
A Formal Architectural Description Language based on

Symbolic Transition Systems and Modal Logic

Pascal Poizat
(IBISC FRE 2873 CNRS - Université d’Évry Val d’Essonne
Tour Évry 2, 523 place des terrasses, 91000 Évry, France

&
ARLES team, INRIA Rocquencourt

Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France
Pascal.Poizat@inria.fr)

Jean-Claude Royer
(OBASCO team, École des Mines de Nantes - INRIA, LINA

4, rue Alfred Kastler, B.P. 20722, 44307 Nantes Cedex 3, France
Jean-Claude.Royer@emn.fr)

Abstract: Component Based Software Engineering has now emerged as a discipline
for system development. After years of battle between component platforms, the need
for means to abstract away from specific implementation details is now recognized. This
paves the way for model driven approaches (such as MDE) but also for the more older
Architectural Description Language (ADL) paradigm. In this paper we present KADL,
an ADL based on the Korrigan formal language which supports the following features:
integration of fully formal behaviours and data types, expressive component compo-
sition mechanisms through the use of modal logic, specification readability through
graphical notations, and dedicated architectural analysis techniques.

Key Words: Architectural Description Language, Component Based Software En-
gineering, Mixed Formal Specifications, Symbolic Transition Systems, Abstract Data
Types, Modal Logic Glue, Graphical Notations, Verification.

Category: D.2, D.2.1, D 2.2, D 2.10, D.2.11, D.2.13.

1 Introduction

Component Based Software Engineering (CBSE) [Szy98] has now made a break-
through in software engineering as a discipline for software development which
yields promising benefits such as trusted components, assisted component com-
position and adaptation, increase of the reusability level for software parts and
off-the-shelf commercials (COTS). Component middlewares such as
CCM [OMG06], .NET [Pla03], J2EE [Sun03], providing the effective means to
put components into practice, have proven to be crucial elements in the ac-
ceptation of CBSE in the software engineering community. However, a major
drawback of the mainstream approach for CBSE was that it was mainly focused
on low-level (programming and infrastructures) features, making it difficult to

Journal of Universal Computer Science, vol. 12, no. 12 (2006), 1741-1782
submitted: 11/2/05, accepted: 23/12/06, appeared: 28/12/06 © J.UCS

reason on the problematic issues hidden behind the CBSE promised - and yet
not all achieved - results. This was mainly due to the increasing number of com-
ponent middlewares or frameworks, either general ones (CCM, .NET, J2EE) or
specific/extensions ones (e.g., Real-Time CORBA, Lightweight CCM, Fractal).
The search to solutions to this middleware jungle led to different, yet complemen-
tary, proposals such as separation of concerns (Aspect Oriented Programming,
Aspect-Oriented Software Design) [KLM+97, FECA05] or Model Driven Engi-
neering (MDE) [Béz05]. They promote the return to the development of abstract
models before programs (or implementation specific models) and a clear sepa-
ration between the functional (business, platform independent) and the more
technical or implementation related aspects of software systems.

This need for abstraction, at least in the first steps of the development
process, can be adequately supported by Architectural Description Languages
(ADL) [MT00], modelling languages focusing on the composition and interac-
tion aspects of component based systems. To design component systems one
needs first a structuring approach that supports both decomposition oriented
modelling (decomposing requirements and systems into subparts) and composi-
tion oriented modelling (building composites from more simple building blocks).
ADLs address this issue by providing adequate concepts for the modelling of
system architectures, namely components, connectors and configurations.

Components abstract basic composition units of data or computation, with
well-specified interfaces, made up of interacting points called ports, and with
explicit dependencies. It is currently accepted that component interfaces can
be described at four different levels: signature (provided/required operations or
services, with arguments and return values), behaviour (protocols constraining
the order of service calls), semantics (of the operations or services) and qual-
ity of service (QoS) [CMP06]. Connectors are architectural elements modelling
interaction (e.g., communication) between components which then play differ-
ent roles for these connectors. Configurations, or architectures, are made up of
components, connectors and bindings between interfaces (or ports) and roles.
Higher-level concepts, such as architectural patterns (reusable abstract config-
urations) and architectural families or styles (restricting configurations to fixed
types of components, connectors and bindings) then build on this simple ADL
ontology, described in Figure 1.

Formal methods are mandatory to verify properties of models before trans-
forming them into code. On a wider scale, formal methods provide abstract and
non ambiguous model description languages, they are also essential to build
tools, to prototype or to test systems. Model driven approaches should integrate
some degree of formalism, if not be completely formal. An important feature of
ADLs is their formal ground. Without it, ADLs are only box-and-line notations.
Formal ADLs have proven very efficient to support both the design, verification

1742 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

RolePort bindings0..* 0..*

Component Connector

0..*1..*

Architecture

Figure 1: Simplified ADL Metamodel (UML notation)

and deployment activities of software architecture and component based engi-
neering [MT00, BI03, PRS04, CPS06], yet mainly taking into account only the
first two component interface levels (signature and behaviours).

With the increase of systems’ complexity, the need for a separation of con-
cerns with reference to static (data types, components signature and semantics
interfaces) and dynamic (behaviours, communication, components behavioural
interfaces) aspects appeared. This issue has been addressed in the formal meth-
ods community by the mixed specification approach where different aspect mod-
els are defined in different specification units. These approaches can be classified
into homogeneous and heterogeneous ones [Poi00]. Homogeneous approaches en-
compass all aspects in a single formal framework, e.g., LTL [RL97], rewriting
logic [Mes92] or TLA [Lam94]). This makes model integration, definition of con-
sistency criteria and verification easier, but at the cost of a lower expressiveness,
adequacy or readability for at least one of the aspects. This is the case with the
formal ADLs, e.g., those based on process algebras such as Wright [AG97] or
Darwin [MK96]. On the opposite, heterogeneous approaches rely on the use of
different domain specific languages dedicated to each of the aspects. Examples
are LOTOS [ISO89], SDL [IT02] or approaches combining process algebras with
the Z specification language (e.g., OZ-CSP [Smi97] or CSP-OZ [Fis97]). This is
also reflected in semi-formal modelling languages such as UML [OMG05] where
static and dynamic aspects are dealt with by different diagrams (class diagrams,
state diagrams, component and interaction diagrams). In these later approaches,
the (formal) links and consistency between the aspects are not defined, trivial,
or lead to combinatorial problems when verifying the models resulting from the
integration of the domain specific ones (the well-known state explosion prob-
lem). This limits either the possibilities of reasoning on the whole system or
the expressiveness of the formalism. Moreover, whatever is the approach used to
deal with mixed specification models, the development of CBSE requires formal
specification languages taking also into consideration expressive means to define
connections between components in software architectures.

