operational Transconductance Amplifier

In microelectronic design a considerably time is spent on device sizing of the
analog circuit to satisfy the performance requirements. The main reason is due
to the non-linear relation between device size and performances [3, 4]. In order to
improve the efficiency of the device design in the analog circuits, a multi-objective
approach has been proposed as alternative to the functional cost approach. The
multi-objective formulation avoids the necessity of weighing different objectives
in a single cost function which cannot phase completely the analysis of the
problem. In this study, the optimization process is coupled to a circuit simulator
(Spice) in order to evaluate the circuit’s performances [1].

The Spice simulator version used in our experiments is ngspice [5], which

433Biondi T., Ciccazzo A., Cutello V., D’Antona S., Nicosia G., Spinella S. ...



Parameters Ranges Unit

W1b = W1a 7 - 20 μm
W3 7 - 20 μm
W5 7 - 20 μm
L 0.525 - 0.875 μm
C 3 - 5 pF
R 20 - 40 KΩ

W4 7 - 20 μm
W2b = W2a 7 - 20 μm

I 1 - 15 μA

Table 1: Parameters.

Objectives Specifications

Power Consumption minimize
Total Width minimize

Unity Gain Frequency maximize
Gain at 100 Hz maximize
Phase Margin maximize

Table 2: Conflicting objectives for the problem.

implements the BSIM3 MOSFET model for the I-V characterization [6],[7]. The
nominal temperature of the simulations was 27◦C. The parameters of the model
card for PMOS and NMOS transistors are the “default” parameters.

This case study proposes the MOS device sizing and the circuit net setting
of an two-stage Operational Transconductance Amplifier (OTA). The OTA is a
useful device and it is used with few other devices to realize, for instance, filters,
comparators, wave generators, converters.

The parameters and their ranges are shown in Table 1. The “W” parameters
refers to the MOS channel width, L is referred to the MOS channel length, R
(resistance) and C (capacity) are referred to the circuit net parameters. Mini-
mum performance specifications are formulated with the constraints in Table 3.
Finally, the conflicting objectives are showed in Table 2.

Many important performance metrics are considered in the OTA design.
Those used in this study are the following. Low frequency gain is the gain at
100 Hz, which is the base of the amplification range. Unity Gain Frequency is
defined as the frequency range where the amplifier has at least the unity gain.
Phase Margin is a quality measure for the circuit because it is related to the
parasitics effects, like cross coupling, which cause the failure in the attainment
of the performance. The circuit area is an important specification for the design
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Objectives Specifications Unit

Unity Gain Frequency > 31.221 Mhz
Gain at 100 Hz > 64.118 dB
Phase Margin > 60 Degree

Table 3: Constraints of the objective performances.

because it is related to the yield of the manufacturing process. Generally, if it
is possible to increase the number of circuits per unit area then the yield of the
manufacturing process increases and the ratio between the number of functional
failures and total number of circuits per unit area decreases. In our case we used
an underestimation given by the sum of the MOS widths. Power Consumption
is today an important performance for all system in which the power is supplied
by a battery.

2.1 Multi-objective DIRECT

The multi-objective DIRECT (MODirect) method is an extension to the
multi-objective case of the DIRECT algorithm [8]. The method is based on
three operations: Lipschitz constant estimation, choice for potential optimality
of domain subregions, and domain subdivision. The choice for potential optimal-
ity is based on the estimation of Lipschitz constant for the objective function
in a partition of the domain. This partition is built by hyperrectangles, which
are sampled in their centers in order to evaluate the value of the objective func-
tion. Therefore the estimation of Lipschitz constant leads to a possible choice
of the hyperrectangles in the partition for a further sampling. In the main loop
of the algorithm, hyperrectangles are selected for sampling if they have a large
area, an high Lipschitz constant estimation, and a good value of the function in
their center. Formally it is possible to give the following definition for the single
objective problem in one variable:

Definition 1 [Potential optimality relative to the objective i] Let S be
the set of hyperrectangles generated by the algorithm after k iterations, and let
fmin and fmax be respectively the ideal and nadir points of the cone centered
in f(cR̃). An hyperrectangle R̃ ∈ S with center cR̃ and measure α(R̃) is said
potentially partial optimal relative to the i-th objective if there exists at least a
Lipschitz constant K lower

i > 0 such that

fi(cR̃) − K lower
i α(R̃) ≤ fi(cR) − K lower

i α(R) (1)

fi(cR̃) − K lower
i α(R̃) ≤ fmin

i − ε|fmin
i |. ∀R ∈ S (2)
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or a constant Kupper
i > 0 such that

fi(cR̃) + Kupper
i α(R̃) ≤ fi(cR) + Kupper

i α(R) (3)

fi(cR̃) + Kupper
i α(R̃) ≤ fmax

i − ε|fmax
i |. ∀R ∈ S (4)

where ε ∼ 10−4 is a constant to control the clustering during the search [8].

