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Abstract: Characterising liveness using a structure based approach is a key issue in theory of 
Petri nets. In this paper, we introduce a structure causality relation from which a topological 
characterisation of liveness in Petri nets is defined. This characterisation relies on a 
controllability property of siphons and allows to determine the borders of the largest abstract 
class of Petri nets for which equivalence between liveness and deadlock-freeness holds. Hence, 
interesting subclasses of P/T systems, for which membership can be easily determined, are 
presented. Moreover, this paper resumes, from a new point of view, similar results related to 
this issue and, provides a unified interpretation of the causes of the non-equivalence between 
liveness and deadlock-freeness. 
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1 Introduction  

Place/Transition (P/T) nets [Reisig 91] are well-known models for the representation 
and analysis of concurrent systems. The use of structural methods for the behavioural 
analysis of such systems presents two major advantages with respect to other 
approaches: the state explosion problem inherent to concurrent systems is avoided, 
and the investigation of the relationship between the behaviour and the structure (the 
graph theoretical structures and linear algebraic properties associated with the net and 
its initial marking) usually leads to a deep understanding of the system. Here, we deal 
with liveness, i.e., the fact that every transition can be enabled again and again. It is 
well known that this behavioural property is as important as formally hard to treat. 
Although some structural techniques can be applied to general nets, the most 
satisfactory results are obtained when the interplay between conflict and 
synchronisation is limited. An important theoretical result is the concept of controlled 
siphon, i.e. siphon that cannot be insufficiently marked. Indeed, the controlled siphon 
property is a necessary liveness condition, and a sufficient deadlock-freeness 
condition. Although the mechanisms ensuring the control of siphons are not all 
recognised, it is important to obtain a deeper understanding of the causes of the non-
equivalence between liveness and deadlock-freeness. The present work is part of this 
undertaking, concentrating on basic concepts and theoretical results. More precisely, 
it deals with a refined characterisation of the "topological construct" making possible 
the simultaneous existence of dead transitions and live transitions. The interest of 
such a characterisation is to make applicable the structural analysis techniques, in 
particular those related to controlled siphon property, for P/T systems where the 
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interplay between conflict and synchronisation is relaxed. In [Barkaoui and Zouari 
03], we presented notions of ordered transition and root as a basis of a non-liveness 
characterisation and related class definitions. In this paper, we notably revisit this last 
providing related proper formulations. The paper is organised as follows. In section 2 
the basic concepts and notations on P/T systems are recalled. Section 3 is devoted to 
the exploration of some consequences of the deadlock freeness property under non-
liveness hypothesis. The "topological construct" deduced from this exploration not 
only extends the class of systems for which equivalence between liveness and 
deadlock-freeness is ensured, but also permits to revisit some known structural theory 
results from a new point of view. In section 4, we introduce the concept of death 
causality relation, then we present a large abstract class of P/T systems and some 
related subclasses, for which controlled siphon property is a necessary and sufficient 
liveness condition. We compare our results with some similar works, then we present, 
in section 5, computational methods based on structural properties defined in section 
4. Finally, we conclude with a summary of our results. 

2 Basic Definitions and Notations 

This section contains the basic definitions and notations of Petri nets theory [Reisig 
91] which will be needed in the remainder of the paper. 

2.1 Place/Transition systems 

Definition 2.1  
A P/T net is a tuple N = <P, T, F, V> where : 

(i) P ≠ ∅ is a finite set of node places ; 

(ii) T ≠ ∅  is a finite set of node transitions ;  

(iii) F ⊆ (P×T) ∪ (T×P) is the flow relation ;  

(iv) V : F → IN+ is the weight function (valuation) ;  

N is a weighted bipartite graph (where P∩T=∅).  
In the following, we consider a P/T net N= < P, T, F, V >. For technical reasons and 
in order to avoid to treat some uninteresting particular nets, we rule out isolated 
places. 
 
Definition 2.2   

• The preset of a node x ∈ P ∪ T is defined as •x = {y ∈ P ∪ T / (y, x) ∈ F}. 

• The postset of x ∈ P ∪ T is defined as x• = {y ∈ P ∪ T / (x, y) ∈ F}. 
• The preset (postset) of a set is the union of the presets (postsets) of the 

elements.  
• The subnet induced by P' with P' ⊆ P is the net N' = < P', T', F', V' >   where 

T' = •(P')  ∪  (P')•; F' = F ∩ ((P'×T') ∪ (T'×P')) and V' is the restriction of V 
on F'. 

The subnet induced by T' with T' ⊆ T is defined analogously.  
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Definition 2.3   

• A shared place p ( |p•| ≥ 2) is said to be homogeneous iff  

∀t, t’ ∈ p•, V(p, t)= V(p, t'),   (V(p,t) is also denoted by V(p)) 

If all shared places of P are homogeneous: the valuation V is said to be 
homogeneous. 

• A place p ∈ P is said to be non-blocking   iff  

p• ≠ ∅  ⇒  Min t∈•p {V (t,p)} ≥ Min t∈p• {V(p,t)}. 

 
• The definition of the valuation function V of a P/T net N can be extended to : 

W: (P×T) ∪ (T×P) → IN such that : 
 W(u) = V(u) if u ∈ F ;  W(u) = 0 otherwise.  

