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Abstract This work analyses two heuristic algorithms based on the genetic evolution
theory applied to direct sequence code division multiple access (DS/CDMA) com-
munication systems. For different phases of an evolutionary algorithm new biological
processes are analyzed, specially adapted to the multiuser detection (MuD) problem
in multipath fading channels. Monte Carlo simulation results show that the detection
based on evolutionary heuristic algorithms is a viable option when compared with the
optimum solution (ML - maximum likelihood), even for hostile channel conditions and
severe system operation. Additionally, a comparative table is presented considering the
relation between bit error rate (BER) and complexity as the main analyzed figure of
merit. Each algorithm complexity is determined and compared with others based on
the required number of computational operations to reach de optimum performance
and also the spent computational time.
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1 Introduction to Heuristic Algorithms

In the last five years the literature has collected many proposals of solutions
based on heuristic algorithms, particularly the evolutionary ones, for inherent
problems to the multiple access communication, among them can be detached:
the optimum detection problem (optimum performance) [Tan, 2001], [Yen and
Hanzo, 2001], [Abedi and Tafazolli, 2001], [Wu et al., 2003], [Lim et al., 2003],
[Lim and Venkatesh, 2004], [Abrão et al., 2004], [Yen and Hanzo, 2004], the se-
quences selection [Jeszensky and Stolfi, 1998], [Kuramoto et al., 2004], the pa-
rameters estimation, in special the channel coefficients estimation [Yen and
Hanzo, 2001], the power control problem and the rate allocation and throughput
optimization [Moustafa et al., 2004], in order to increase DS/CDMA communi-
cation systems capacity and performance. Evolutionary strategies are very effi-
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cient in attaining near-optimum solutions and significantly faster than conven-
tional point-by-point exhaustive search techniques, especially in large solution
spaces.

1.1 The MuD Problem

In a DS/CDMA system the signal is received and detected by a matched filters
bank (MFB), which constitutes the conventional detector, Figure 1. This type of
receiver is unable to recover the signal in an optimum sense, independently if the
channel is additive white Gaussian noise (AWGN), flat or frequency selective,
because the DS/CDMA signal is affected by multiple access interference (MAI)
and by the near-far ratio (NFR), resulting in a capacity well beyond the channel
capacity. One of the manners to reduce these effects in order to increase capacity
is to use all signals information from all other users in the detection process of
the desired user. This strategy is known as MuD [Verdú, 1986], [Verdú, 1998].

In the last two decades, a great variety of multiuser detectors were proposed
in the literature with the intention of performance improving compared to the
conventional detection. The best possible performance is obtained with the op-
timum detector, however with a high computational complexity.

The optimum multiuser detector (OMuD) [Verdú, 1986], [Verdú, 1998] con-
sists of a bank of matched filters followed by a maximum likelihood sequence es-
timator, MLSE. The MLSE detector generates a maximum likelihood sequence
b̂ in relation to the transmitted sequence. The vector b is estimated in or-
der to maximize the sequence transmission probability given that r(t) was re-
ceived, where r(t) is extended for all message and considering all transmitted
messages with the same transmission probability. The OMuD has a computa-
tional complexity that is exponentially crescent with the number of users. Hence,
the OMuD is impractical to implement. Thereby, more research is necessary in
order to obtain sub-optimum multiuser detectors with high performance and
low complexity. Some alternatives to OMuD include the classic linear multiuser
detectors, as Decorrelator [Verdú, 1986], and MMSE [Poor and S.Verdú, 1997],
and the classic non-linear multiuser detectors, as Interference Cancellation (IC)
[P.Patel and Holtzman, 1994] and Zero-Forcing Decision Feedback [Duel-Hallen,
1995], and also the MuD based on Classic heuristics [Tan, 2001], Stochastic
[Lim et al., 2003] and Analog [Lim and Venkatesh, 2004], [Abrão et al., 2004],
[Yen and Hanzo, 2004].

In this work sub-optimum heuristic evolutionary solutions will be analyzed
for the MuD problem, evidencing the advantage of these solutions in contrast to
the OMuD solution. For most of the practical cases of engineering interest, MuD
based on heuristic techniques result in almost optimum performance, i.e., very
close to the performance reached by the OMuD, however with the advantage of
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smaller computational cost and a smaller detection time, an attractive tradeoff
between convergence speed and complexity.

In the literature in spite of existence of several works using approximative
procedures for the sub-optimum MuD, most of investigations are restricted to
very simple channels for most of the communication systems, e.g., AWGN syn-
chronous channels [Wu et al., 2003]. For instance, very few works analyze the
detection problem in frequency selective channels [Abedi and Tafazolli, 2001],
[Yen and Hanzo, 2004].

The first GA-based multiuser detector (GA-MuD) was proposed by Juntti et
al. [Juntti et al., 1997], where the analysis was based on a synchronous CDMA
system communicating over an AWGN channel. It was found that good initial
guesses of the possible solutions are needed for the GA in order to obtain a high
performance. However, by incorporating an element of local search prior to the
GA-MuD, in [Yen and Hanzo, 2000] was showed that the performance of the GA-
MuD approaches the single-user bound performance with a significantly lower
computational complexity than that of the OMuD. Recently, the Evolutionary
Programming (EP) algorithm was used for the first time for the MuD problem
(EP-MuD) over AWGN synchronous channel [Lim et al., 2003]. Next, Abrão et
al. [Abrão et al., 2004] suggest a modified version for the EP-MuD algorithm
including cloning and adaptive mutation procedures for the same MuD problem.

In [Yen and Hanzo, 2004] Yen et al. extend the results of [Yen and Hanzo,
2001] to an asynchronous DS/CDMA system transmitting over 2-path Rayleigh
fading channels with equal energy paths based on GA-MuD. For detector com-
plexity reduction and to concomitantly decrease the detection time, the authors
applied the observed window truncation technique such that it encompasses at
most one complete symbol interval of all users in any detection window. Then,
both the “edge” bits as well as the desired bits within the truncated observation
window bits are tentatively estimated using GA strategy.

Differently of [Yen and Hanzo, 2004], this work uses one-shot evolutionary
MuD over all bits from all users in the same frame, considering multipath expo-
nential power-delay profile channels. Two evolutionary algorithms were analyzed,
GA-MuD and EP-MuD with a multipath diversity smaller or equal to the num-
ber of multipaths. Additionally, the Maximal Rate Combining (MRC) was used
in order to find the initial candidate bits.

The remainder of this work is organized as follows. Section 2 describes the
DS/CDMA mathematical model over multipath Rayleigh channel and also the
MuD problem to be optimized. Next in 3 the two algorithms pseudo-codes, based
on the theory of genetic evolution and used for the MuD problem, are described
and characterized. From numerical results, section 4 compares the algorithms
efficiency for signals detection and different system conditions. The evolution-
ary algorithms efficiency is expressed in a performance term, considering BER
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versus computational complexity. The computational complexity is expressed
as the number of operations as well as computational time to reach the OMuD
performance (or very close to it). Section 5 shows the general expressions for
algorithms computational complexity, with the number of operations and com-
putational time for each detector as a function of specific parameters. Finally
section 6 synthesizes the main conclusions of this work.