1743Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Korrigan [Poi00] is a formal mixed specification language which integrates
two domain specific languages: algebraic specifications for the static aspect and
Labelled Transition Systems (LTS) for dynamic aspects. Both are integrated
into a unifying semantic framework, Symbolic Transition Systems (STS). Com-
munication and interaction between component models in Korrigan is achieved
at a high expressiveness level thanks to modal logic.

In [CPR01b] we have presented the principles of the Korrigan model with-
out entering into the detail of its semantics, the focus was rather on a dedicated
tool-equipped framework. Verification was there addressed through model trans-
formation, using LOTOS as a possible target language, and thereafter taking
advantage of this language tool boxes, e.g., CADP [GLM01]. Prototyping code
generation from Korrigan models to Java had been also defined, translating sep-
arately static models into pure Java and dynamic models and communication
into the Active Java dialect.

Since then, works have addressed extensions of Korrigan, mainly in the CBSE
context, and accordingly of its operational and denotational semantics [ABP04,
MPR04, PNPR05]. Specification integration principles originating from Korrigan

have also made the definition of a generic framework for the integration of for-
mal data types into UML state diagrams possible [APS07]. Our main objective
here is to present the state of the art status for Korrigan operational seman-
tics and address its relation to CBSE through the definition of KADL, an ADL
based on Korrigan principles. KADL inherits STS as the means to describe com-
ponent behavioural interfaces and modal logic as the way to express component
communication.

In [CPR01b], we raised as a perspective the need for verification techniques
dedicated specifically to STS. The available verification means for Korrigan, pre-
sented in [CPR01b], relied on non symbolic specification languages and their
LTS based models, which led to state explosion when using these languages
tools on models where data types are not bounded, e.g., integers restricted to
[1, 2, 3]. This was clearly not satisfactory when verifying interacting components
as they may typically present incompatibilities only for some exchanged values
(e.g., here 4). KADL is therefore equipped with dedicated verification techniques
for STS in the context of component architectural descriptions.

To our knowledge, this is the first approach to propose a formal ADL, deal-
ing with all three first component interface levels (signature, behaviours and
semantics), taking into account both static and dynamic aspects, and with ded-
icated verification techniques avoiding the state explosion problem in presence
of non bounded data types. The article is organised as follows. Section 2 first
sets formal foundations up and then the KADL formal architectural language is
presented in Section 3. Verification techniques are addressed in Section 4. Sec-
tion 5 details relations between our ADL and existing ones, and finally Section 6

1744 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

concludes the article. All through the article we use the ATM benchmark case
study [DOP00] for explanation and demonstration purposes. The comprehensive
case study development in KADL, together with the verification results, can be
found in a Technical Report [PR06].

2 Formal Model

In this Section we present the Korrigan language and its operational semantics.
They support the definition of the KADL ADL, Section 3 and dedicated verifi-
cation techniques, Section 4.

2.1 Metamodel

The core of the Korrigan metamodel is presented in Figure 2, using as usual
the UML class diagram notation [OMG05]. Concepts (or types) are denoted by
classes (boxes). Abstract classes (e.g., Integration View) are distinguished from
concrete ones (e.g., STS) using italic . Relations between concepts are depicted
using UML associations (links). Here, two different ones are used: generalization
(arrows with a white triangle head) and composition (links with black lozenges).
Generalization corresponds to an is-a relationship. It is related to the inheritance
and subtyping concepts of programming languages. Composition corresponds to
a part-of relationship. It denotes that instances of a (composite) class are made
up of other class instances.

View

Glue

ADT

elements

imports

glue

2..*

0..*
0..*

0..*

self

0..*

Event Port

Composition ViewIntegration View

STS Interface
Axiom

Formula

Figure 2: Korrigan Metamodel (UML notation)

Our model is based on the abstract View concept which is used to describe
in a unifying way the different aspects of a component using integration and
composition structuring. A view may either be an Integration View or a Compo-

sition View. Views have a well-defined Interface built on Event Ports. Integration

1745Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

View is an abstraction that expresses the fact that, in order to design a (sim-
ple, basic) primitive component, it is useful to be able to express its different
aspects (here the static and dynamic aspects, with no exclusion of further as-
pects that may be identified later on). This integration is concretely achieved
using Symbolic Transition Systems (STS) which are transition systems equipped
with an underlying Abstract Data Type (ADT), denoted in the transition sys-
tem using self. Integration Views follow a dynamic encapsulation principle: their
static aspects may only be accessed through their dynamic aspect. Component
composition is achieved through Composition Views, made up of several subcom-
ponents (denoted by elements). The subcomponents of a composite can be of any
kind of View . The coordination or communication between the subcomponents
is expressed in a Glue using both algebraic specification Axioms and modal logic
Formulas.

2.2 Interfaces

Components, both primitive and composite ones, have well-defined interfaces
which describe the way they can interact within systems. These interfaces are
sets of event ports, some form of dynamic signature made up of names with offer
parameters (as in LOTOS [ISO89]) and interaction typing (as in SDL [IT02]). A
value emission of a D data type is noted !D and a value receipt ?D.

Communication can be synchronous or asynchronous. Moreover, the com-
munication in composites can be hidden or not. Hidden communication is used
to ensure that the external environment of composites will not be able to com-
municate with them using specific (internal, hidden) ports. An event port may
correspond either to a provided service (events received from the component en-
vironment), to a required service (events sent to the component environment) or
to a synchronizing mechanism (rendez-vous, inherited from LOTOS). Only value
receipts can be made on provided services, and only value emissions on required
ones. Rendez-vous enables one to use both value emissions and value receipts,
but it is restricted to synchronous communication.

Interaction typing means that component types may be associated to event
ports thanks to the TO and FROM keywords. This enables one to state that any
component to be glued on this signature has to satisfy (at least) a given protocol.
This makes the support for a simple form of inheritance possible, see 2.3.5

Example 1 System Requirements. In this article we will demonstrate the use of
KADL on a formal methods benchmark, the ATM or Till System [DOP00]. This
system’s requirements are as follows.

The system is composed of several tills which can access a central resource contain-

ing the detailed records of customers’ bank accounts. A till is used by inserting a card

and typing in a Personal Identification Number (PIN) which is encoded by the till and

1746 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

compared with a code stored on the card. After successfully identifying themselves to

the system, customers may either (i), make a cash withdrawal or (ii), ask for a balance

of their account to be printed. Information on accounts is held in a central database

and may be unavailable in case of network failure. In such a case, actions (i) and (ii)

may not be undertaken. If the database is available, any amount up to the total in the

account may be withdrawn. Withdrawals are subject to a daily limit, which means that

the total amount withdrawn within a day has to be stored on cards. Daily limits are spe-

cific to each customer and are part of their bank account records. Another restriction

is that a withdrawal amount may not be greater than the value of the till local stock.