 
Example 

 
 
 
 
 
 
 
 

Figure 1 : a subnet with homogenous valuation 

Definition 2.4   
� The matrix C indexed by P × T defined by C(p, t) = W(t, p) - W(p, t) is called 

the incidence matrix of the net.  

� An integer vector f (f ≠ 0) indexed by P (f ∈ ZP) is a P-invariant iff ft.C=0t. 
� An integer vector g (g ≠ 0) indexed by T (g ∈ ZT) is a T- invariant  iff  C.g =0 

� || f || = {p∈P | f(p) ≠ 0} (|| g || = {t ∈Τ : g(t) ≠ 0}) is called the support of f (g). 

We denote by  || f ||+ = {p∈P : f(p) > 0}  and by  || f ||-  = {p∈P : f(p) < 0}. 

 
Definition 2.5   
� A marking M of a P/T net N = < P, T, F, V > is a mapping M : P → IN,  

M(p) denotes the number of tokens contained in place p. 
� The pair <N, M0> is called a P/T system and M0 is called the initial marking. 

� The transition t ∈ T is called enabled under M, in symbols M [t〉 , iff  
∀p ∈ •t: M (p) ≥ V (p,t). 

� If M[t〉 , the transition t may occur (fire), resulting in a new marking M', in 

symbols M[t〉M' , with ∀p ∈ P,  M'(p) = M (p) - W (p, t) + W (t, p) . 

3 
3 

3 

1 2 
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� The set of all reachable markings, in symbols Acc(M0), is the smallest set 

such that :   M0 ∈ Acc(M0)  ;    M ∈ Acc(M0) and M[t〉M'   ⇒  M' ∈ Acc(M0). 

If M0 [t1〉M1[t2〉 … Mn-1[tn〉Mn   , then σ = t1t2 … tn is called an occurrence 

sequence (firing sequence). 

In the following, we recall the definition of some basic behavioural properties.  
 
Definition 2.6.  Let <N, M0> be a P/T system. 

� A transition t ∈T is said to be dead for M* ∈ Acc(M0)  iff   

              M ∈ Acc(M*) where M[t〉. 
� A marking M ∈ Acc(M0) is called a dead marking iff ∀t ∈ T, t is dead for M. 

� <N, M0> is deadlock-free (no dead marking)  iff   ∀M ∈ Acc(M0), ∃t ∈ T: M [t〉. 

� A transition t∈T is said to be live for M0 iff ∀M∈ Acc(M0), ∃M'∈ Acc(M): M'[t〉.  

� <N, M0> is live iff ∀t ∈ T, t is live for M0  

   (is not live iff ∃t ∈T dead for M∈ Acc(M0)). 
� A place p ∈P is said to be sufficiently marked for M ∈ Acc(M0) iff  

M (p) ≥ Min t∈p• {V(p,t)}. 

� A place p ∈P is said to be bounded for M0 iff ∃k ∈ IN, ∀M ∈ Acc(M0) : 

M (p) ≤ k. 

� <N, M0> is bounded iff ∀p ∈ P: p is bounded for M0. 

Typically, many subclasses are defined by restricting/eliminating the interleaving 
between choices and synchronisations. Among them:  
 
Definition 2.7.  P/T net subclasses  

� State machines (SM) are P/T nets where each transition has one input place and 

one output place, i.e., ∀t     |•t| = |t•| = 1. 

� Marked Graphs (MG) are P/T nets where each place has one input and one output 

transition, i.e., ∀p     |•p| = |p•| = 1. 

� Join free (JF) nets are P/T nets in which each transition has at most one input 

place, i.e., ∀t ∈T, |•t| ≤ 1. 

� Choice free (CF) nets [Teruel et al., 97] are P/T nets in which each place has at 

most one output transition, i.e., ∀p, |p•| ≤ 1. 

� Free choice (FC) nets [Desel et al., 95] are P/T nets in which conflicts are always 

equal, i.e., ∀t,t',   if  •t ∩ •t' ≠ ∅, then  •t = •t'. 

� Equal Conflict (EC) nets [Teruel et al., 96] are the weighted generalisation of free 

choice nets, i.e.,   if  •t ∩ •t' ≠ ∅, then ∀p, W(p, t) = W(p, t'). 

∃
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� Asymmetric choice (AC) nets [Barkaoui et al., 95] are P/T nets in which conflicts 

are ordered, i.e., ∀p,q ∈P,   if  p• ∩ q• ≠ ∅, then  p• ⊆ q•   or   q• ⊆ p•. 

2.2 Controlled Siphon property 

A key notion of structure theory is the siphon substructure. Let <N, M0> be a P/T 
system 
 

Definition 2.8  A nonempty set S ⊆ P is called a siphon iff  •S ⊆ S•.  
S is minimal iff it contains no other siphon as a proper subset. 

 
In the following, we assume that all P/T nets have homogeneous valuation. 
 
Definition 2.9  Let S be a siphon of <N, M0>,  

S is said to be controlled   iff   S is sufficiently marked at any reachable marking :  
                                                           ∀M ∈ Acc(M0), ∃p ∈ S: M(p) ≥ V(p) 

 

Definition 2.10   <N, M0> is said to be satisfying the controlled-siphon property (cs-
property)   iff   all minimal siphons of  <N, M0> are controlled. 