2 System Model

In a DS/CDMA system with binary phase-shift keying modulation (BPSK)
shared by K asynchronous users, as illustrated in Figure 1, the k-th user trans-
mitted signal is given by:

xk(t) =
√

2Pk

∑
i

b
(i)
k sk(t − iTb)cos(ωct) (1)

where Pk = A2
k/2 represents the k-th user’ transmitted power; b

(i)
k is the i-th

BPSK symbol with period Tb; ωc is the carrier frequency; sk(t) corresponds to
the spreading sequence defined in the interval [0, Tb) and zero outside:

sk(t) =
N−1∑
n=0

p(t − nTc)sk,n (2)

where sk,n ∈ {−1; 1} is the n-th chip of the sequence with length N used by
the k-th user; Tc is the chip period and the spread spectrum processing gain, Tb

Tc
,

is equal to N (short codes); the pulse shaping p(t) is assumed rectangular with
unitary amplitude in the interval [0;Tc) and zero outside.

Assuming a frame with I bits for each user, propagating over L independent
slow Rayleigh fading paths, the baseband received signal1 in the base station is

r (t) =
I−1∑
i=0

K∑
k=1

L∑
�=1

Akb
(i)
k sk (t − τk,�) ∗ h

(i)
k (t) + η (t) (3)

where K is the number of active users, t ∈ [0, Tb], the amplitude Ak is assumed as
constant for all I transmitted bits, bk ∈ {−1,+1} is the transmitted information
bit, sk is a copy of the signature sequence assigned to the k-th user, with τk,�

representing the random delay associated to the k-th user; this random delay
takes into account the asynchronous nature of the transmission, dk, as well as
the propagation delay, Δk,� for k-th user, �-th path, resulting in τk,� = Δk,� +dk;
η (t) represents the AWGN with bilateral power density equal to N0/2 and the
complex low-pass impulse response of the channel for the k-th user over the i-th
bit interval can be written as:

h
(i)
k (t) =

L∑
�=1

c
(i)
k,�δ (t − Δk,�) =

L∑
�=1

β
(i)
k,�e

jφ
(i)
k,�δ (t − Δk,�) (4)

1 Assuming ideal low-pass filtering.
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where ck,� is the complex channel coefficient for the k-th user, �-th path; it is
assumed that the ck,� phase has a uniform distribution over φk,� ∈ [0, 2π) and
the channel coefficient’s amplitude βk,� represents the small scale-fading envelope
following a Rayleigh distribution with probability density function (PDF):

f(β) =
2β

ς
e−

β2

ς (5)

where β is the coefficient’s module and ς the multipath’s component average
power ς = E

[
β2
]
. Additionally, it is assumed that the channel gain is normalized

for all users:

E

[
L∑

�=1

|ck,�|2
]

= 1, for k = 1, 2, . . . ,K (6)

Figure 1: Baseband DS/CDMA Block Diagram, detaching the asynchronous
transmission and the conventional receiver for frequency selective channels, used
for initial estimates of the heuristic algorithms (GA and EP).

Using vectorial notation, equation (3) can be stated as:

r (t) =
I−1∑
i=0

sT (t − iTb)ac(i)b(i) + η (t) (7)

where: s(t) = [s1(t−τ1,1), s1(t−τ1,2), . . . , s1(t−τ1,L), . . . , sk(t−τk,�), . . . , sK(t−
τK,L)]T is the users signature sequence vector, the diagonal matrix for the av-
erage received users’ amplitude including the path losses and shadowing effects

is a = diag
[√

P
′
1I,
√

P
′
2I, . . . ,

√
P

′
KI
]
, where IL×L is the identity matrix with

dimension L; c(i) = diag
[
c
(i)
1,1, . . . , c

(i)
1,L, c

(i)
2,1, . . . , c

(i)
2,L, . . . , c

(i)
K,L

]
is the diagonal

channel gain matrix, and the data vector is given by b(i) =
[
b(i)

1 ,b(i)
2 , . . . ,b(i)

K

]T
with b(i)

k representing the 1×L k-th user bit vector. For simplicity and without
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loss of generality, it was assumed an ordering of the random delays, such that
0 ≤ τ1,1 ≤ τ1,2 ≤ · · · τ1,L ≤ τ2,1 ≤ · · · ≤ τK,L < Tb. For multipath fading chan-
nels, the conventional receiver (Rake) consists of a bank of KL filters matched
to the users signature sequence. The matched filter outputs with coherent recep-
tion for the k-th user corresponding to the �-th multipath component (finger)
sampled at the end of the i-th bit interval can be expressed as

y
(i)
k,� =

+∞∫
−∞

r (t) sk (t − iTb − τk,�) dt =
√

P
′
kTbβ

(i)
k,�b

(i)
k + SI

(i)
k,� + I

(i)
k,� + n

(i)
k,� (8)

where the first term corresponds to the desired signal, the second to the auto-
interference, the third to the MAI over the �-th multipath component of k-th
user and the last to the filtered AWGN.

The output of the matched filter bank at the i-th symbol interval can be
written using vector notation as:

y(i) =
[
y
(i)
1,1, y

(i)
1,2, . . . , y

(i)
1,L, y

(i)
2,1, . . . , y

(i)
2,L, . . . , y

(i)
K,L

]T
(9)

= RT [1]ac(i+1)b(i+1) + R [0]ac(i)b(i) + R [1]ac(i−1)b(i−1) + n(i)

where the matrices R [0] and R [1] with LK ×LK dimension are defined by the
elements:

Rjk [0] =

⎧⎨⎩
1 , if j = k

Rjk (τjk, 0) , if j < k

Rkj (τjk, 0) , if j > k

and Rjk [1] =
{

0 , if j ≥ k

Rkj (τjk, 0) , if j < k

(10)
with the partial cross-correlation elements Rjk given by:

Rj,k(τ, i) =
∫ Tb

0

sj(t)sk(t + iTb + τ)dt, with i = 0; (11)

and the filtered noise vector n(i) has autocorrelation matrix

E
[
n(i)n(j)T

]
=

⎧⎪⎪⎨⎪⎪⎩
0.5N0RT [1] , if j = i + 1;
0.5N0R [0] , if j = i;
0.5N0R [1] , if j = i − 1;

0 , otherwise.

(12)

The conventional detector for frequency selective channels consists in com-
bining the available MFB outputs of each user (fingers) in a coherent way and
weighting it by each channel gain [Proakis, 1989]. The MRC combines the D

correlators’ output signals, followed by an abrupt decision circuit:

z
(i)
k =

D∑
�=1

Re
{

y
(i)
k,�(s)β̂

(i)
k,�

}
(13)
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b̂
(i)
k = sign

(
z
(i)
k

)
(14)

where D ≤ L represents the number of correlators in the receiver for each user,
also named Rake diversity, which in a real system needs the estimation of the fol-
lowing parameters for all users: channel coefficients, β̂, power, P̂ ′ , delay, τ̂ , (and
therefore correlations, R̂), and phase, φ̂. The Rake receiver performance will be
degraded when the number of users increases (increasing the MAI) and/or when
the power of interference increases (near-far effect).