Tills may keep “illegal” cards, i.e., cards which have failed a key checking. Each

till is connected to the central by a specific line, which may be up or down. The central

handles multiple and concurrent requests. Once a user has initiated a transaction, it is

eventually completed and preferably within some real time constraint. A given account

may have several cards authorized to use it.

With reference to the original case study we add the following extensions:
a management of the local stock of cash within tills, and a daily limit which is
specific to each customer. In 3.5, we will also consider an extension of the network
using a multiplexer. We do not take into account the real time constraints.

Example 2 Interface. The interface of a till is the following one. Inputs (provided
services) are card ?Card to insert the user card, pin ?PinNumber to enter the
PIN, getSum ?Money to enter the desired cash amount, add ?Money to allow an
operator to add money to the till available amount, and rec ?Msg to receive a
message from the bank connection. Outputs (required services) are card !Card

to eject the card, cash !Money to give money, and send !Msg to send a message
on the bank connection.

2.3 Integration Views

Primitive components are sequential components described with two aspects: a
data type description of their functional operations and a behavioural protocol.
Both are integrated within an integration view. In this section we will present
a concrete instantiation of integration views, namely Symbolic Transition Sys-
tems (STS).

2.3.1 Data Type Models

Data types models are defined using algebraic specifications, yielding Algebraic
Data Types (ADT). Model oriented specifications (B machines or Z schemas)
may be used in replacement or in conjunction with these algebraic specifications
following the [APS07] principles. In [PNPR05] we have also done experiments
using Java classes.

1747Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Here we give only the necessary insight into algebraic specifications. More
details are given in [AKBK99]. Algebraic specifications abstract concrete im-
plementation languages such as Java, C++, or Python. A signature (or static
interface) Σ is a pair (S, F) where S is a set of sorts (type names) and F a set
of function names equipped with profiles over these sorts. If R is a sort, then
ΣR denotes the signature (S, FR), with FR the subset of functions from F with
result sort being R. X is used to denote the set of all variables. From a signature
Σ and from X , one may obtain terms, denoted by TΣ,X . The set of closed terms
(also called ground terms) is the subset of TΣ,X without variables, denoted by
TΣ. An algebraic specification is a pair (Σ,Ax) where Ax is a set of axioms
between terms of TΣ,X . r↓ denotes the normal form (assumed to be unique) of
the ground term r. [R] denotes the set of all normal form terms of sort R and
r : R means that r has type R. r(u) denotes the application of r to u.

Example 3 Data Type Model (ADT). The Card ADT, Figure 3, is used to specify
the properties of cards which are read by the tills.

Sort Card
Imports Boolean, Natural, PinNumber, Money, Card, Ack, Info

Opns
/* generator of Card */
newCard : Ident x Money x Money x PinNumber x Date -> Card
/* other Card constructors */
noCard : Card /* no card */
updateDailyLimit : Card x Money x Date -> Card /* update daily limit */
/* accessors */
id : Card -> Ident /* client id */
max : Card -> Money /* daily limit */
sum : Card -> Money /* daily amount */
code : Card -> PinNumber /* PIN code */
last : Card -> Date /* last withdraw */

/* axiom variables */
Variables i:Ident; m,s,s1:Money; c:PinNumber; d,d1:Date

Axioms
id (newCard(i, m, s, c, d)) = i
max (newCard(i, m, s, c, d)) = m
sum (newCard(i, m, s, c, d)) = s
code(newCard(i, m, s, c, d)) = c
last(newCard(i, m, s, c, d)) = d
d=d1 => updateDailyLimit(newCard(i, m, s, c, d), s1, d1)

= newCard(i, m, s+s1, c, d)
d!=d1 => updateDailyLimit(newCard(i, m, s, c, d), s1, d1)

= newCard(i, m, s1, c, d1)

Figure 3: Card ADT

In addition to the ADT of data types used in components or exchanged in
communications, a specific ADT is given for each component. It describes the

1748 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

semantics of the functional operations of the component. The behavioural model
of components (their transitions) may use this ADT to denote relations between
the component interactions (inputs or outputs events) and its operations. A
dedicated sort corresponding to the STS is called sort of interest, and a term
of this sort is denoted by self in the STS. We here consider a simple approach
where (i) actions are explicitly given in behaviours and then defined in the
ADT, and (ii) the axioms are fully given by the specifier. In [Roy03] we present
a more automated approach which enables one to derive part of the operations
semantics, namely profiles and left-hand part of axioms, from the behaviours.

Example 4 Component ADT. The Till ADT, Figures 4 and 5, is the ADT which
defines the functional operations available in the tills. We omit the imported
ADT (but for Card, Fig. 3) due to lack of place.

Sort Till
Imports Boolean, Natural, PinNumber, Money, Card, Ack, Info

Opns
/* generator of Till */
newTill : Money x Card x PinNumber x Money x Date x Natural -> Till
/* other Till constructors */
addCash : Till x Money -> Till /* cash adding */
insertCard : Till x Card -> Till /* card insertion */
pin : Till x PinNumber -> Till /* PIN entry */
getSum : Till x Money -> Till /* withdrawal choice */
giveCash : Till -> Till /* cash output */
keepCard : Till -> Till /* keeping the card */
giveCard : Till -> Till /* returning the card */
clock : Till -> Till /* clock increasing */

/* accessors */ /* other observers */ /* guards */
amount : Till -> Money msgValidity : Till -> Info pinOK : Till -> Boolean
card : Till -> Card retry : Till -> Boolean
code : Till -> PinNumber fail : Till -> Boolean
sum : Till -> Money check : Till -> Boolean
date : Till -> Date ack : Till, Ack -> Boolean
counter : Till -> Natural

Figure 4: Till ADT (operations)

2.3.2 Behavioural Models

The behavioural protocols of components, integrating these components data
types, are described in a finite way thanks to Symbolic Transition Systems (STS).
STS have appeared under different forms in the literature [IL01, CMS02, CPR00,
JJRZ05] as a solution to the state (and transition) explosion problem. However,
this problem is essentially not a problem of modelling and specifying systems,
but one of verifying such systems, mainly with model checking. In this Section,

1749Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Variables
a,sum,a2,sum2:Money; c,c2:Card; code,code2:PinNumber; r:Ack; today,today2:Date ; cpt:Natural;
self:Till