 

We recall two well-known basic relations (easy to prove) between liveness and 
cs-property [Barkaoui et al., 95]. The first states that the cs-property is a sufficient 
deadlock-freeness condition, the second states that the cs-property is a necessary 
liveness condition. 
 
Proposition 2.11   

<N, M0> satisfies the cs-property  ⇒  <N, M0> is deadlock-free (weakly live). 
 

Proposition 2.12  <N, M0> is live  ⇒  <N, M0> satisfies the cs-property. 
 

In order to check the cs-property, two main structural conditions (sufficient but 
not necessary) permitting to determine whether a given siphon is controlled are 
developed in [Barkaoui et al., 95] [Lautenbach et al., 94].  

 
Proposition 2.13  Let S be a siphon of <N, M0>. If one of the two following 

conditions holds, then S is controlled. 

1. ∃R ⊆ S such that : R• ⊆ •R , R is sufficiently marked at M0, and all places of R 

are non-blocking  (S is said to be trap controlled) 

2. ∃ a P-invariant f (f ∈ ZP) such that  S ⊆ || f || and ∀p ∈ (|| f ||- ∩ S) : V(p) = 1,  

        || f ||+ ⊆ S, and  ∑
p∈ P

 [f(p) . M0 (p)] >    ∑
p∈ S

 [f (p). (V (p )-1)]. 

(S is said to be invariant controlled) 
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If cs-property is a sufficient liveness condition, then the equivalence between 
liveness and deadlock freeness holds. In [Barkaoui et al., 95], this equivalence is 
proven for the class of (unbounded) homogeneous Asymmetric Choice (AC) systems. 
This class contains Join free systems (JF), Equal Conflict (EC) systems [Teruel et al., 
96], and Free Choice (FC) nets. Let us recall that for FC nets, the cs-property 
coincides with the well-known Commoner's property where liveness is monotonic 
[Barkaoui et al., 95] (since siphons are all trap-controlled). Moreover, for bounded FC 
nets, the liveness property is decidable in polynomial time [Desel, 92] [Esparza et al., 
92].  

3 A Non-Liveness Structural Characterisation  

In the following, we deal with P/T systems with homogeneous valuation and 
satisfying the cs-property. Our goal is to refine the "topological construct" behind the 
“pathological” behaviour characterised by a simultaneous existence of dead and live 
transitions (deadlock-free but not live).  

First, let us present a general statement. If we consider a P/T system which is 
deadlock-free but not live, then one can find a singular reachable marking M* from 
which we can partition the set T of transitions into a subset TD of dead transitions and 
a subset TL of live transitions. 

 
Proposition 3.1 Singular marking M* 

Let <N, M0> be a P/T system which is deadlock-free but not live and T the set of 
transitions. There exists a marking M* ∈ Acc(M0) such that  

T = TD ∪ TL ; TD∩TL= ∅ ; TD≠∅ , TL ≠∅  ; 
where   ∀t ∈ TL, t is live for M* , 

 and ∀t' ∈ TD, t' is dead for M* (i.e. not live for M0) 
M*  is called a singular marking of <N, M0> and (TL, TD) the associated partition. 

 
Proof: easy to prove by stating that the set of dead transitions is monotonously 
increasing while transitions occur ; therefore, it finally can reach a maximum. The 
marking reached is singular. As <N, M0> is deadlock-free, TL ≠∅  and, as it is not 
live, TD ≠∅. 

 
Remark : the singular marking M* (and its associated partition (TL, TD)) may not be 
unique for a given P/T system, but there exists at least one. It is important to note that 
TD is maximal in the sense that all transitions that do not belong to TD, will never 
become dead.  
We are only interested in the existence of a singular marking and its associated 
partition, but not in how to determine it.  

In order to define a non-liveness characterisation, let us introduce some new 
structural concepts based on causality relations between dead transitions. Hence, we 
define an ordered transition as a transition for which all its input places are 
comparable. By comparable places, we mean that we can apply the inclusion relation 
on the transition sets associated with their output arcs. 
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Definition 3.2  Ordered transitions 
Let N = < P, T, F, V > be a P/T net . t ∈Τ is said to be ordered    iff   

∀p, q ∈ •t  :  p• ⊆ q• or q• ⊆ p• .  
It is worth to note that the condition to being ordered is the property 

characterising AC nets.  
 

Moreover, we introduce the concept of root, associated with a transition, as an 
input place that is minimum in the sense of the inclusion relation seen above. As the 
minimum may not be unique, we define the set of roots associated with a transition. 

  

Definition 3.3  Root of a transition 

Let N = < P, T, F, V > be a P/T net . Let t ∈Τ /  •t ≠ ∅.  

  r ∈ •t is called a root place of t   iff    ∀p ∈ •t,  r• ⊆ p• 

  Root(t)= {r ∈ •t | r• ⊆ p•,  ∀p ∈ •t} is called the root of t 

 

One can remark that :  •t ≠ ∅, Root (t) =  ∅ ⇒ |•t | ≥ 2 , and   

Root (t)  ≠ ∅ ⇒ |Root (t)| ≤ |•t|. 