One possible solution is to adopt joint decision using multiuser strategies. The
best one from this class is the maximum likelihood sequence detector. Jointly
optimum decisions are obtained by the OMuD that selects the most likely se-
quence of transmitted bits given the observations at receiver. Note that for any
joint decision strategy made on the i-th bits of the K users has to take into
account at least the decisions on either the (i − 1)-th bit or the (i + 1)-th of
the each user. For the joint decision of all bits from all users it is adopted the
one-shot approach in asynchronous channels [Verdú, 1998]. In this context the
K-user, L-paths, I-frame and asynchronous channel scenario can be viewed as a
KLI-user synchronous channel scenario, and them the KLI-user vector B can
be written as:

B =
[
b(0)T

,b(1)T

,b(2)T

, . . . ,b(I−1)T
]T

(15)

The objective is to compute the KLI-vector B that maximizes [Verdú, 1998]

g {y (t) , t ∈ [0, (I − 1) Tb] | B} = exp

(
−
∫ (I−1)Tb

0

[y (t) − S (B)]2 dt

)
(16)

where: S (B) =
I−1∑
i=0

K∑
k=1

L∑
�=1

√
P

′
kb

(i)
k sk (t − τk,�) (17)

Based on the matched filter observations, vector y(i) in (9), the maximization
of (16) is equivalent to select the vector B that maximizes the so-called log-
likelihood function (LLF) [Verdú, 1998]

Ω (B) = 2Re
{BTCHAY}− BTCARACHB (18)

where the coefficients and amplitudes diagonal matrices, with dimension KLI,
are defined by C = diag

[
c(0), c(1), c(2), . . . , c(I−1)

]
and A = diag [a,a,a, . . . ,a],

respectively, Y =
[
y(0)T

,y(1)T

,y(2)T

, . . . ,y(I−1)T
]T

, the transposed hermitian

operator is (·)H =
[
(·)∗]T and the block-tridiagonal, block-Toeplitz cross corre-

lation matrix R, with the same dimension, can be defined as [Verdú, 1998]:
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R =

⎡⎢⎢⎢⎢⎢⎢⎣
R [0] RT [1] 0 · · · 0 0
R [1] R [0] RT [1] · · · 0 0
0 R [1] R [0] · · · 0 0

· · · · · · · · · . . . · · · · · ·
0 0 0 · · · R [1] R [0]

⎤⎥⎥⎥⎥⎥⎥⎦ (19)

Therefore, the complete frame with the estimated transmitted bits for all of
K users can be obtained with the optimization of (18), resulting:

b̂ = arg
{

max
B∈{+1,−1}IK

[Ω (B)]
}

(20)

The OMuD try to find the best vector of data bits in a set with all possibil-
ities, so is a NP-complete problem where the traditional algorithms are ineffi-
cient. Restricting the search space, all heuristic algorithms try to find a solution
following an objective function (fitness value), which is able to quantify the
improvement tendency for better solutions in the optimum solution direction.
For MuD in frequency selective channels the fitness value can be expressed as
(18). Therefore, each heuristic algorithm will maximize the LLF testing distinct
frames of candidate bits in each new iteration. These attempts try to maximize
the DS/CDMA mean performance, with K active users. Increasing the number
of attempts the performance reaches that of the OMuD.

In Figure 1, MFB followed by the heuristic algorithm compose the receiver.
For frequency selective channels the MFB should be extended in order to include
delayed versions of the original signal from each user due to the multipath effect.
In this work, for frequency selective channels, the adopted Rake combining rule
is the MRC, equation (13).

3 Evolutionary Heuristics

This section presents an evolutionary algorithms revision, specifically GA and
EP, describing its variants, focusing on the MuD for DS/CDMA communication
systems. These variants include the population initialization stage, evaluation,
reproduction (competition), genetic operators (mutation and crossover), the re-
placement stage and stop criteria for the algorithm.

For the MuD problem the total search universe is characterized by all possible
combination of data bits that users can be transmitting. Considering K active
users transmitting I bits through a multipath channel with L paths and with D

fingers in the receiver, the total search universe will be:

Θ (K, I,D) = 2K.I.D (21)
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with D ≥ 1 and not necessarily D ≤ L. But obviously the search universe is
smaller than 2K.I.D, because each transmitted bit should be detected as the
same bit for all of the D processing branches:

b̂
(i)
k,1 = b̂

(i)
k,2 = ... = b̂

(i)
k,D ∈ {+1,−1} (22)

Which means that the search universe for the evolutionary algorithms for the
MuD problem is independent of the number of paths, resulting in Θ (K, I) =
2K.I . All candidate vectors that obey equation (22) form the universe of all
possible solutions. Other possibilities belong to a forbidden universe and will
not be tested by the algorithms. This procedure guarantees the final solution
quality allowing that a possible correct bit estimation for all paths can be done.

3.1 Population Size

For solutions via genetic algorithms, the population size choice is an important
factor for the computational cost and the solution quality determination. With
a small population the performance can be prejudiced because the population
covers only a small part of the total search universe. A great population usually
supplies a representative covering for the problem, besides preventing premature
convergences for local solutions instead of global ones. However, in order to work
with great populations, large computational resources are necessary or that the
algorithm works along a very long and unnecessary period of time.

The most appropriate population size for each type of optimization problem
seeking computational cost minimization is an interesting research topic that
has been studied since the pioneering work of Holland [Holland, 1975]. Recently,
Ahn and Ramakrishna [Ahn and Ramakrishna, 2002] extended the study accom-
plished in [Harik et al., 1999] finding a more flexible and easy general expression
for the population size, p, without signal and noise characteristics knowledge,
besides making possible its use in problems of variable sizes. This expression
needs only the basic information of the problem, as alphabet cardinality (χ),
order of the building block (k), with m = l

k − 1 and l is the individual’s size,
α = 1−Pb is the failing probability of the genetic algorithm in the decision stage
and Pb is the success probability, being given by:

p = −χk

2
ln (α)

(
χk − 1

2
√

πm + 1
)

(23)

This work uses equation (23) in order to find the size of the population
adapted for the DS/CDMA MuD problem because is versatile, can be calcu-
lated in the genetic algorithm initialization stage and maintained constant in all
generations. Rewriting equation (23) for the multiuser binary detection problem:

p = − ln (α)
(
0.5
√

π (K · I − 1) + 1
)

(24)
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In this work Pb = 99.9% was considered as being the maximum success percent-
age and a population size entirely with multiplicity 10. Rewriting (24) results:

p = 10 ·
⌊
0.3454

(√
π (K · I − 1) + 2

)⌋
(25)

where the operator �x� returns the smallest integer contained in x. Figure 2
synthesizes the behavior of equation (24) for various values of Pb and K · I,
as also the population size obtained through (25). Note that (25) guarantees a
confidence greater than 99% for any value of K · I and between 99.8% to 99.9%
for K · I > 22.
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Figure 2: Equation (24) and the adopted population size.