Axioms

addCash (newTill(a,c,code,sum,today,cpt),a2) = newTill(a+a2,c,code,sum,today,cpt)
insertCard(newTill(a,c,code,sum,today,cpt),c2) = newTill(a,c2,code,sum,today,0)
pin (newTill(a,c,code,sum,today,cpt),code2)= newTill(a,c,code2,sum,today,cpt+1)
getSum (newTill(a,c,code,sum,today,cpt),sum2) = newTill(a,c,code,sum2,today,cpt)
giveCash (newTill(a,c,code,sum,today,cpt)) =

newTill(a-sum,updateDailyLimit(card(self),sum,today),code,sum,today,cpt)
giveCard (newTill(a,c,code,sum,today,cpt)) = newTill(a,noCard,code,sum,today,cpt)
keepCard (newTill(a,c,code,sum,today,cpt)) = newTill(a,noCard,code,sum,today,cpt)
clock (newTill(a,c,code,sum,today,cpt)) = newTill(a,noCard,code,sum,inc(today),cpt)

/* constant for initialisation */
new = newTill(0,noCard,0,0,0,0)

/* accessors */
amount (newTill(a,c,code,sum,today,cpt)) = a
card (newTill(a,c,code,sum,today,cpt)) = c
code (newTill(a,c,code,sum,today,cpt)) = code
sum (newTill(a,c,code,sum,today,cpt)) = sum
date (newTill(a,c,code,sum,today,cpt)) = today
counter (newTill(a,c,code,sum,today,cpt)) = cpt

/* compute the message to allow withdraw */
msgValidity(self) = newInfo(id(card(self)),sum(self))

/* pin code control: ok, wrong and wrong+3 tests */
pinOK(self) = equals(crypt(code(self)), code(card(self))) AND counter(self) <= 3
retry(self) = NOT equals(crypt(code(self)), code(card(self))) AND counter(self) < 3
fail(self) = NOT equals(crypt(code(self)), code(card(self))) AND counter(self) >= 3

/* local controls of the till and the card */
check(self) = (sum(self) <= amount(self))

AND (
(equals(last(card(self)), date(self))

AND
(sum(card(self)) + sum(self) <= max(card(self))))

OR
(NOT equals(last(card(self)), date(self))

AND
(sum(self) <= max(card(self))))

)

/* acknowledgment from the bank */
ack(self,r) = isOk(r)

Figure 5: Till ADT (axioms)

we focus on modelling issues. Verification will be addressed in Section 4. The
description of an STS may be given either in a graphical form (Fig. 6) or in a
textual form [PNPR05] (better suited for tool processing).

Example 5 Behavioural Model (STS). The behavioural model of tills is given in
Figure 6.

A transition such as cash !sum / giveCash(self) means that the till emits a sum
of money. After this, the giveCash operation is used to decrease correspondingly
the amount of money available in the till and update the daily limit of the card

1750 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

/ insertCard(self,c)

/ giveCash(self)cash !sum(self)

[check(self)]

/ addCash(self,s)
add ?s:Money

T1

T2

T4

T5

T7
card !card(self)

/ giveCard(self)

 / clock(self)

 / clock(self)

 / clock(self)

 / clock(self)

 / clock(self)

pin ?code:PinNumber

/ pin(self,code)

T3 / clock(self)
/ getSum(self,sum)
getSum ?sum:Money

/ keepCard(self)

swallowCard

T6

pin ?code:PinNumber
[retry(self)]

[fail(self)]

/ pin(self,code)

send !msgValidity(self)

[ack(self, r)]

rec ?r:Ack[not ack(self, r)]

/ new

[NOT check(self)]

card ?c:Card

τ

τ

τ

τ τ

τ

τ

 / clock(self)

τ[pinOK(self)]

rec ?r:Ack

Figure 6: Till Behavioural Model (STS)

as specified by the giveCash axiom, Figure 5.

Our STS have the following features. First of all, they rely on both a static
description of a data type (denoted by self) and a dynamic event-oriented one.
Transitions have the form: [guard] event / action. guard is a predicate on self

and possibly received values which has to yield true for the transition to be
fireable. event is a communication event (a communication port name together
with reception variables denoted using ? or/and emission terms denoted using !).
action is the action to be done when the transition is fired. Both the guard and
the action part can be empty. A τ action can be used to denote non observable
(internal) events. In Figure 6 this is used for example to denote the passing of
time.

The main interest with these transition systems is that (i) using open terms
in transitions (received variables), they ensure conciseness (and finiteness) of
behavioural models, and (ii) using an open term in states (self), they define
equivalence classes (one per state) and hence strongly relate the dynamic and
the static (algebraic) representation of a data type.

Definition 1 STS. An STS is a tuple M = (D, (Σ,Ax), S, L, s0, T) where:

– (Σ,Ax) is an algebraic specification,

– D is a sort called sort of interest defined in (Σ,Ax),

1751Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

– S = {si} is a countable set of states,

– L = {li} is a countable set of event labels,

– s0 ∈ S is the initial state, and

– T ⊆ S × TΣBoolean,X × Event(L) × TΣD,X × S is a set of transitions.

Note that countable means that the set may be infinite but can be enumerated.

Events (Event(L)) denote atomic activities that occur in the components.
Events are either: i) hidden (or internal) events: τ , ii) silent events: l, with l ∈ L,
iii) emissions: l!e, with e ∈ TΣ,{self} and l ∈ L, or iv) receptions: l?x : R with
x ∈ X\{self}, R a sort available from (Σ,Ax) and l ∈ L. Internal events denote
internal actions of the components which may have an effect on its behaviour,
yet without being observable from its context. Silent events are pure synchroniz-
ing events, while emissions and receptions naturally correspond, respectively, to
requested and provided services of the components. To simplify we only consider
binary communications here, but emissions and receptions may be extended to
n-ary emissions and receptions. STS transitions are tuples (s, μ, ε, δ, t) for which
s is called the source state, t the target state, μ the guard, ε the event and δ

the action. Each action is denoted by a term with variables where at least self

occurs. A do-nothing action is simply denoted by self. In the forthcoming figures,
transitions will be labelled as follows: [μ] ε / δ.

2.3.3 Semantics

The semantics of STS is formalised using configuration graphs. They are obtained
applying both the unfolding of receptions and the reduction of ground terms to
their normal forms. The process of reducing a ground term is an abstract and
operational way to denote term evaluation, the value being the normal form.