∀r,s ∈  Root(t),    r• = s• . 

An ordered transition admits obviously a root place (i.e. Root(t) ≠ ∅), but a 
transition admitting a root place is not necessarily ordered. 

 
Example 

  
 
 
 
 
 
 
 
 

Figure 2 : subnet with ordered and non-ordered transitions  
Root (t1) = {a}, Root (t2) = {b}, Root (t3) = {e}, Root (t4) = {d}.  
transitions t1, t3 and t4 are ordered ; transition t2 is not ordered 

It is worth to note that the class of AC nets can be defined as nets where all 
transitions are ordered.  

 

  a  b 
 d 

 c 

e 
t4 t2 t1 t3 

d 
f 
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Let us now establish a non-liveness characterisation on the basis of the cs-
property and using the concept of non-ordered transitions.  
 
Theorem 3.4 

Let <N, M0> be a not live P/T system satisfying the cs-property, and M* be a 

singular marking of <N, M0>. There exists a non-ordered dead transition t*  

for M*. 

 
Before proving Theorem 3.4, we establish a lemma that defines a particular 

partition of the preset of transition t* (i.e. the set of its input places), for which some 
important properties are exhibited.  

 
Lemma 3.5 

Let <N, M0> be a not live P/T system satisfying the cs-property, M* be a singular 

marking of <N, M0> and t* a dead transition for M*. Then, the input transitions 

set •(t*) can be partitioned in three subsets •(t*)= DP(t*) ∪ LDP(t*) ∪ LLP(t*) such 

that : 

1/ DP(t*)= {p∈•(t*) | •p∩TL= ∅} (places with Dead input transitions),  

verifies :       ∀p∈ DP(t*) , ∀M∈ Acc(M*) : M(p) ≥ V(p,t*) and M(p) = M*(p) 

2/ LDP(t*)= {p∈•(t*) | •p∩TL≠ ∅ and p•∩TL= ∅} (places with Live input 

transitions and Dead output transitions), 

verifies :        ∀p∈  LDP(t*), ∃M∈ Acc(M*) : M(p) ≥ V(p,t*) 

3/ LLP(t*)= {p∈•(t*) | •p∩TL≠ ∅ and p•∩TL≠ ∅} (places with Live input 

transitions and Live output transitions). LLP(t*) contains at least two items and 

verifies :   ∀M∈ Acc(M*),  ∃p∈ LLP(t*) : M(p) < V(p,t*)  

 
Intuitively, DP(t*) is the set of input places of  t* that will never be "supplied" by 

tokens (i.e. their input transitions are dead for M*). These places will always remain 
sufficiently marked. LDP(t*) is the set of input places of t* that would be regularly 
"supplied" but never "emptied" ; these places would be sufficiently marked and are 
not bounded. LLP(t*) is the set of input places of t* that would be regularly "supplied" 
and regularly "emptied", but are never simultaneously sufficiently marked. The places 
of LLP(t*) are at the origin of the non-liveness of t*.  

 
Proof of Lemma 3.5 :  

In order to prove the first point, we have to prove that :  

∀p∈•(t*) : •p∩TL= ∅  ⇒  p•∩TL=∅  (A1) 
Suppose (A1) is not true. In this case, there exists a place p with all its input 

transitions in TD (i.e. •p∩TL= ∅) and at least one output transition tv in TL (i.e. 

p•∩TL≠ ∅). Since tv is live, there exists a firing sequence that makes place p not 
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sufficiently marked (as we deal with homogeneous valuations : M(p)<V(p)) because 
all its input transitions are dead. So, tv becomes dead and contradicts the maximality 
of TD. 

Suppose now that the first point of the Lemma is false. Since M*∈ Acc(M*), 

we have ∀t∈TD, ∃pt∈ •t : •pt ∩ TL = ∅ and M*(pt) < V(pt,t). Let S={pt}t∈TD.  

By construction, •S ⊆ TD and TD ⊆ S• (for all pt in S, •pt∩TL= ∅). So, S is a siphon. 

Since ∀pt ∈S, M*(pt) < V(pt,t), S is not sufficiently marked for M* and hence, the 
cs-property is contradicted. If S is not minimal, then there is a minimal siphon 
included in S which is not sufficiently marked for M* : this also contradicts the cs-
property. Using now the assertion A1 (if p has no live input then all outputs of p are 
dead), we can deduce that the marking of such places remains unchanged for all 
markings reachable from M*, and point 1 is proved. 

The second point of the lemma can be easily proved : as places in LDP(t*) have 
live input transitions, there exists a firing sequence from M* that makes any of these 
places sufficiently marked. As all their output transitions are dead, there exists a 
firing sequence from M* that makes all these places sufficiently marked and remain 
sufficiently marked for ever. One can remark that places of LDP(t*) are not 
bounded. 