3.2 Individual Initialization

For the MuD problem the estimates from the Rake receiver outputs is adopted
as an initial individual of the population and the other members of the first
population can be randomly generated or obtained from the initial individ-
ual with convenient perturbations (see section 3.5.2) [Yen and Hanzo, 2000],
[Wu et al., 2003], [Abrão et al., 2004], [Yen and Hanzo, 2004]. In the literature
is common to find works that use another type of detector as initial estimate for
the evolutionary algorithm. This strategy decreases the number of needed gener-
ations of the evolutionary algorithm to reach the global solution, but in compen-
sation, these detectors usually have a high complexity, not bringing gains in the
system global complexity reduction [Wu et al., 2003]. In this work the outputs
of the conventional detector are used as initial estimates:

B1 =
[
b̂(0)T

, b̂(1)T

, . . . , b̂(I−1)T
]T

(26)

where from (14) we have b̂(i) = sign
(
z(i)
)
. The other terms are obtained through

the initial individual (B1) with mutation operator, section 3.5.2.
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3.3 Evaluation

It is necessary to find a value associated with each individual performance
through the fitness value (aptitude measure). The aptitude is an intrinsic charac-
teristic of each individual. At biological level it indicates the individual aptitude
to survive in touch with predators, pests and other obstacles for subsequent
reproduction. Transporting the concept to the mathematical algorithm it repre-
sents its aptitude in order to produce the best solution. In the MuD context this
aptitude is measured through the LLF function, equation (18), and it is directly
responsible for the death or life of individuals [Verdú, 1998].

3.4 Reproduction

The reproduction in an evolutionary algorithm is a process in which the individ-
uals, or candidate vectors, are copied in accordance with the associated fitness
values. Individuals with high fitness values have greater probability in order to
form the next generation. This operator is an artificial model for the natural
selection.

3.4.1 Mating Pool Size

The mating pool size (T ) controls the pressure in the competition process among
individuals. Certainly with a small value of T the best parents will be selected,
however, the search universe diversification will diminish and the chance for
a local solution increases. With a large value for T parents with smaller ap-
titude will be selected and their bad characteristics will be maintained in the
next generations, bringing slowness to the convergence [Yen and Hanzo, 2004],
[Mitchell, 1998]. The T value should be selected in order to guarantee the conver-
gence velocity and the quality of the final solution. The mating pool size should
be in the range 2 ≤ T ≤ p. For the MuD problem T = 0.1p was adopted.

3.4.2 Selection Method

The selection process determines how the parents will be chosen in order to form
the next generation and how many offsprings each parent will generate. The se-
lection strategy should be selected in a manner well adjusted to the mutation and
crossover operators in order to obtain an adequate balance between exploitation
and exploration. One of the more traditional selection processes used for the GA
algorithm, originally proposed by [Holland, 1975], selects the parents in direct
proportion with the fitness value, named Roulette Wheel sampling. Each indi-
vidual is assigned a slice of a circular “Roulette Wheel” and the size of the slice
being proportional to the individuals fitness. The wheel is spun T times. On each
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spin, the individual under the wheel’s marker is selected to be a parent for the
next generation. The steps for this method are: a) sum the fitness values for all

population members, ΩT =
p∑

i=1

Ω (i); b) generate a random number x uniformly

distributed on [0, ΩT ]; c) select the k-th member that satisfies
k∑

i=1

Ω (i) ≥ x.

This method confers priority to individuals that have bigger fitness because
its selection probabilities are proportional to their aptitudes, corresponding to a
bigger area in the wheel.

The selection strategy for the EP algorithm is simpler than for the GA,
because in this case the best T individuals from the population p are selected
as the parents for the next generation [Fogel, 1994]. The T individuals with the
largest fitness scores are selected while the p − T individuals with low fitness
scores are removed for the next generation. In the sequel, this strategy will be
named as p-Sort selection.

A fair comparison between these two strategies, when applied to the MuD
problem is presented in section 4. The convergence results, shown in Figure 4
detach the p-Sort strategy superiority in comparison with the Roulette Wheel,
and therefore it will be adopted in the two algorithms analyzed in this work.

3.5 Genetic Operators

The genetic operators are necessary for the population diversification and also
in order to maintain the adaptation characteristics acquired in previous genera-
tions. The GA algorithm uses the crossover operator as its main genetic operator
with the objective of to obtain search variability but without loss of the acquired
characteristics. The mutation is not considered essential because in a real pop-
ulation the mutation rate is low, so it is only a secondary mechanism for the
genetic algorithm adaptation. For the EP algorithm the only genetic operator
(besides selection) is mutation, not existing crossover. This is one of the main
differences between algorithms GA and EP.

3.5.1 Crossover Operator

The crossover operator combines parts from the two parents in order to pro-
duce offsprings that present genetic material from both parents. The literature
presents numberless variations for the crossover operator implementation, among
them the single-point crossover, multi-point cross-over and uniform crossover are
the most known and used. In this work the uniform crossover was adopted.

The uniform crossover operator considers each gene (locus) as a potential
point for crossover occurrence, which is controlled by the crossover mask . The
crossover mask is a sequence consisting of a random binary string (“1” and
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“0”) with the same length as the individuals, where each position in the mask
corresponds to one bit of the individuals. A change is done for all positions with
“1” in the mask and no change for “0” [Mitchell, 1998].

3.5.2 Mutation Operator

The mutation operator consists in a change in the individual’s characteristics.
These changes are necessary for introducing and maintaining genetic diver-
sity, changing arbitrarily one or more components of the selected structure.
One manner to implement the mutation is generating a perturbation (noise),
which will be added to each gene. For a bipolarized binary alphabet, −1 e +1,
the gene mutation will not occur if the perturbation is small [Lim et al., 2003],
[Abrão et al., 2004]. However, when the perturbation is large enough in order to
change the gene signal, mutation will occur. This noise can be selected following
some specific statistical distribution. In this work the Gaussian distribution was
adopted:

newindividual = sign
(
individual + N (

0, σ2
))

(27)

where N (
0, σ2

)
represents a Gaussian distribution with standard deviation σ

and zero expectation. The standard deviation is strongly related with the mean
rate mutation. For bipolarized binary alphabet the standard deviation will rep-
resent a mean rate mutation as shown in Figure 3.
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Figure 3: Bit change rate as a function of standard deviation.

This figure presents the average and maximum rate of mutation in relation
to the standard deviation. For each algorithm a standard deviation was chosen
that corresponded to a rate of adjusted average mutation. It is clear that the
mutation can occur in one or more points of the individual, or also none, due to
the stochastic nature of the process.
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3.6 Replacement Strategy

Replacement strategies look for to establish a biological rule of composition of in-
dividuals being aimed at the next generation, determining the maximum number
of individuals supported in the physical space in real systems. In terms of math-
ematical description, replacement strategy corresponds to the determination of
the number of candidate vectors to be kept in the next generation.