Definition 2 Unfolding. The unfolding of an STS M = (D, (Σ,Ax), S, L, s0,
T), in v0 ∈ TΣD , is the STS G(M, v0) = (D, (Σ,Ax), S′, L, (s0, v0↓), T ′). The
sets S′ ⊆ S ×D and T ′ are inductively defined by the rules:

– (s0, v0↓) ∈ S′

– for each (s, v) ∈ S′

• if (s, μ, τ, δ, t) ∈ T and μ(v)↓= true then
s′ = (t, δ(v)↓) ∈ S′ and ((s, v), true, τ, self, s′) ∈ T ′;

• if (s, μ, l, δ, t) ∈ T and μ(v)↓= true then
s′ = (t, δ(v)↓) ∈ S′ and ((s, v), true, l, self, s′) ∈ T ′;

1752 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

• if (s, μ, l!e, δ, t) ∈ T and μ(v)↓= true then
s′ = (t, δ(v)↓) ∈ S′ and ((s, v), true, l!e(v)↓, self, s′) ∈ T ′;

• if (s, μ, l?x : R, δ, t) ∈ T then for each r : R such that μ(v, r)↓= true,
there is s′ = (t, δ(v, r)↓)) ∈ S′ and ((s, v), true, l!r, self, s′) ∈ T ′.

Pairs (s, v) are called configurations where s is the control state. Let M be
an STS. Its unfolding in a v0 term, G(M, v0), is called a configuration graph.
A configuration graph is a particular STS without reception, where guards are
all equal to true, emission terms are in normal form and actions are do-nothing
actions denoted by self.

2.3.4 Comparison with Statecharts

STS may be (graphically speaking) related to Statecharts [Har87] (or UML state
diagrams [OMG05]). However, there are differences:

– Syntactically, Statecharts are more expressive as STS have no concurrent
states, histories, stub or junctions. Histories can be achieved using specific
variables in the data type underlying the STS. STS have no need for con-
current states: an STS is a sequential component; concurrency, and com-
munication, are achieved through composition using several communicating
STS and the computation of a structured STS from subcomponent STS, see
Section 2.4. Several hierarchical state notations have been defined for our
STS [Poi00] but they are still more simple than the Statecharts ones (e.g.,
transition crossing over states is forbidden) to avoid exponential complexity
when flattening the behavioural models which is a drawback of Statecharts
when verification is the issue [DMY02].

– Semantically, communication between STS is basically synchronous. How-
ever, we have been able to take into account asynchronous communication
(which is important in a component based context) in STS either using spe-
cific variables in the underlying data type [MPR04] or directly in the STS
semantics, which then gets more complicated [APS07]. Therefore, we choose
here to present the purely synchronous communication semantics to be more
simple. Concurrency is asynchronous in STS (as in process algebras such as
CSP or LOTOS). In contrast to this, Statecharts rely on a more complex run
to completion step principle. There is a strong link between an STS and its
corresponding data type. An STS may be seen as a graphical representation
of an abstract interpretation of an algebraic data type [Roy03]. More gener-
ally the integration of STS with formal data types is formally well defined.

– From the design process point of view, STS may be built using conditions
which enable one to semi-automatically derive them from requirements, as
presented in [CPR99].

1753Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

2.3.5 Inheritance

In software engineering, inheritance is one of the key concepts that enable reuse.
Inheritance enables one to add operations (or methods), and to add or strengthen
constraints. It may also be used to perform overloading and masking. Here, a
simple form of inheritance is provided for STS. Inheritance mechanisms are re-
stricted to the adding of new states and new transitions in behaviours. Over-
loading and masking are forbidden since they yield semantic complexity. These
rather strict inheritance constraints however simplify the dynamic descriptions
of views, allow subtyping and ensure some kind of behavioural compatibility.
Here, inheritance semantically corresponds to trace inclusion (the traces of the
super-view are a subset of the traces of the sub-view). More complex behavioural
relations could be used, e.g., [Nie95, Sou96, PV02, CVZ06] but would have to
be extended for STS.

2.4 Composition Views

Integration views are used to define atomic primitive components. Composition
views are introduced to define composites as a set of (sub)components (either
primitive or composite ones) and to explicit composition constraints between
these subcomponents.

2.4.1 Composition Models

Compositions (or composites) are made up of a set of identified (over some
domain Id) subcomponents, {i : Mi, i ∈ Id}, and glue rules which enable one to
specify relations between the subcomponents. This glue is made up of:

– a set of axioms, AxΘ, to define relations between the subcomponents func-
tional operations, between one subcomponent guard and another subcompo-
nent operation or relations between the composite functional operations and
its subcomponents ones. More generally, these axioms are used to denote
constraints on the composite static aspect;

– modal logic state formulas to define relations between the subcomponents
behaviours or relations between the composite behaviour and its subcompo-
nents ones. These formulas are:

• a modal logic state formula, ψ1, to impose constraints (e.g., an invariant)
on the states of the composite, possibly in terms of the states of the
subcomponents;

1 In the sequel, we use over-lined notations, e.g., S, to denote elements related to a
composition.

1754 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

• a modal logic state formula, ψI, to impose additional constraints on
initial states;

• a set of modal logic transition formulas, λ, to impose communication
related constraints in terms of the transitions of the subcomponents.

More generally, these formulas are used to denote constraints on the compos-
ites dynamic aspect. The λ set corresponds typically to the bindings in usual
ADLs, yet being more expressive (see 2.4.3 below), while state formulas and
axioms have no counterpart in such ADLs.

Modal Logics. Modal logics are very powerful means to express properties of
systems. Among them, different temporal logics exist. These logics deal with
evolving truth values (using temporal modal operators) for properties on states
of the dynamic models. There is a first separation between linear (LTL) and
branching time (CTL, CTL∗) logics. Such temporal logics have then been ex-
tended to take actions into account (ACTL, TLA, HML). We advocate that
these logics are also expressive means to coordinate entities. Note that to keep
the computation of the semantics of composites simple, we restrict like HML to
a logic were the temporal modalities are limited to the next operators (EX and
AX in CTL). State formulas correspond to invariants (AG in CTL). The idea is
to be able first to denote whole sets of objects that are to be glued (in the STS
models these objects are states and transitions). This denotation is achieved us-
ing logic formulas, with a set-theoretic semantics: given a set S and a formula f ,
the semantics of f over S is the subset of S elements which satisfy f . Then, the
logic must also take into account coordination and be able to lift the properties
of the subcomponents of a composition up to the composition. This is achieved
using indexed formulas.