To prove the third point of the lemma, we first prove that LLP(t*) is not empty 
(Card(LLP(t*))>0). Suppose that LLP(t*) = ∅ : any input place of t* having a live 

input transition (there is at least one because •(•t*)∩TL≠ ∅) has no live output 
transition. As the other input places of t* (belonging to DP(t*) or LDP(t*)) are such 
that their pre-conditions on t* are satisfied at a given M**∈ Acc(M*) and remain 
satisfied (point 1 or point 2 of  lemma), we can reach a marking M from M** such 
that t* would be enabled at M. So, Card(LLP) ≥ 1. Suppose now that 
Card(LLP(t*))=1 (LLP(t*) ={p1}). As p1 has a live input transition and as we deal 
with homogeneous valuations, we would reach a marking M from M* such that p1 
is sufficiently marked for M. Since the other pre-conditions of t* are satisfied for a 
given M**∈ Acc(M*) and remain satisfied (point 1 or point 2 of  lemma), then t* 
would be enabled at this marking, which contradicts t* is dead. So,  
Card(LLP(t*)) ≥ 2. The last property of point 3 of this lemma is easy to prove : if it 
is not true, then there exists a marking M**∈ Acc(M*) where all places of LLP(t*) 
are sufficiently marked, and where all other input places of t* are sufficiently 
marked, that enables t* and contradicts the hypothesis.    

 
Proof of Theorem 3.4 :  

By Proposition 3.1, there exists a singular marking M* and a dead transition t* for 
M* (t*∈TD). We only have to prove that t* is non-ordered. From the previous 
lemma, one can deduce that there exists a marking M**∈ Acc(M*) satisfying  

∀p∈  •(t*) \ LLP(t*) : M**(p) ≥V(p,t*). 

Suppose, by contradiction, that t* is ordered. Thus, the set of places •(t*) can be 
ordered. Hence, one can derive an ordering on LLP(t*). Suppose  

LLP(t*)={p1,p2, …pk} and, without loss of generality, we may assume p1
•⊆ …⊆ pk

•. 

As p1∈ LLP(t*) (i.e. p1
•∩TL≠ ∅), ∃t∈ p1

•  such that t is enabled at a marking M 
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reachable from M**. Since ∀p∈LLP(t*) : p∈•t (because p1
•⊆ …⊆ pk

•) and 
valuation is homogeneous, t* would be enabled at M, that contradicts the dead 
hypothesis of t*. Thus, t* is a non-ordered transition.     

Example 
The following figure illustrates a P/T system for which Theorem 3.4 is applicable. 
 
 
 
 
 
 
 
 

Figure 3 : a P/T system not live but satisfying the cs-property 

S1={p1,p2} and S2={p3} are the minimal siphons of this system. S1 and S2 are 
controlled and therefore, the system satisfies the cs-property. Transition t3 is a non-
ordered dead transition for the present marking. One may remark that if p3 is not 
marked (i.e. M*(p3)=0), siphon S2 will not be controlled. Regarding the previous 
lemma, DP(t3)={p3}, LDP(t3)=∅ and LLP(t3)={p1, p2}. 

As we consider non-ordered transitions as well as ordered ones, it is important to 
note, that Theorem 3.4 establishes a more general non-liveness characterisation than 
that of AC systems (where only ordered transitions are considered). Hence, one can 
derive, from Theorem 3.4, a unified proof that cs-property is a necessary and 
sufficient liveness condition for the particular systems where all transitions are 
ordered (AC systems). 

We established a non-liveness characterisation based on the concept of structural 
order associated with transitions. If we only consider the case of ordered transitions 
(as it is the case of AC nets), the link between cs-property and liveness is easily 
identified. This non-liveness refined characterisation not only permits to revisit this 
known result [Barkaoui et al., 95] from a new perspective, but using a topological 
reasoning, it would also extend the applicability domain of the cs-property to systems 
with non-ordered transitions.  

4 A Death Causality Relation and DC-Systems 

In this section, we are concerned by P/T systems admitting non-ordered transitions 
which represent a more general class, as the interplay between conflict and 
synchronisation is more relaxed due to the presence of non-ordered transitions. For 
this general class, we aim to establish a necessary and sufficient liveness condition for 
P/T systems using the cs-property. 

Let us consider P/T systems with non-ordered transitions. We denote by To  the 
subset of ordered transitions and by Tno the subset of non-ordered transitions :  

T = To ∪ Tno  ; ( To ∩ Tno = ∅) 

In a first stage, we define a new causality relation between transitions which 
relies on death dependencies. We call this relation the death causality relation. It is 

t3 

t1 t2 p1 

p2 
p3 p4 
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based on the following principle : a transition t' is causally dependent upon transition 
t, if the death of t leads to (implies) the death of t'. More precisely, transition t' 
becomes dead for a marking M*, once transition t is assumed to be dead for M*. 
Definition 4.1 death causality relation (→) 

Let <N, M0> be a P/T system with N= <P, T, F, V>, and M*∈ Acc(M0) a singular 
marking. 
The death causality relation (denoted by →) is defined on T as follows : 

 ∀ t, t' ∈ T,    t → t'  if and only if  [ t is dead for M*  ⇒  t' is dead for M* ] 
 

The death causality relation can be determined using topological based properties 
of the P/T system as the death propagation by root (proposition 5.1), by pipe 
(proposition 5.2) or by bounded place (proposition 5.3). Now, let us define, for a 
given transition t, the set of all transitions that are causally dependent upon t 
according to the death causality relation previously defined. We call this set the death 
causality set associated with transition t.  