The elitism strategy forces the evolutionary algorithms to retain some number
of the best individuals at each generation. Such individuals can be lost if they
are not selected to reproduce or if crossover or mutation destroys them. In this
strategy successive generations overlap to some degree, i.e., some portion of the
previous generation is retained in the new population [Mitchell, 1998]. This work
uses replacement strategy called global elitism, where only the best p individuals
from the joint population of parents and offsprings are maintained for the next
generation.

3.7 Termination Criteria

Basically three forms can be identified as termination criteria for evolutionary
algorithms. The most adequate termination criteria depends on the nature of
the problem. The search can be stopped after a fixed number of generations or
after it reaches a threshold or after a pre-fixed time interval. The most common
criterion found in the literature, for the MuD problem, is to stop the optimization
process after a fixed number of generations (G).

3.8 Convergence Generation Determination

A criterion for convergence generation determination of evolutionary algorithms
consists in to analyze carefully the absence of evolution in successive generations
by comparing the fitness value. When:

Ωg (B1) = Ωg+1 (B1) = . . . = ΩG (B1) (28)

with B1 representing the best candidate in that generation, g will indicate the
convergence generation of the algorithm. Another criterion considers the conver-
gence generation is that one that presents no significant gain based on the fitness
value when compared with previous generations. In this work was adopted the
more conservative criterion, equation (28).

Finally, the GA-MuD and EP-MuD algorithms are described in Table 1.

4 Numerical Results

In this section the performance of the algorithms, described in section 3, are
compared considering the BER as the main figure of merit. The convergence
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of each algorithm is also considered. For the asynchronous DS/CDMA MuD
problem, over Rayleigh fading channels, the numerical results were obtained
based on the Monte Carlo simulation method; these results were obtained in
identical systems and channel conditions in order to be fair with the algorithms
comparison. Finally the GA-MuD and EP-MuD algorithms are analyzed in terms
of computational complexity, conducting to the construction of an effective figure
of merit.

GA-MuD EP-MuD
Input: p, B1, T , G Input: p, B1, T , G

Output: B1 Output: B1

begin begin
1. Initialize first population B; g = 0; 1. Initialize first population B; g = 0;
2. Evaluate the fitness(B); 2. Evaluate the fitness(B);
3. while g < G then; 3. while g < G then;
4. Bselected = Selection(B, T ); 4. Bselected = Selection(B, T );
5. Bcross = Crossover(Bselected); 5. Bnew = Mutation(Bselected);
6. Bnew = Mutation(Bcross); 6. Evaluate the fitness(Bnew);
7. Evaluate the fitness(Bnew); 7. B = Replacement(B ∪ Bnew);
8. B = Replacement(B ∪ Bnew); 8. end
9. end end
end

Table 1: GA-MuD and EP-MuD algorithms

Table 2 synthesizes the main parameters for the simulated system: the spread
sequences are selected as pseudo-noise (PN); the number of active asynchronous
users in the system is K; the processing gain is N , the system loading is U =
K/N ; 10 and 20 users were considered for the DS/CDMA system over single-
path (Flat), two-paths and three-paths (selective) slow Rayleigh channels. For
the performance determination with mobility, K users were considered with a
velocity uniformly distributed in the interval [0; vmax], resulting in a maximum
Doppler frequency of fm = vmax

λc
= 222.2Hz, for a carrier frequency of fc =

1
λc

= 2GHz; the maximal Rake diversity is D = 3 and all users are transmitting
with the same data rate, Rb.

Seqs N K U Channel Rb vmax fm D

PN 31 10; 20 0.32; 0.64 slow Rayl 384 kb/s 120 km/h 222 Hz ≤ 3

Table 2: Main System Parameters

Table 3 shows three exponential power-delay profiles that were adopted for
the performance analysis: three paths (PD-1), two paths (PD-2) and a Flat (PD-
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3) Rayleigh channels. These profiles with reduced number of multipaths were
adopted in order to alleviate the simulation’s complexity and the processing time.
In order to accommodate L = 3 paths for all K = 10 users in the same [0; N ]Tc

time interval, a minimum number of samples by chip was fixed as Ns = 2, and
also for the case K = 20 and L = 2.

Another more realistic profile adopted in simulations relaxes the restriction
of paths time separation of Table 3. In this worst case scenario, despite that the
adopted inter-users delays are crescent in the interval [0; (N−1)Tc−Δ�max

], paths
overlapping from the same user is allowed (Δk,�−Δk,L < Tc ) or still between the
last path of k-th user with the first path of (k +1)-th user, resulting, in the first
situation, in Rake diversity reduction, D < L, simulating non-discernable paths
in the receiver. Simulation results of this section show that the performance is
degraded in this situation.

� Δ� E
[
β2

�

]
� Δ� E

[
β2

�

]
� Δ� E

[
β2

�

]
1 0 0.8047 1 0 0.8320 1 0 1
2 Tc 0.1625 2 Tc 0.1680 PD-3
3 2Tc 0.0328 PD-2

PD-1

Table 3: Tree power delay profile (PD) used in the simulations.

In all simulations it was assumed that the powers, phases, amplitudes, chan-
nel gains and random delays of all users are perfectly known in the receiver,
except at the end of this section, where the errors impact of channel coeffi-
cient estimates are analyzed. For the channel coefficients generation a modified
Gans model was adopted [Silva et al., 2004], with coefficients generated in the
frequency domain. Further, a perfect power control scenario (P

′
1 = P

′
2 = ... =

P
′
K) was assumed, as well as unbalanced received power scenarios with half of

user with NFR ∈ [−5;+15]dB for K = 10 users, and NFR ∈ [−5;+25]dB for
K = 20 users.

In all Monte Carlo simulations a minimum number of errors/point = 15 was
adopted for the region with high Eb/N0 and 100 errors/point for regions with
low and medium Eb/N0. The average Eb/N0 at the receiver input is given by
γ̄ =

∑L
�=1 γ̄�, where γ̄� = Eb

N0
E
[
β2

�

]
. For comparison purpose the performances

of the Rake receiver and the single user bound (a system without MAI) were
included. This analytical single user bound (SuB) for BER, considering BPSK
modulation, Rayleigh channel, a Rake receiver with MRC with diversity D = L,
and all paths with distinct mean-square values is given by [Proakis, 1989]:

BERBound =
1
2

D∑
�=1

⎧⎨⎩
[
1 −

√
γ̄�

γ̄� + 1

] D∏
i, i �=�

γ̄�

γ̄� + γ̄i

⎫⎬⎭ (29)
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The adopted parameters values for the heuristic algorithms were obtained in
two steps: preliminary simulations with typical values found in the literature; ad-
ditional simulations in order to optimize these parameters, not in an exhaustive
form, however assuring a superior performance than those found in the prelim-
inary step. Table 4 synthesizes the main parameters used in the simulations.
These parameters are grouped in function of loading resulting in two systems,
S1 and S2. In all simulations the evolutionary receivers process and optimize one
frame with K.I.D bits each time, where K = 10 or 20 users, I = 7 bits/user,
D = 1 or 2 or 3 paths/user, for the same channel conditions, transmission and
initial estimates from the Rake receiver output.