Syntax. We first define means to express the properties of transitions. This is
achieved using transition formulas which are defined as:

λ ::= true | l | ¬λ | λ1 ∧ λ2

where a l is an event pattern, i.e., an event name and direction (e.g., e? or
e!). Such patterns are used to match a subset of the transitions. In our model,
patterns correspond to transition labels (e.g., pattern e? matches all the e?
transitions). Properties of states are expressed using state formulas:

ψ ::= P | true | @s | [λ]ψ | ¬ψ | ψ1 ∧ ψ2

where P is a state property (any first order formula which is defined over self in
the ΣBoolean of the STS the formula will be applied to), s a state identifier, and
λ a transition formula. Temporal modalities are inspired from HML. [λ]ψ means
that any outsourcing transition that satisfies λ will lead to a state that satisfies

1755Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

ψ. 〈λ〉ψ, which may be defined as ¬[λ]¬ψ, means that there is one outsourcing
transition that satisfies λ which leads to a state that satisfies ψ.

Transition and state formulas express properties of basic entities. They are
then lifted to compositions (and hence glue) using composition-oriented transi-
tion formulas and composition-oriented state formulas:

λ ::= true | c.λ | ¬λ | λ1 ∧ λ2 ψ ::= true | c.ψ | ¬ψ | ψ1 ∧ ψ2

with c being the identifier of one of the composition components. In any type
of formula, ∨, ⇒, and ⇔ can be defined as usual.

Compositions may use a syntactic sugar: the range operator. This is a way to
denote a set of values, either as an interval (i:[1..N]) or by enumerating the values
(i:{e1,. . . ,en}). The range operator may be associated either with a universal
quantifier (∀) or with a disjunction quantifier (⊕). With φ being any kind of
formula and φ[v/i] denoting the substitution of i by v in φ, their meaning is the
following one:

∀i : [1..N]φi ⇔ φ[1/i] ∧ . . . ∧ φ[N/i]

⊕i : [1..N]φi ⇔ (φ[1/i] ∧ ¬φ[2/i] ∧ . . . ∧ ¬φ[N/i])
∨ . . .∨
(¬φ[1/i] ∧ ¬φ[2/i] ∧ . . . ∧ φ[N/i])

For example, the following formula:

∀i : [1..N](server.send⇔ client.i.receive)

is a shorthand for:

(server.send⇔ client.1.receive)∧ . . . ∧ (server.send⇔ client.N.receive)

Examples of our modal logic formulas, used to glue components, are given
in 2.4.3.

Definition 3 Composite. A composite is a tuple C = (Id, {i : Mi, i ∈ Id},
AxΘ, ψ, ψI, λ) where:

– Id is a set of identifiers,

– {i : Mi, i ∈ Id} is a set of STS (Def. 1),

– AxΘ is a set of axioms,

– ψ and ψI are composition state formulas, and

– λ is a set of composition transition formulas.

1756 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

2.4.2 Semantics

The semantics of transition and state formulas are defined given a model (an
STS) M =< D, (Σ,Ax), S, S0, v0, T > and denote respectively sets of transitions
and sets of states. In the following, we use S(M) to denote the S part of an STS
modelM , T (M) to denote its T part, label(t) to denote the label of a t transition,
source(t) to denote its source state, and target(t) to denote its target state.

The semantics of transition formulas is defined as:

‖true‖M = T (M)
‖l‖M = {t ∈ T (M) | label(t) = l}
‖¬λ‖M = ‖true‖M\‖λ‖M

‖λ1 ∧ λ2‖M = ‖λ1‖M ∩ ‖λ2‖M

true denotes all transitions, whereas a formula l denotes only the transitions
that have this label. Then, other formulas denotations are obtained from these
two base definitions using a set-theoretical approach (difference for ¬ and inter-
section for ∧). Given a model M , a transition t of this model and a transition
formula λ, we have M |=t λ iff t ∈ ‖λ‖M and M |= λ iff M |=t λ for every t in
T (M).

The semantics of state formulas is defined in the same way as:

‖P‖M = {s ∈ S | P (s)}
‖true‖M = S(M)
‖@s‖M = s

‖[λ]ψ‖M = {s ∈ S(M) | ∀t ∈ ‖λ‖M . source(t) = s⇒ target(t) ∈ ‖ψ‖M}
‖¬ψ‖M = ‖true‖M\‖ψ‖M

‖ψ1 ∧ ψ2‖M = ‖ψ1‖M ∩ ‖ψ2‖M

A state property denotes all states for which it is true. A formula [λ]ψ de-
notes (source) states such that all (target) states related by transitions of the λ
denotation are in the ψ denotation. Other denotations are defined in the same
way than transition formulas. Given a model M , a state s of this model and a
state formula ψ, M |=s ψ iff s ∈ ‖ψ‖M and M |= ψ iff M |=s λ for every s in
S(M).

A binding formula on state,
@

∃ x.ψ with x being a variable and ψ a state

formula, is also defined. Its semantics given a model M and a state s is M |=s

@

∃
x.ψ iff M |=s ψ[s/x], where ψ[s/x] denotes the substitution of x by s in ψ. The

following formula,
@

∃ x.〈a〉@x, denotes for example all states for which there is a
loop transition labelled by a.

We may now define global models obtained from a composition. In a first
step, we do not take into account the gluing properties, that is we define a free
global model.

1757Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Definition 4 Free Global Model. Given a composite C = (Id, {j : Mj , j ∈
Id}, AxΘ, ψ, ψI, λ), with Mj∈Id =< Dj , (Σj , Axj), Sj , Lj , s

0
j , Tj >, a free global

model for C is an STS M free(C) =< D, (Σ,Ax), S, L, s0, T > such that:

– D and (Σ,Ax) are obtained from a product type of the ADT specification,
adding the AxΘ glue axioms within;

– S = Πj∈Id j.Sj , L = Πj∈Id Lj, s0 = Πj∈Id j.s
0
j ;

– T ⊆ S × TΣBoolean,X × Πj∈Id(Event(Lj) ∪ {ε}) × TΣD,X × S is defined as
follows:
(Πj∈Idj.sj ,

∧
j∈Id μj , Πj∈Idlj, Πj∈Idδj , Πj∈Idj.tj) ∈ T iff for every j in Id

• if lj = ε then sj = tj , μj = true and δj = self;

• otherwise there is a transition (sj , μj , lj , δj, tj) in Tj .

ε is used to denote a do-nothing event, i.e., a subcomponent which does not
participate in a synchronizing.

A free global composition model is made up of indexed state and transition
products built from states and transitions of the composition subcomponents.
Indexing is used to be able to denote, at the composition level, a property of a
given (named) subcomponent. Apart from this, an interesting property of global
composition models is that they have the same transition system structure than
component models, hence composites can be used as components in larger com-
positions. In the following, we use S(M) to denote the S part of a M model,
s0(M) to denote its s0 part, T (M) to denote its T part, label(t) to denote the
label of a t transition, source(t) to denote its source state, and target(t) to de-
note its target state. Moreover, we define the set of identifiers of a composition
model as Id(M) = {j | ∃s ∈ S(M)∃j.s ∈ s}. Suffixes are used to denote the
projection of a (global) element on a given identifier (e.g., given a t transition,
tc corresponds to the transition of c which has been used to build t).