This definition is easily extendible to the case of n variables.
In order to obtain the heuristic which extends the above definition to the

multi-objective case, let us redefine the Pareto optimality in general terms of
efficiency.

Definition 2 [Efficiency criterion] A decision vector x∗ ∈ X is efficient with
respect to the convex cone D if there does not exist another decision vector x ∈ X

such that

f(x∗) − f(x) ∈ D (5)

The cone D is called ordering cone and if D = Rn
+ the efficiency criterion

produces a partial ordering for the Pareto optimality criterion. This ordering is
used by the algorithm as surrogate of linear ordering.

Remark 2.1 [Multiple estimation of the Lipschitz constants] Starting
from the conditions 1 and 3 in 1 it is possible to define the multi-objective opti-
mality in terms of expected efficiency. For every objective i, from the above con-
ditions we obtain estimates for K lower

i in the form of an upper bound K
lower

i ≥ 0
and a lower bound K lower

i ≥ 0 for K lower
i . Analogously, for Kupper

i there will be
an upper bound K

upper

i ≥ 0 and a lower bound Kupper
i ≥ 0.

The heuristic criterion leading to the choice of the optimal hyperrectangles
in the multi-objective is motivated by the potential increase of the expected
efficiency.

Definition 3 [Multi-objective Potential optimality] Given the estimations
of the upper bounds and the lower bounds for the Lipschitz constant of every
objective i in the cone centered in f(cR̃), the hyperrectangle R̃ is said potentially
optimal if √√√√ k∑

i=1

[Klower
i ]2 ≤

√√√√ k∑
i=1

[K
lower

i ]2 (6)

or √√√√ k∑
i=1

[Kupper
i ]2 ≤

√√√√ k∑
i=1

[K
upper

i ]2 (7)
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Moreover, let fmin and fmax be respectively the ideal and nadir points of the
cone centered in f(cR̃). The choice of hyperrectangle R̃ leads to a non trivial
improvement of objective functions

k∑
i=1

[fi(cR̃) − K lower
i α(R̃)]2 ≤

k∑
i=1

[fmin
i − ε|fmin

i |]2 (8)

or

k∑
i=1

[fi(cR̃) + Kupper
i α(R̃)]2 ≤

k∑
i=1

[fmax
i − ε|fmax

i |]2 (9)

The above definition gives a heuristic rule to choose hyperrectangles, which
are potentially optimal in the sense of either increasing the efficiency of the
objective vector or taking into account possible trade-off (the latter arises from
considering both lower and upper bounds for the Lipschitz constant). Equations
8 and 9 can be interpreted as controlling the clustering nearby the optimal points.

If an hyperrectangle is potential optimal then it will be sampled in the points
c ± δei, i = 1 . . .N , where c is the center point of the hyperrectangle, δ is one-
third the side length of the hyperrectangle, and ei is the ith unit vector. It
must be remarked that the criterion for multi-objective optimality uses the l2
norm to synthesize the choice from several estimations (see Eqns. 6, 7, 8, 9).
The lα norm used in this synthesis characterizes the expectation of the Pareto
front in terms of convexity. Possibly, the magnitude of α that is required can
be related to a measure of the nonconvexity of the Pareto front [9]. Afterwards
the hyperrectangle will be subdivided in thirds along its widest sides based on a
dominance sorting of function values f(c±δei) with respect their efficiency. This
strategy increases the attractiveness of searching near points with good function
values into the large hyperrectangles.