 
Definition 4.2 death causality set 

Let <N, M0> be a P/T system and M*∈ Acc(M0) a singular marking. Let t be any 
transition of T. 
The death causality set associated with t (denoted by D(t)) is the maximum set  
defined as follows :  D(t) = { t' ∈ T :   t → t'  } 

 
Hence, the set D(t) contains all transitions that become dead once transition t is 

assumed to be dead. We present further in this section a computation algorithm  
of D(t).  

Let us now introduce a key property for the definition of DC-systems : if, for each 
non-ordered transition t, its associated death causality set D(t) coincides with the set T 
of all transitions, then the P/T system is said to be satisfying the DC-property (DC for 
"Death Causality", as D(t) covers the whole set of transitions for every non-ordered 
transition). Thus, we can present the class of DC-systems.  

 
Definition 4.3 Class of DC-systems 

Let <N, M0> be a P/T system, T be the set of transitions and Tno be the subset of 
non-ordered transitions.   

<N, M0> is a DC-system   if and only if   ∀t ∈ Tno , D (t) = T . 
 

Now, let's introduce a relevant result for the class DC-system that concerns a 
necessary and sufficient condition for liveness.  
 
Theorem 4.4 

Let <N, M0> be a DC-system. 
<N, M0> is live   if and only if   <N, M0> satisfies the controlled-siphon property 

 
Proof: the proof mainly relies on the non-liveness characterisation of Theorem 3.4 
 ⇒) trivial 
 ⇐) suppose <N, M0> is a not live DC-system satisfying the cs-property 
    by Theorem 3.4, <N, M0> admits a non-ordered dead transition t*. 
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    by definition of DC-system, D(t*)=T. Then, TD=T (all transitions are dead)  
   and cs-property is not satisfied. We obtain a contradiction. 

 
From our better understanding of which requirements are at the heart of non-

equivalence between deadlock-freeness and liveness, we define some interesting 
subclasses of DC-systems for which the membership issue is reduced to examining 
the net without requiring any exploration of the behaviour, i.e. for which membership 
can be structurally ensured.  

First, we define a subclass of DC-systems called Root net systems, exploiting the 
causality relations between output and input transitions of bounded root places.  

 
Definition 4.5  Root net system 

Let <N, M0> be a P/T system where N = < P, T, F, V > is a P/T net. 

<N, M0> is a Root net system  iff  the three following conditions hold : 

(i) ∀t ∈ T: t admits a root place  (i.e. Root(t) ≠ ∅), 

(ii) all root places are bounded. 

(iii) The subnet N* induced by root places is strongly connected. 

 
Determining whether a P/T system is a Root net system is easy from the 
computational point of view. Indeed, this task is similar to the computation of the 
local 'minimum', whenever it exists, to each transition among its input places (which 
minimum may not be unique). 

It is worth to note that the transitions of a Root net system are not necessarily 
ordered, but requires that every transition has (at least) a root place.  

 
Theorem 4.6    

Let <N, M0> be a Root net system. 

<N, M0> is live   if and only if   <N, M0> satisfies the controlled-siphon property. 

 
Proof  
Due to the particular structure of N* (strong connectivity of the subnet induced by 
root places), one can ensure that ∀t ∈ Tno : D(t) = T in N* and a fortiori in N. Then 
cs-property implies liveness. 

We define another interesting subclass of DC-systems, called well-structured 
systems (WS-systems), exploiting the fact that in every infinite occurrence sequence 
there must be a repetition of markings under boundedness hypothesis. Nets of this 
subclass are bounded and satisfy the following structural condition: we cannot get a 
T-invariant g such that Tno is not included in ||g||. This class contains strictly the one 
T-invariant nets from which (ordinary) bounded nets covered by T-invariants can be 
approximated as proved in [Lautenbach et al., 94].  
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Definition 4.7  Well-structured system 
Let <N, M0> be a non-ordered system. <N, M0> is a well-structured system (WS-

system) if the two following conditions are satisfied : 

(i) N is bounded. 

(ii) ∀ T-invariant g, Tno  ⊆ || g ||  
Theorem 4.8  

Let <N, M0> be a well-structured system. 

<N, M0> is live if and only if it satisfies the controlled-siphon property. 
 
Proof: Let <N, M0> be satisfying the cs-property but not live. Consider a singular 
marking M* and its associated partition (TL, TD). Consider the subnet induced by TL. 
According to Theorem 3.4, this subnet is live and bounded for M*. Hence, There 
exists necessarily a firing sequence for which count-vector is a T-invariant and not 
covering a non-ordered transition t*. This contradicts condition (ii) of definition 4.7. 

Example of a DC-System :  

The P/T system described in Figure 4 ( where Tno ={t3} ) satisfies the two 
previous conditions of well-structured system definition. Indeed, it is conservative 
(bounded for any M0 ) and the non-ordered transition t3 is included in any T-invariant 
(moreover, by applying the structural rules, we can check that D(t3) = T).  

This system is a DC-system. One can remark that it is neither an AC system nor a 
state machine decomposable. It contains four minimal siphons: S1={a,b,d},  
S2= {e,c,f}, S3 ={e,b,d} and S4 = {a,f,d}.  