Algorithm p pm pc T G p pm pc T G

GA-MuD 110 1.43% 50% 11 40 150 0.71% 50% 15 60
EP-MuD 110 5% − 11 40 150 5% − 15 60

K = 10 users, I = 7 bits K = 20 users, I = 7 bits
S1 S2

Table 4: Main Algorithms Parameters.

The selection process adopted for the GA-MuD algorithm was the p-Sort
selection; from the simulation results, synthesized in Figure 4, this selection
mode has better convergence performance than the Roulette Wheel. Thereby,
for all simulations of the GA-MuD and EP-MuD algorithms the p-Sort selection
was adopted. For the crossover operator the uniform type was adopted with the
crossover mask generated randomly (50%). For the mutation operator a Gaussian
distribution was adopted with N (

0, σ2
m

)
, where σ2

m is analytically obtained from
the mutation probability shown in Figure 3. The replacement strategy adopted in
the two algorithms is the Global Elitism. The population p was chosen from the
population size analysis, equation (25). For the GA-MuD algorithm the mutation
percentage was adopted as pm = 100

K.I , i.e., one mutation (one bit) by individual,
in average, which is a normal value found in the literature for this algorithm.
Looking for the algorithms convergence, the adopted number of generations was
increased from G = 40 to G = 60 when the loading was increased from U ≈ 0.32
to U ≈ 0.64.

Figure 4 show that the evolutionary algorithms EP-MuD and GA-MuD p-
Sort converge to the SuB performance after g ≈ 22 and 17 generations, re-
spectively, resulting in a huge performance gain in contrast to the conventional
receiver. For this type of channel, with low load U ≈ 0.32 and perfect power
control, the GA-MuD algorithm shows better convergence than the EP-MuD
algorithm because it uses the crossover and mutation strategies as its diversifi-
cation principle.

Figures 5 to 11 show the performance as a function of signal to noise ratio
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(γ̄) or NFR as well as the generation where the convergence occurs, g, given by
equation (28), for the two algorithms in each performance point. In general, for
all of analyzed conditions and channels, the GA-MuD algorithm converges to the
SuB performance with a smaller g than the EP-MuD algorithm. The slower con-
vergence of EP-MuD algorithm is mainly due to its less efficient diversification
strategy and the absence of any intensification strategy. Note that not neces-
sarily greater convergence velocity results in smaller computational complexity.
The analysis presented in section 5 quantifies the additional complexity in the
crossover stage for the GA-MuD algorithm.
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Generations
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vg

Rake − 1 path
GA Roulette Wheel
GA p−Sort
EP
SuB (BPSK)

7.10−2

Figure 4: Convergence velocity for EP-MuD and GA-MuD; two selection strate-
gies for the GA-MuD (p-Sort and Roulette Wheel); System S1; PD-3 profile;
γ̄1 = 15 dB and NFR = 0 dB.

Figure 5 synthesizes the excellent performance obtained with the GA-MuD
and EP-MuD algorithms for low loads and soft channel conditions. In this situ-
ation the algorithms need a small number of generations for medium and high γ̄

values, showing also the floor noise effects on the convergence velocity for small
values of γ̄.

The general behavior for the algorithms with 2 and 3 paths Rayleigh channel,
PD-2 and PD-3 profiles, respectively, is shown in Figures 6 and 7. Note that
the Rake diversity helps to maintain the excellent performance of evolutionary
algorithms when it has the total exploitation of diversity, D = L, resulting in a
smaller g than the single path case. Even not reaching the total convergence for
some points with low γ̄, as defined by equation (28), the performance obtained
for the GA-MuD and EP-MuD algorithms is very close to the SuB case. For
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the sake of comparison, Figure 6 includes the performance result of the classic
decorrelator for frequency selective fading channel [Zvonar and Brady, 1996]. In
this case, the decorrelating matrix (R−1) has dimension K.I.D ×K.I.D. When
the number of users, processed frame length or multipath diversity increases, the
inverse matrix calculation becomes impracticable. Further, we can verify from
the Figure 6 that the decorrelator performance is inferior to the found with the
evolutionary algorithms.
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Figure 5: BER of system S1, PD-3 profile and NFR = 0 dB.
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Figure 6: BER for the system S1, NFR = 0 dB, PD-2 profile and D = L = 2.
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However in more realistic selective channel scenarios, when occasionally some
paths from the same user can overlap, meaning loss of Rake diversity (non-
discernible paths, D < L), the performance degrades with conventional receivers.
Despite this unfavorable scenario the two evolutionary receivers reach a perfor-
mance that is better than the obtained with the Rake receiver, as indicated in
Figures 8 and 9. In these cases the performance is confined between the SuB lim-
its for D = L and D = 1, because occasionally will occur some non-discernible
paths.
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Figure 7: BER for the system S1, NFR = 0 dB, PD-1 profile and D = L = 3.

The performance illustrated in Figure 8 indicates that the performance of
GA-MuD and EP-MuD receivers converge to a limit where there is no way to
take advantage of the total Rake diversity. This performance limit reaches an
intermediate value between the performance in the absence of diversity (D = 1)
and the performance with maximal diversity (D = L), tending to the worst
case when the number of non-discernible paths increases. The same effect is
present in the performance shown in Figure 9 for the system S2. However, due
to the joint effects of high loading and non-discernible paths, the performance
degrades when confronted with the low loading case. A possible association of
the BER floor effect to the GA-MuD and EP-MuD algorithms performance
should be discarded, because the number of generations used in this condition
was insufficient in order to reach the convergence. Thus, with G > 60 the GA-
MuD and EP-MuD algorithms, for γ̄ = 15 dB, will have the same performance
behavior of Figure 8.

Even for high load in multipath channels the GA-MuD and EP-MuD de-
tection algorithms keep a high performance gain in comparison with the Rake
receiver. Figure 10 synthesizes the performance gain for a channel with PD-2
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profile. The performances are very close to the SuB case, though the number of
generations has been insufficient.
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Figure 8: BER for the system S1, NFR = 0 dB, PD-2 profile with D < L = 2
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Figure 9: BER for the system S2, NFR = 0 dB, PD-2 profile with D < L = 2
occasionally.

In CDMA systems the NFR parameter expresses the power disparities among
users. Conventional CDMA systems are limited by interference; in this way, they
need complex and elaborated power control mechanisms in order to reach their
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theoretical capacity. Receivers that are able to recover the user information de-
spite the adverse conditions imposed by power disparities can help for the sys-
tems implementation complexity reduction.
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Figure 10: BER for the system S2, NFR = 0 dB, PD-2 profile and D = L = 2.