2.2 Evolutionary Algorithms for Constrained Multi-Objective
Optimization

Evolutionary algorithms (EAs) have become one of the main methods for ex-
ploring the Pareto-optimal front in multi-objective optimization problems that
are too complex to be solved by exact methods, such as linear programming
and gradient search [10, 11]. This is not only because there are few alternatives
for searching intractably large spaces for multiple Pareto-optimal solutions. Due
to their inherent parallelism and their capability to exploit similarities of solu-
tions by recombination, they are able to approximate the Pareto-optimal front
in a single optimization run. The numerous applications and the rapidly growing
interest in the area of multi-objective EAs take this fact into account.
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Two well-known multi-objective evolutionary algorithms (MOEAs) [10, 12]
are compared, NSGA2 and SPEA2 with the multi-objective DIRECT algo-
rithm in terms of hypervolume metric (see subsection 2.3). Both evolutionary
algorithms use the constrained tournament selection to deal with unfeasible so-
lution during the optimization process.

NSGA2 [13] is a elitist evolutionary algorithm with a fast nondominated sort-
ing procedure and a density estimation of the solutions provided by the crowding
distance. SPEA2 has a fitness assignment scheme based on the Pareto domi-
nance relation with a density estimation technique based on the “k-th nearest
neighbour” [14].

One difficult matter in constrained optimization problems is find a feasible
set. In the first steps it could represent a true challenge. One of the possible
reasons is that feasible region could be a very small subset in the search region.
NSGA2 and SPEA2 use a technique called “constrained tournament selection”
proposed by Deb [12] to solve this problem.

This method use binary tournament selection, that is, two individual of the
population are chosen and compared and the fitter in copied in the next pop-
ulation. When a problem presents constraints two solutions can be feasible or
unfeasible, and then just one of these case is possible: (i) both are feasible; (ii)
one solution is feasible and the other is not; (iii) both are infeasible.

In multi-objective problems case (i) is solved using a dominance relation
which takes in account the constraint violation. In case (ii) only the feasible
solution is chosen and in case (iii) is used a penalty function (see equation 11)

Let gj(x) ≥ 0, j = 1. . .m be the normalized constraints of the given problem.
The constraints violation is defined as follow:

ωj =
{ |gj(x)|, if gj(x) < 0;

0, otherwise.
(10)

The overall violation Ω is defined as:

Ω =
m∑

j=1

ωj(x) (11)

A solution xi is said to “constrain dominate” a solution xj if one of these
conditions is true:

1. Solution xi is feasible and xj is not.

2. Solutions xi and xj are infeasible but xi has a lesser Ω value.

3. Solutions xi and xj are both feasible, but xi dominate xj .

In a constrained tournament selection, the individual having a lesser Ω value
win the tournament.
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Figure 2: Trade-off among unity gain frequency, phase margin and power of
MODirect.

2.3 Hypercubes and Hypervolume metric

The Hypervolume metric [15] compute the volume covered by a set of non dom-
inated elements Q obtained by the algorithm at the end of the optimization
process. It is computed as follow: for each solution i ∈ Q an hypercube vi is
built between a reference point W (in this study W is the axis origin) and the
solution i. The union of all the hypercubes is computed and its hypervolume
(HV ) is: HV = volume(∪|Q|

i=1vi). A large value of HV is expected from a good
algorithm, however, Veldhuizen [16], report that a such metric is not useful if
the optimal Pareto front is not convex.

The hypervolume metric is not a general rule for circuit design problems.
Moreover, the metric implicitly assume the objective space origin coordinates of
the problem are (0, 0, . . . , 0), but this is not always the general case.

The hyperarea metric do not use the true Pareto Front (as Error Ratio,
Generational Distance metric, Maximum Pareto Front Error and Average Pareto
Front Error) [10]. The drawback is that compute the area of objective value
space covered by PFknown is time consuming. Recently has been published an
improved procedure to compute the metric with lower computational effort [17].

2.4 Results

In this section, using the hypervolume metric, we provide a comparison of
NSGA2, SPEA2 and MODirect to multi-objective optimization of the Op-
erational Transconductance Amplifier. Goal of our experimental protocol is to
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Figure 3: Trade-off among gain, unity gain frequency and phase margin of
MODirect.

Figure 4: Trade-off among gain, unity gain frequency and Mosfet’s area of
MODirect.

determine the algorithms that obtain large value of HV, that is good algorithms
in term of a well-known metric.