This system is not an Extended Asymmetric Choice (EAC) system [Aalst et al., 
98] because the acyclic relation required in the definition of EAC is not satisfied for 
input places (a and b) of transition t3. 

Under the following four structural marking conditions, these siphons are 
invariant  controlled: on S1: a +b+2d >0; on S2:  e+c+f >1; on S3: a+b+d-f >0,   
on S4: a+f+d-e >0.  

So, this DC-system is live for any marking M0 satisfying the previous four 
conditions (e.g. M0  = a +b + e +f).  
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Figure 4 : Example of a DC-system  

It is worth to note that the defined class of DC-systems contributes in providing a 
'unified' understanding of the equivalence and the non-equivalence between liveness 
and deadlock-freeness in many known classes of nets.  

Hence, one may observe, that a live and bounded AC system is a Root net system, 
but the converse is not true. 

Extended Asymmetric Choice (EAC) systems presented in [Aalst et al., 98], 
permit test arcs and are defined on the basis of a non-cyclic relation on input places of 
any transition. Interesting structural characterisations have been exhibited and authors 
proved the Commoner's Theorem in one direction (necessary liveness condition) for 
EAC. By comparison, DC-systems introduce some "topological features", as non-
ordered transition, that are not considered in EAC systems (see example of Figure 4), 
and for which a necessary and sufficient liveness condition is established using the cs-
property. 

Another interesting class of nets presenting similar results is multi-level 
deterministically synchronised processes (DS)*SP systems [Recalde et al., 01]. We 
recall that (DS)*SP were introduced to generalise the Deterministic Systems of 
Sequential Processes (DSSP) [Souissi, 93]. A (DS)*SP system is recursively built, 
starting from state machine modules, and by connecting modules through 
communication buffers. Although it is not obvious to make a strict comparison with 
DC-systems, one may observe that the restrictions imposed on the buffers ('private 
destination' principle, preservation of the equal conflict sets of modules by buffers) in 
(DS)*SP, does not allow to describe systems as the DC-system of Figure 4, since 
more relaxed constraints of conflict/synchronisation are permitted. 

The strong-connectivity of N* (Cf. definition 4.5 of Root net systems) is 
sufficient but not a necessary condition to ensure the DC-property (and the 
membership to DC-systems). By adding appropriate structure to the subnet induced 
by root places (considered as modules), one can provide methods for the synthesis of 
live DC-systems. From this point of view, we can revisit the building process of the 
class of modular systems (DS)*SP. 

5 Computational Methods 

In this section, we study the hard problem of membership to DC-systems from a 
computational point of view. Thus, we present death propagation schemes according 
to the death causality relation previously introduced and based on 'topological' 
features of nets. Then, we present an algorithm that allows determining the causality 
set associated with a given transition. 

Let us consider a P/T system which is deadlock-free but not live. We state the 
following assertion: if a transition t is assumed to be dead for M*, then all the output 
transitions of its root places are also dead for M*. In other words, if the root place of a 
dead transition t is also an input place of another transition t', then transition t' is 
necessarily dead. Hence, the root place plays the role of a death (non-liveness) 
propagation means. 

 
Proposition 5.1 death propagation by root  
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Let <N, M0> be a P/T system deadlock-free but not live, and M* ∈ Acc(M0) be a 
singular marking (by proposition 3.1). Let TD be the subset of dead transitions for 
M* : 

t ∈ TD and t admits a root place r   ⇒   r• ⊆ TD        (i.e.  r• ∩ TL = ∅). 
 
The previous proposition is relevant only when a root place of transition t has 

more than one output transition (i.e. has other output transitions different from t). 
Indeed, if the root place has only t as an output transition, the result is obvious.  

 
 

Example 
 
 
 
 
 
 
 

Figure 5 : subnet with a root place shared by two transitions 
(r is a root place of t ; if t is dead then t' is dead) 

The proof of this proposition relies on the definition of root and on the following 
fact : transition t is dead for M* signifies that its input places remain always not 
sufficiently marked to enable t, for all reachable markings from M*. Moreover, if t 
admits a root place r which is also an input place of a transition t' (see example of 
Figure 5), then all input places of t are also input places of t'. This leads us to deduce 
that input places of t' also remain not sufficiently marked to enable t', for all reachable 
markings from M*. So, transition t' is also dead for M*. 

 
 

Proof:  

 First, let's prove that : •t ⊆ •t' for every t' of r•. 

 As  ∀p ∈ •t , r• ⊆ p• (by definition of root), then  ∀t' ∈ r• , t' ∈ p• (∀p ∈ •t) ; 

  then ∀p ∈ •t , p ∈ •t'  which means •t ⊆ •t' for every t' of r•. 
 Now, let's recall the following : 

  t is dead for M*   ⇔  ∀M ∈ Acc (M*), ∃p ∈ •t : M (p) < V (p,t)
  

           As •t ⊆ •t' (for every t' of r•), then  ∀M ∈ Acc (M*), ∃p ∈ •t' : M (p) < V (p,t') 
      ⇒  t' is dead for M*. 