In Figures 11.a and 11.b, the power ratio, on the NFR-axis, is the ratio of
the received power of the interfering users (P

′
1 = P

′
2 = . . . = P

′
K
2
) to the power of

desired users (P
′
K
2 +1

= . . . = P
′
K−1 = P

′
K). These results show that the GA-MuD

and EP-MuD algorithms have a high robustness to the near-far effect, in spite
of the number of generations for the EP-MuD algorithm has been insufficient in
order to reach the total convergence in the high load condition for the system
S2. On the other hand the Rake receiver performance is drastically reduced with
the power increase of interfering users, even with low loads for the system S1.

The performance degradation of the GA-MuD [Ciriaco and Jeszensky, 2005]
and EP-MuD algorithms was also analyzed considering errors in the channel
estimates (module and phase). The performance results (not shown here) indi-
cated that even with great errors in the module and phase estimates, about up
to 15%, the GA-MuD and EP-MuD algorithms reach better performances than
those obtained with the Rake detector in the absence of errors, evidencing the
enormous tolerance of these algorithms to errors in the channel estimates. The
two algorithms are equally more sensitive to phase than module errors.

5 Computational Complexity

A common form in order to compare algorithms complexity can be done through
the O notation, which means the order of magnitude of the algorithm complexity.
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But comparing algorithms only with O can be insufficient, mainly when they are
similar or have the same order of magnitude. This work presents the algorithms
complexity using three figures of merit: the O notation, the number of computed
instructions and the comparison of the mean computational time required for a
specific optimization.
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Figure 11: BER for the system: a) S1 with half of users with γ̄ = 15 dB and
the remainder with NFR ∈ [−5,+15]; b) S2 with half of users with γ̄ = 10 dB
and the remainder with NFR ∈ [−5,+25]; both systems with PD-2 profile and
D = L = 2.

In order to obtain the number of instructions computed by each algorithm,
the float point operations measurement concept was used [Higham, 1996]. This
measure considers as one instruction all those operations, done by a processor,
which show a relevant computational time, named here as main operations. In
this work the multiplication and division were considered as main operations
and addition and subtraction were neglected because their computational times
are irrelevant when compared with the formers.

In the MuD problem other main operations carried out by the algorithms are:
ordination, transposition, comparison, change, generation and selection. These
operations have a complexity proportional to operation order, vector’s size or
the number of elements in a matrix.

In order to express the complexity of the analyzed algorithms it is necessary
to determine which instructions are carried out and how many times they are
processed. For the fitness value calculation, equation (18), the set of operations
F1 = CHAY and F2 = CARACH can be obtained before the optimization loop
of each algorithm. For each test of a candidate solution F1B and BTF2B are com-
puted, which in terms of operations is equivalent to (K.I.D)2 +2K.I.D multipli-
cations and one transposition of order K.I.D. For the OMuD the number of oper-
ations increases exponentially with the number of users, i.e., O (2K.I(K.I.D)2

)
.
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For a system in a fading channel, 2K.I bit generations of order K.I.D and 2K.I

calculations for the fitness value are necessary, for the simultaneous detection
of one frame with I bits for each of the K users. For an AWGN channel the
coefficients matrix is reduced to C = I; for synchronous channel the correlation
matrix dimension is reduced to K × K.

For the EP-MuD algorithm the number of operations increases depending
of the relation O (p.g(K.I.D)2

)
, 2p.g + p − 1 bit generations of order K.I.D,

T.g selections of order K.I.D, p.g + p calculations of the fitness value and 3p.g

ordinations of order K.I.D are necessary. The GA-MuD algorithm computa-
tional complexity also increases depending of the relation O (p.g(K.I.D)2

)
, and

can be obtained adding the crossover operator complexity to the EP-MuD al-
gorithm complexity. This stage performs p.g generations of order K.I.D, p.g

comparisons of order K.I.D and p.g changes of bits of order K.I.D.
Considering that each instruction x will own a proper associated time t(x), a

program Prog, with a constant input, will process r1 times instructions of type
x1, r2 times instructions of type x2, until rm times instructions of type xm. In
this case the execution time for the program Prog will be given by:

Time (Prog) =
m∑

j=1

rjt (xj) (30)

In last analysis the study of the algorithm complexity could be solved through
the evaluation of (30). In order to simplify the computational time evaluation
for each instruction xj , j = 1, ...,m, consider t(x) = 1 for any instruction x.
This simplification is coherent with the use of O notation for computational
analysis, once the instructions duration ratios are obviously constant, which
would be irrelevant for the calculation of order of magnitude of complexity.
Another advantage in to adopt t(x) = 1 is that in this way the value of the
execution time of a program is equaled with the total number of computed
instructions, being respected the order of each instruction.

Instructions (Prog) =
m∑

j=1

rj (31)

Therefore the computational complexity of the EP-MuD, GA-MuD and Opt-
mum MuD receivers can be expressed, in terms of executed instructions, adding
the number of operations of each fitness value with all other operations multi-
plied by its orders, as indicated in Table 5.

Using numerical values from simulations for the variables g, K, I, D, T and
p is possible to express the computational complexity of each algorithm in terms
of the number of operations in order to reach the convergence. These numbers
for various simulated conditions are synthesized in Figures 12 and 13. Given the
excessive number of necessary operations for the OMuD the respective results
are indicated in Table 6.
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Detector Number of Operations

OMuD 2KI
(
(KID)2 + 3KID

)
GA-MuD p (g + 1) (KID)2 + (g (11p + T ) + 4p − 1) (KID)
EP-MuD p (g + 1) (KID)2 + (g (8p + T ) + 4p − 1) (KID)

Table 5: MuD complexity in terms of operations

Complexity PD − 3 PD − 2 PD − 1 PD − 2
OMuD ≈ 6 × 1024 ≈ 2 × 1025 ≈ 5 × 1025 ≈ 1 × 1047

S1 S2

Table 6: Number of operations for the OMuD
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Figure 12: Number of executed operations for the system S1 in channels: a) PD-3
profile (Flat); b) PD-2 profile (2 paths); c) PD-1 profile (3 paths) and d) PD-2
profile with D ≤ L.

For the OMuD increasing the loading from the system S1 to S2 caused an
increase in the number of operations of 22 times in terms of order of magnitude,
making impracticable its implementation in a real scenario. Thus, in this case,
simulation results could not be obtained. On the other hand, the complexity
(in terms of number of operations) of the analyzed evolutionary receivers show
orders of magnitude of 108 for the system S1 and 109 for S2 (no shown here),
indicating a huge complexity reduction in comparison with the OMuD. Addi-
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tionally, increasing the load from U ≈ 0.32 to U ≈ 0.64 caused, approximately
only one order of magnitude increase for the complexity of algorithms GA-MuD
and EP-MuD.