Coordination using temporal logic is given using a set λ of composition-
oriented transition formulas (all possibly true), and two ψ and ψI composition-
oriented state formulas (both possibly true). The semantics of composition-
oriented transition formulas is defined on free global models in the following
way:

‖true‖M = T (M)
‖c.λ‖M = {t ∈ T (M) | ∃c ∈ Id(M) tc ∈ ‖λ‖Mc

}
‖¬λ‖M = ‖true‖M\‖λ‖M

‖λ1 ∧ λ2‖M = ‖λ1‖M ∩ ‖λ2‖M

The interesting part here is the indexed formulas (c.λ) which are true for a given
t transition of the global model only if there is a subcomponent identified by c in

1758 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

the global model and if λ is true for this subcomponent part of the t transition
(tc). Given a model M , a transition t of this model, and a formula λ, M |=t λ

iff t ∈ ‖λ‖M , and M |= λ iff M |=t λ for every t in T (M). Composition-oriented

state formulas are handled in the same way, and the
@

∃ operator defined earlier
on state formulas can be lifted to composition-oriented state formulas: given a

model M and a state s of this model, M |=s

@

∃ x.ψ iff M |=s ψ[s/x]. Other
formula operators can be lifted up to composition formulas too, such as the [λ]ψ
state formula operator:

‖[λ]ψ‖M = {s ∈ S(M) | ∀t ∈ ‖λ‖M . source(t) = s⇒ target(t) ∈ ‖ψ‖M}

We may now define our glued global models (or global models for short).

Definition 5 Global Model. Given a composite C = (Id, {j : Mj , j ∈ Id},
AxΘ, ψ, ψI, λ), with Mj∈Id =< Dj, (Σj , Axj), Sj , Lj, s

0
j , Tj >, a global model

for C is an STS M(C) =< D, (Σ,Ax), S, L, s0, T > such that:

– let M free(C) =< Dfree, (Σfree, Axfree), Sfree, Lfree, s0free, T free > be the free
global model of C,

– D = Dfree and (Σ,Ax) = (Σfree, Axfree),

– S = {s ∈ Sfree |M free |=s ψ},
– L = Lfree,

– s0 = {s0 ∈ s0free |M free |=s0 ψ ∧ ψI},
– T = {t ∈ T free | ∀λi ∈ λ, M free |=t λi}.

This semantics is supported by the ETS plug-in [Poi05]. It can be obtained in
an on-the-fly way to be more efficient. Thus in practice, we reduce for example
S to be the set of reachable states from s0.

2.4.3 Expressiveness of the Glue

Our glue is expressive and enables us to link symbolic transition systems to
denote synchronizations and communications in an abstract and concise way.
It may also denote complex synchronizations between sequences of states or
transitions as in Figure 16. Here are some examples of basic communication
patterns which can be expressed:

– synchronizing, e.g., c1 and c2 must synchronize on a: c1.a⇔ c2.a;

– event ports connection (ports may have different names): c1.a1 ⇔ c2.a2;

1759Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

– broadcasting (1 to N): ∀i : [1..N](server.send⇔ client.i.receive);

– exclusive peer to peer (1 to 1): server.send⇔ ⊕i : [1..N](client.i.receive);

– as in LOTOS, value passing if glued labels are of sort ?/!, value agreement
if glued labels are of sort !/! (e.g., two components synchronizing on a given
frequency), and value negotiation if glued labels are of sort ?/? (e.g., a given
arbitrary number is chosen by two components before going on communicat-
ing); for more details on value agreement and value negotiation, see [ISO89];

– exclusive states, e.g. c1 and c2 may not be in their on state at the same time:
¬(c1.@on ∧ c2.@on);

– composite event exportation: self.a ⇔ self.sub.a, where self denotes the
current component, being composed of a sub subcomponent.

3 The KADL Architectural Description Language

In this Section we present the KADL ADL and demonstrate its use on a speci-
fication benchmark [DOP00]. We first present simple primitive components and
then architectures. Note that the overall architectural description of the case
study is presented in Figure 14 and that the comprehensive modelling can be
found in a technical report [PR06].

In Figure 7 we relate the Korrigan metamodel on which KADL is based with
the ADL metamodel we have presented in the introduction.

In our model, both Components and Connectors are represented as Views.
Both can be simple (using Integration Views) or composite (using Composition

Views). Architectures are composite components. Ports and Roles correspond to
Event Ports. Among the different kinds of Formulas, the Indexed Formulas refer to
Events of identified subcomponents. These events correspond to the Event Ports

of the components. The bindings between component ports and connector roles
is achieved through the Indexed Formulas part of composites.

3.1 Interface Description Language

Components, both primitive and composite ones are described using boxes with
well-defined interfaces. Their syntax is given in Figure 8.

Component interfaces may be generic on (possibly constrained) data val-
ues (i.e., constants, e.g., N,M:Natural {1<N<M}, Fig. 17), data types (e.g.,
MSG:Sort, Fig. 10), event ports (e.g., G, Fig. 15) and component types (e.g.,
Server, Client, Fig. 15). As in UML, this is denoted by dashed boxes in the top
corners of the components (top left for event ports and component types; top
right for data values and data types). In conjunction with genericity on data

1760 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

View

Glue

ADT

elements

imports

glue

2..*

0..*
0..*

0..*

IndexedF.self

Event

K
O

R
R

IG
A

N
0..*

Event Port

Port Role0..*0..* bindings

Component Connector

0..*1..*

Architecture

0..* 0..*

A
D

L

Composition ViewIntegration View

STS Interface
Axiom

Formula

Figure 7: Relation Between Metamodels (UML notation)

T

synchronous communication

asynchronous communication
a T component
(required service)

communication to (TO)

T

T a T component
communication from (FROM)

(provided service)

(rendez−vous)
a T component
communication with

hidden synchronous communication

hidden asynchronous communication

Figure 8: Notation for Interfaces

types and component types, genericity on event ports yields the expressiveness
of KADL to express patterns. Patterns may be used in KADL to describe general
or common architectures of systems. More information on patterns in KADL will
be presented in Section 3.4 (see Fig. 15 and Fig. 16 for example).

Example 6 Interface. The interface of the Till component is given in Figure 9.
This component is generic on two instances of a MsgConnection component type.
This constrains it to be glued, as far as the send and rec event ports are con-
cerned, with an MsgConnection component or any component that inherits from
it (DropMsgConnection, Fig. 10).