We can also state the following : if all input transitions of a place are dead for a 
given singular marking, then all its output transitions are dead. Intuitively, if all 
transitions producing tokens in a given place are dead, this place will be empty, and 
then not sufficiently marked to enable its output transitions that act as consuming 

p 

p' 

r 

p" 

t t' 
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transitions over the concerned place. Let's call this statement the death (non-liveness) 
propagation by pipe. Figure 6 illustrates such a configuration.  

 
 

 
 
 
 
 
 
 

Figure 6 : subnet illustrating a 'pipe' configuration  
(if tp1, …, tpn are dead, then tc1,…, tcm are dead) 

 
Proposition 5.2 death propagation by pipe 

Let <N, M0> be a P/T system deadlock-free but not live, and M* ∈ Acc(M0) be a 
singular marking. Let TD be the subset of dead transitions for M* : 

  •p ⊆ TD    ⇒    p• ⊆ TD        (∀p ∈ P). 

Proof:   

    Suppose •p ⊆ TD  and p• ∩ TL ≠ ∅. Then, ∃t ∈ p• such that t is live.  

    Since•p ⊆ TD, one can necessarily reach a marking M**∈ Αcc(Μ∗) for which  

     t becomes dead.  This contradicts that t is live and the maximality of TD. 

 
Finally, we state the following : given a bounded place p, if all output transitions 

of this place p are dead, then all its input transitions are necessarily dead, otherwise 
place p cannot be bounded. Let's call this statement the death (non-liveness) 
propagation by bounded place. Figure 7 illustrates such a configuration.  

 
 

 
 
 
 
 
 
 
 

Figure 7 : subnet illustrating a death propagation by bounded place  
(if tc1, …, tcm are dead, then tp1,…, tpn are dead) 

p (bounded) 

tc1 tc2 tcm 

tp1 tp2 tpn • • •  

• • •  

tc1 tc2 tcm 

tp1 tp2 tpn • • •  

• • •  
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Proposition 5.3 death propagation by bounded place 
Let <N, M0> be a P/T system deadlock-free but not live, and p be a bounded place 
of P. Let M* ∈ Acc(M0) be a singular marking and TD be the subset of dead 
transitions for M* :  

    p• ⊆ TD    ⇒    •p ⊆ TD 

 

Proof:  Suppose p• ⊆ TD and  ∃t ∈ •p : t ∈  TL . 

As p• ⊆ TD, M(p) cannot decrease for all markings M ∈ Acc(M*). 

As t ∈  TL, M(p) will continuously increase for markings M ∈ Acc(M*). 

This contradicts the boundedness hypothesis of p. 

Let's show how the death causality set D(t), associated with a given transition t, 
can be partially determined using rules deduced from the topological based properties 
of death propagation provided by propositions 5.1, 5.2 and 5.3. As these rules do not 
ensure that all elements of D(t) are determined, the algorithm can only be used as a 
sufficient test for a system to be a DC-system.  

 
Initially, we set D(t) = {t} , as t is assumed to be dead. Then, we apply the 

following three rules :  

R1. Let p be a root place of t: t ∈ D(t)  ⇒  p• ⊆ D(t)  (death propagation by root) 

R2. Let p be a place of P:  •p ⊆ D(t)  ⇒  p• ⊆ D(t)    (death propagation by pipe) 

R3. Let p be a bounded place: p• ⊆ D(t) ⇒ •p ⊆ D(t) (death propagation by bounded 
place) 

 
One can easily check the correctness of these rules through propositions 5.1, 5.2 

and 5.3. We present now an algorithm (in Pascal style) for the computation of D(t). Its 
complexity is similar to classical graph traversal algorithms (O (|P| × |T|)). 

 

Algorithm Computing_Dt 
input: a transition t; // t is assumed to be dead 
output: Dt a set of transitions; // D(t)  
Variable: Dt_marked a set of transitions; // transitions for which R1, R2 or R3 have 
been applied   
begin 
 Dt :={t} ; Dt_marked := ∅ ;  
 while ( Dt \ Dt_marked ≠ ∅ ) do 
  get t from (Dt \ Dt_marked) ; 
  Dt_marked := Dt_marked ∪ {t}; // make t marked 

  If r is a root place of t then Dt := Dt ∪ r• ;  // application of R1 

  for each (p ∈ t•) do 

        if (•p ⊆ Dt) then Dt := Dt ∪ p• ;   // application of R2 
  od 
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  for each (p ∈ •t) such that (p is bounded) do 

  if (p• ⊆ Dt) then Dt := Dt ∪ •p ;   // application of R3 
  od  
 od 
end 

 
One may apply this algorithm on P/T system of Figure 4. Then, we can state that 

the only non-ordered transition is t3. Computing D(t3) leads us to deduce that t4 is 
dead (by R2 on d), t2 is dead (by R2 on c), and t1 is dead (by R2 on f). As D(t3)=T 
(and Tno ={t3}), the P/T system is a DC-system.  

6 Conclusion 

In this paper we introduced a non-liveness causality relation based on structure theory 
of Place/transition systems. In particular we present a refined characterisation of the 
non-liveness condition under controlled siphon property. This topological result leads 
us to revisit from a new perspective well known results, and make applicable the 
structural analysis techniques for a large class of P/T systems, called DC-systems, 
where the interplay between conflict and synchronisation is relaxed but for which 
equivalence between deadlock-freeness and liveness holds. 
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