The optimization drives a flow of simulations which is based on an interaction
of the optimization algorithm with the circuit simulator (Spice). Every interac-
tion is a circuit evaluation which consist of one (or more) circuit simulations. The
stopping criterion used by MOEAs and Lipschitzian pattern search strategies is
the maximum number of function evaluations Tmax, also called fitness function
evaluations.
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Figure 5: Trade-off among gain, unity gain frequency and power of MODirect.

Figure 6: Trade-off among unity gain frequency, phase margin and power of
NSGA2.

NSGA2 and SPEA2 parameters are: crossover probability pc = 0.9, muta-
tion probability pm = 1. Both MOEAs use SBX crossover with index ηc = 2 and
gaussian mutation with σ ∈ {0.01, 0.1, 0.4}. These values have been obtained by
a preliminary parameter tuning (not shown due to space limit), the gaussian mu-
tation parameter, σ, seems to be the most relevant parameter. Each algorithm
is stopped after 6× 105 function evaluations. The hypervolume values obtained
by the tested algorithms are the following: HV = 6.402e + 07 (MODirect),
HV = 1.048e+08 (SPEA2), HV = 1.051e + 08 (NSGA2). The results clearly
shows as the MOEAs obtain a larger value of HV with respect MODirect.

The figures 2–9 show the trade-off among triples of objectives. These plots
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Figure 7: Trade-off among gain, unity gain frequency and phase margin of
NSGA2.

Figure 8: Trade-off among gain, unity gain frequency and Mosfet’s area of
NSGA2.

characterize the different compromises realized to the solutions discovered by
the algorithms. It is possible to see the increasing/decreasing effects of a perfor-
mance on the others and the dependencies among different specifications. For
instance we may assume that the power consumption will increase when the
unity-gain frequency increases and the phase margin increase as it can be see in
2D projection of figure 10.

It is easy to note as both MOEAs obtain wider Pareto fronts with respect
MODirect. In particular, for the Frequency objective function, NSGA2 (anal-
ogously SPEA2, not shown) reached non dominated solutions in the ranges
from 30 to 75 Mhz, where MODirect obtain frequencies in the domain from
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Figure 9: Trade-off among gain, phase margin and power of NSGA2.

Figure 10: Pareto Fronts between unity gain frequency and power of MODirect

(left plot), and NSGA2.

30 to 55 Mhz. Analogously, for the gain objective function, the multi-objective
evolutionary algorithms outperform the deterministic optimization algorithm,
MODirect. Same conclusions can be reached plotting any other pair of objec-
tive functions.

It must be also notice the different point distributions of the proposed algo-
rithms, particularly the spread of the Pareto Front. This phenomenon is related
to the convexity or nonconvexity of the multi-objective problem in different re-
gions of the domain which affects the optimization strategies of the algorithms.
It can be see a comparable result for NSGA2 and SPEA2 and a totally unlike
result of MODirect. In fact, the potentially optimal criterion of MODirect

(3) favours convex region of the domain and gives a low priority to the nonconvex
regions. This property can explain away the reduce value of the hypervolume.
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Figure 11: Leapfrog filter schematic view.

The results could be useful to characterize the particular solution sets of the
Pareto optimal front which identifies a convex region for the multi-objective
problem.

3 Leapfrog Filter

The circuit block employed as test case, i.e. a fifth-order leapfrog filter, is de-
picted in figure 11. Four leapfrog loops are realized through 4 (equal) differential
operational amplifiers (OA1–OA4), 18 resistances (two times R1–R9), and 8 ca-
pacitances (two times C1–C4). Differential-to-single conversion is performed in
the output block which also implements an additional time constant via a real
pole.

Design of the filter involves finding the resistance and capacitance values
that satisfy the constraints imposed by a given circuit application. Resistance
and capacitance values are actually calculated on the base of other quantities
that will be treated as input variables of the optimization problem. Expressions
relating resistance and capacitance values to these quantities are quite complex
and will not be reported in the following. The 20 variables used as input of
the optimization problem are: k1, k2, k3, k4, m1, m2, m3, m4, V n1, V n2, V n3,