For the same system conditions, comparing the executed number of opera-
tions by the two evolutionary receivers, the difference has an order of magnitude
smaller than 1/2, even when the system load and NFR conditions increases.

When the channel selectivity and the receivers bandwidth allow an increase
in the number of processing paths for the EP-MuD and GA-MuD algorithms,
for example from D = 1 to 2 or 3, the systems will have a better performance
without a significant increase in the complexity. Figure 5 shows that for D = 1
and γ̄ = 15 dB the performance is ≈ 8 × 10−3, while from Figure 7, for D = 3,
and the same value of γ̄ the performance is ≈ 5.5 × 10−4. In order to reach this
performance, the order of magnitude of complexity have increased by only one
order, Figures 12.a and 12.c, justifying the exploration of larger diversities in
evolutionary receivers.

Figure 13 shows that the computational cost for maintaining the near-far
robustness is almost constant for the EP-MuD and GA-MuD algorithms, because
the number of needed operations is of order 108 for the system S1 and 109 for the
system S2, being practically constant in all range of simulated power disparities
and also identical to the perfect power control scenario (NFR = 0).
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Figure 13: Number of executed operations versus NFR in PD-2 profile channels
and system: a) S1 with γ̄ = 15dB; b) S2 with γ̄ = 10dB.

Finally, the computational complexity of the algorithms can be also measured
through the computational time spent by each algorithm in order to conclude one
optimization. A model described in [Fitzpatrick and Grefenstette, 1988], estab-
lishes the computational time required by the evolutionary algorithms in order to
conclude one optimization and indicates that the necessary time depends on the
parameters g and p and the time constants involved in the processes described
in section 3:

Time(Prog) =
m∑

j=1

rjt (xj) = (μ.p + ψ.p) .g (32)

where g is the number of generations for convergence and p is the population
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size given by equation (25). The variable μ represents the fixed amount of evolu-
tionary algorithms overhead time per individual per generation, which includes
the costs of all process described in section 3, but excludes the cost of fitness
evaluations. The variable ψ represents the cost of a single fitness evaluation of
one individual. This model does ignore the cost of population initialization, but
this is reasonable as the runtime costs dominate.

In order to find the constants μ.p and ψ.p, the average time required by each
fitness value evaluation and the average execution time of other processes of
algorithms were measured, for some values of K.I.D. These time averages2 are
presented in Figure 14.

Note that the values of the constants μ and ψ depend on the size of individ-
ual, in this application, K.I.D. Already the population size is proportional only
to the factor K.I. Through these data the average execution time for each opti-
mization can be expressed. The same conclusions obtained with the complexity
analysis in terms of number of operations are now applicable to the analysis of
the computational time of Figures 15 to 16. Again, given the excessive number
of operations for the OMuD the respective results are indicated in Table 7.

0 50 100 150 200 250 300 350
10

0

10
1

10
2

10
3

K.I.D

T
im

e 
(m

s)

Fitness value costs
EP process costs
GA process costs

Figure 14: Average computational time (over 1000 trials) for the fitness value
and the processes of evolutionary algorithms, in milliseconds.

The GA-MuD algorithm needs a lightly smaller computational time than
the EP-MuD in the same simulated conditions and with total convergence for
both. This can be verified, for example, through Figure 15.b combined with the
convergence information of Figure 6, among others.
2 Results obtained with MatLab 7.0 platform for Windows XP in a Athlon 1.6GHz

processor with 512Mb RAM
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Complexity PD − 3 PD − 2 PD − 1 PD − 2
OMuD ≈ 7.8 × 1021 ≈ 6.9 × 1022 ≈ 1.5 × 1023 ≈ 4.4 × 1044

S1 S2

Table 7: Average Computational Time for OMuD detector in [ms]

Again, when total convergence do not occur in G generations for both al-
gorithms, the EP-MuD intrinsically will have a smaller complexity considering
the computational time and a smaller number of operations than the GA-MuD
algorithm because the EP-MuD algorithm has a more simple search strategy.
If the number of generations are increased, assuring total convergence for both
algorithms in terms of equation (28) the EP-MuD algorithm complexity will
be greater than the GA-MuD in terms of the number of operations and also
computational time.
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Figure 15: Computational time for the system S1 in channels: a) PD-3 profile
(Flat); b) PD-2 profile (2 paths); c) PD-1 profile (3 paths); and d) PD-2 profile
with D ≤ L.

Since the optimum values for the parameters pm and T depend on the
DS/CDMA system characteristics, i.e., diversity, loading, signal to noise ratio
and NFR effects, it must be expected a reduction in the convergence generation
for both algorithms when these optimized parameters will be used. It should be
noted that the values of these parameters are fixed and only altered as a function
of loading, for the results of this section. Observe that for D = 1, γ̄ ≤ 10 dB
and low loading, Figure 15.a, the GA-MuD algorithm parameters are not opti-
mized, implying in a greater computational time than the EP-MuD algorithm in
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the same conditions. Therefore, an additional parameters optimization analysis
should be carried out.
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Figure 16: Computational time ×NFR in channels PD-2 profile and systems: a)
S1 with γ̄ = 15 dB; b) S2 with γ̄ = 10dB.

6 Summary

In this work two optimization techniques were analyzed: the GA-MuD and EP-
MuD evolutionary algorithms. These techniques were directly applied to the
optimum detection problem in DS/CDMA communications trying to increase
the system’s capacity. It should be highlighted that very few works deal with
the evolutionary algorithms for MuD in multipath Rayleigh channels. This work
established an efficient comparison, in terms of complexity versus performance,
among multiuser detectors based on the EP-MuD and GA-MuD algorithms in
realistic channels; the performance reduction due to diversity reduction was also
evaluated.

The algorithms comparison through the computational time and the number
of executed instructions has showed to be more adequate than the comparison
using the O notation, because the two analyzed algorithms have similar order
of magnitude of complexity. Therefore, using these two figures of merit it is
possible to compare more precisely the efficiency of the EP-MuD and GA-MuD
algorithms when applied to the MuD problem. The result of the convergence
analysis using these two figures of merit for the complexity shows a small su-
periority for the GA-MuD algorithm in confront with the EP-MuD algorithm
for the analyzed conditions of loading, NFR and when there are losses in the
utilization of multipath diversity.

The EP-MuD and GA-MuD multiuser detectors in Rayleigh fading channels,
flat and multipath, approaches the SuB limit in all analyzed conditions with
the advantage of a huge complexity reduction in comparison with the OMuD,
making feasible its implementation in base stations of cellular systems.

Both algorithms have a relative immunity against channel coefficient errors
and great robustness against NFR effects in low and high load conditions, despite
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that the EP-MuD algorithm not to have converged with G = 60 interactions in
the high load condition.

Future works include the performance analysis in a scenario with estimation
errors for the main DS/CDMA parameters, such as delays, powers and so on.
Finally, as noted before, the set of the EP-MuD and GA-MuD parameters em-
ployed in this work is by no means optimum and further research will concentrate
on how to find other algorithms capable of adjusting these parameters.
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