V n4, w0, wrp, Ra, C, C1, L2, C3, L4. The first 4 parameters (k1−k4) influence
the output dynamic of each operational amplifier, m1 − m4 allow scaling of
the resistances and capacitances leaving unchanged the leapfrog time constants,
V n1 − V n4 impose the equivalent input noise of each operational amplifier, w0
provides a frequency shift of the filter transfer function, wrp is the frequency of
the real pole in the output block, and Ra through L4 determine the filter time
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constants.
The set of target functions and related constraints employed in the formula-

tion of the optimization problem are reported in table 4 (first two columns).
The first five target functions (i.e., DC gain, pass-band ripples and stop-bands)

are directly related to the frequency mask of the filter. They are measured in
dB (decibel), dBPP (peak-to-peak dB) or dBC (dB with respect to the carrier
frequency). Group delay is a measure of how long it takes a signal to traverse a
network. It is expressed in units of time. Equivalent input resistance is measured
as the ratio between the AC voltage and current at the input terminals of the
filter. Output dynamic is measured as the maximum AC voltage at the output of
each operational amplifier. Equivalent input noise is a measure of the total noise
generated by the circuit. It is due to both active components of the operational
amplifiers and external resistances (R1−−R9). Although noise should in general
be minimized in any integrated circuit, providing an upper bound allows other
(usually conflicting) constraints to be more easily satisfied. Inverse squared noise
is computed as the sum of (1/V ni)2 for i = 1 . . . 4. This target was introduced
to prevent V n1−−V n4 from assuming too small values during the optimization
process. Indeed, this would cause an extremely large DC current consumption in
the operational amplifiers. Silicon area is mainly computed on the base of per-
unit-area capacitance and resistance data and length and width of MOS devices
within the operational amplifiers.

3.1 Optimization using NeoCircuit, MODirect and NSGA2

NeoCircuit is a software package delivered by Cadence Design Solutions,

Inc. for the optimization and design centering of analog, digital and mixed-signal
circuits. It is perfectly integrated within the Cadence environment and allows
its optimization engines to be easily interfaced with virtually all commercial
circuit simulators officially supported by the Cadence environment.

Circuit variables to be used in the optimization process can be edited from
the user interface and/or copied directly from the circuit schematic. Additional
variables can be defined and combined with the original ones to provide the
highest flexibility in the definition of the optimization problem. Matching condi-
tions among active devices (i.e., two MOSFETs of a coupled pair) and statistical
variables can also be defined.

Information about the simulation setup, i.e. simulator type, corner models,
library paths, default parameter values, kind of analysis, expressions of the out-
put quantities, etc., are retrieved from a Cadence state. Multiple states can be
loaded in a single NeoCircuit session to allow different simulation setups dur-
ing an optimization process. Parallel simulations can be run by properly setting
a variable in the configuration file.
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Output expressions are automatically loaded from the specified Cadence

state to allow objective functions and constraints to set by the user. Additional
computing capabilities are offered via an integrated calculator. Area constraints
are defined in a separate section of the interface. Expressions that relate design
parameters of a given component to its area must be defined in a proper config-
uration. Optimization of a given circuit can be carried out at different corners
and simulation temperatures simultaneously. This also allows verification of the
performance in the worst case conditions. The operating region of each active
device in the circuit can be monitored and constrained to prevent the optimizer
from searching unfeasible solutions.

NeoCircuit was employed to optimize the fifth-order leapfrog filter de-
scribed in section 3. The optimization problem had 20 variables and 16 goals
(objective functions). To completely explore the investigation domain, a global
optimization was first carried out to determine the region where optimal solu-
tions can be found. Afterward, a local optimization was performed to descend
toward the absolute minimum. Table4 compares the solution found by NeoCir-

cuit with the original constraints. It can be observed that only one constraint
is not strictly satisfied. However, the relative error is below the threshold of 10%
which can in general be tolerated.

In order to phrase a multi-objective constrained optimization in terms of
multi-objective problem a suitable translation of the constraints in objectives
must be done. Generally it is satisfactory to carry out the following mapping

g(x) < 0 �→ g̃(x) =
{

g(x) g(x) > 0
0 otherwise

(12)

where g̃(x) is a well known penalty function. But for computational tasks it must
be take in to account a balancing for the different order of magnitude among
the constraints and objectives. So a suitable balancing could be

g(x) < 0 �→ g(x) < εg �→ g̃(x) =

{
g(x)
εg

g(x) > 0
0 otherwise

(13)

where εg > 0 gives a magnitude for relational comparison in order to scale
different quantities.

Analogously the balancing for the objectives could be

f(x) �→ f̃(x) =
f(x) − ftarget

εf
(14)

where ftarget is a reference for the optimization and εf < |ftarget| is again a
magnitude for relational comparison.

The choice of different ε and ftarget for constraints and objectives is heavily
dependent on the problem, so some preliminary analysis must be done.
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Target function Constraint MODirect NSGA2 NeoCircuit
DC gain ≥ −0.01 dB −0.003 dB −0.0031 dB −0.003 dB
Pass-band ripple at 9.1 MHz ≤ 0.8 dBP P 0.861 dBPP 0.799 dBP P 0.798 dBPP

Pass-band ripple at 9.7 MHz ≤ 1.8 dBP P 1.332 dBPP 1.141 dBP P 0.798 dBPP

Stop-band at 22.5 MHz ≥ 25 dBC 36.569 dBC 30.22 dBC 36.1 dBC

Stop-band at 34.2 MHz ≥ 56 dBC 55.082 dBC 50.06 dBC 54.9 dBC

Group-delay ripple at 9.1 MHz ≤ 20 ns 2.07 ns 1.475 ns 19.9 ns
Group-delay ripple at 9.7 MHz ≤ 40 ns 3.96 ns 1.619 ns 30.5 ns
Group-delay slope at 6.0 MHz ≤ 3 fs/Hz 1.28 fs/Hz 2.981 fs/Hz 1.4 fs/Hz
Equivalent input resistance ≥ 12.2 kω 31.549 kω 14.04 kω 12.8 kω
Output dynamic of stage 1 ≤ 2.8 V 2.232 V 2.799 V 2.79 V
Output dynamic of stage 2 ≤ 2.8 V 1.365 V 2.153 V 2.59 V
Output dynamic of stage 3 ≤ 2.8 V 2.604 V 2.490 V 2.79 V
Output dynamic of stage 4 ≤ 2.8 V 1.322 V 1.529 V 1.25 V

Equivalent input noise ≤ 44 nV/Hz
1
2 139 nV/Hz

1
2 43.99 nV/Hz

1
2 43.7 nV/Hz

1
2

Inverse squared noise ≤ 40m 30 m 39 m 39 m
Silicon area minimize (18.0μm2) 29.5 µm2 13.45 μm2 12.95 μm2

Table 4: Comparisons among MODirect, NSGA2 and NeoCircuit.

From various trials it turn out that the targets for the ideal design requested
were hard to satisfy. In fact no method has achieved all targets couched by the
constraints. However some results has been accepted as good solution for the
designed circuit. As we can see in the table 4 MODirect has been found a
promising solution but no improvement has been made after this preliminary
result. Most likely the algorithm has focused on global optimization rather than
local optimization. The NSGA2 has found a good solution which is comparable
with the NeoCircuit tool. But the best solution in term of satisfaction seems to
be that of NeoCircuit. Similar results as been obtained by SPEA2 algorithm
(not shown).

4 Conclusions

In this article we compared evolutionary algorithms and standard optimization
methods facing multi-objective optimization for circuit design problems.

The multi-objective optimization refers to determination of the approximate
Pareto Front of a Operational Transconductance Amplifier and the design of a
leapfrog filter. Two real world applications supplied by STMicroelectronics.
Based only on these circuit design problems and on the above reported statistical
analysis, we can claim what follows.

For the multi-objective problem, the observed Pareto fronts determined by
evolutionary algorithms have a better spread of solutions with a larger number of
nondominated solutions with respect to the standard multi-objective techniques,
Multi-objective DIRECT.

MODirect is effective optimization method to face circuits, and numerical
optimization in general, with few parameters. When one increases the number of
circuit parameters (more than 10 parameters) the evolutionary algorithms out-
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performs the Lipschitzian pattern search strategy in terms of solution accuracy
and CPU time. In fact, DIRECT algorithm is exponential in time and space.

Currently a combination of the two methodologies is under investigation be-
cause we believe there could be an improved robustness and overall speed-up. As
future work, we are considering the hybrid approach, that is, seeding the initial
population of the MOEAs with the output of Lipschitzian pattern search strate-
gies. Moreover, we are trying to extend our experiments to large scale circuits.
Preliminary results are now compared with standard design tools focusing our
research on alternatives design solutions.
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