1761Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

pin ?PinNumber

add ?Money

card ?Card
Till

send !Msgrec ?Msg

getSum ?Money cash !Money

card !Card

from ack to data

data, ack : MsgConnection

Figure 9: Till Interface

3.2 Primitive Components

Like any other architectural language, KADL provides the designer with first class
components. However, in KADL, several kinds of contracts can be associated to
components. Both the functional properties (operations) and the dynamic prop-
erties (protocols) of these components can be specified. Moreover, an integrated
semantics is provided through the use of integration views, namely STS, and
their operational semantics which enables one to ensure the consistency between
both aspects using verification techniques developed in Section 4.

Example 7 Primitive Components. We have demonstrated the complete set
(static and behavioural models) of KADL primitive component notations on the
Till component. Its interface has been given in Figure 9, its static model in Fig-
ures 4 and 5, and its behavioural model in Figure 6. To be comprehensive, we
also give the behavioural models of all the other components used in the global
architecture, Figure 14, i.e. the connection, BankInterface and DataBase compo-
nents. Connection components (Fig. 10) are used to model links between tills
and the bank interface. Here, we rely on inheritance (UML-like arrow) to specify
the relation between links with (possible) failures, DropMsgConnection, and links
without message loss, MsgConnection. Failure is modelled using a special down

port in DropMsgConnection (right-hand part of Fig. 10). This method may also
be used to take into account the dynamic creation or deletion of components.

The behavioural models of the last two components, BankInterface and Data-

Base, are given in Figure 11. Altogether, they proceed as follows. The tills send
withdrawal information to the bank interface they are connected to. This cor-
responds to an Info type made up of a client identifier and a requested amount
of money. The bank interface then passes it to the central database, together
with its own identification (which corresponds to a line number). This global
information is stored by the database using the lock action. The database then
checks if the client is known and if he has enough money on his account. The
result of this is then sent back to the till via the bank interface. The information
stored is unstored after the database has finished using it.

1762 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

down

up

send !MSG

receive ?MSG
MsgConnection

send !top(self) / pop(self)

receive ?m:MSG / push(self,m)

DropMsgConnection

MSG : Sort

MSG : Sort

up down / pop(self)

up
/ push(self,m)receive ?m:MSG

send !top(self)

down

/ pop(self)

Figure 10: The MsgConnection and DropMsgConnection Behavioural Models

B1

B2 B3

B4

send !ack(self)

lock !ident(self) !client(self) !sum(self)

[iam(self, bi)]

 / get(self, a)
get ?bi:Natural ?a:Ack

/ receive(self, i)
receive ?i:Info

DB1

/ lock(self, bi, id, s)

[checked(self)] reply !bi(self) !True / unlock(self
[not checked(self)] reply !bi(self) !False / withdraw(self)

[not locked(self, id)]
lock ?bi:Natural ?id:Ident ?s:Money

Figure 11: The BankInterface (left) and DataBase (right) Behavioural Models

3.3 Composite Components

Composition diagrams (Fig. 12) are used to represent the component structure of
composition views. We reuse the UML class diagram notation with aggregation
relations (white diamonds) to denote the concurrent composition of subcom-
ponents into a composite. This has been chosen since the subcomponents of a
composite, and more generally the components of an architecture, usually have
independent life-cycles. As presented earlier on, we also reuse UML notations
for templates/genericity (dashed boxes) and for inheritance (white arrows). We
use the usual UML roles on aggregation relations to identify components and
extend this notation using our range operator. A component interface may be

1763Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Component Name

Component Name Component Name

identifier identifier

Figure 12: Composition Diagrams

associated with a composition by exporting some events of its subcomponents.
Hence, composites are components too, and genericity and pattern issues apply
also to them.

Component Name

Component Name Component Name

Axioms
ϕ
ϕI

indexed identifier

transition formula

identifier identifier

indexed identifier

transition formula

Figure 13: Communication Diagrams

Communication diagrams are composition diagrams complemented with glue
rules (Fig. 13). The axioms (AxΘ) and the state formulas (ψ and ψI) are put in
the composite component as they denote invariants of the composite.

Composition-oriented transition formulas (λ) are represented as follows:

– a communication interface symbol is used to give an information on the
communication type;

– lines (or arrows when the communication is directional) between the inter-
face symbol and the components denote to which components the (indexed)
subparts of the formula applies;

1764 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

– the identification parts are put above the lines and the formula parts below.

For example, a formula such as c1.a1! ⇔ c2.a2? would be represented with
an arrow from component c1, an arrow to component c2, c1 and c2 above the
lines, and a1 and a2 below:

c1−−−−→
a1

� c2−−−−→
a2

If a range operator is used, it is also put above the line, on the side of the compo-
nent to which it applies (e.g., with server.send! ⇔ ⊕i : [1..N](client.i.receive?)
a ⊕ would be put on the client.i side)

server−−−−−−−→
send

� ⊕ i:[1..N] client.i−−−−−−−−−−−→
receive

or above the communication interface symbol if it applies to the whole formula
(e.g., with ∀i : [1..N](server.send! ⇔ client.i.receive?) a ∀ would be put above
the communication interface symbol).

∀ i:[1..N]

server−−−−−−−→
send

� client.i−−−−−−−→
receive

The graphical representation of modal logic formulas is still an open issue
due to the expressiveness of these logics. Some works have addressed this issue
for specific logics, e.g., [DKM+94, MRK+97]. A simple solution leads to archi-
tectural connectors corresponding to the logic propositional connectors. In our
approach we restrict this to the ⇔ logic connector, which is however the most
useful one to represent communication patterns, as demonstrated in 2.4.3. The
Reo [Arb04] coordination language adopts a complementary approach: coordina-
tion is achieved from a fixed set of basic coordinators, and a graphical notation
is defined for each one.

The notion of configurations is also dealt with composite components in
KADL as demonstrated in the following example.

Example 8 System Architecture. The system architecture of the till system is
given in Figure 14. The till system is made up of N TillLines (i.e., a till and its
two communication lines) and the bank with its bank interfaces and database.
The range operator is used both to identify components (e.g., the TillLines and
the BankInterfaces) and to denote glue.

3.4 Connectors

There is no explicit connector in KADL which rather defines a powerful means
to glue things altogether, enabling specific connectors to be defined as particular

1765Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

TillSystem

BankInterfaceTill

BankManager

DataBase

card ?Card

pin ?PinNumber

getSum ?Money b.i : [1..N]

TillLine

bmtills.i : [1..N]

data db

ack

add ?Money

cash !Money

giveCard !Card

till

DropMsgConnection[Info]

DropMsgConnection[Ack]

tills.i.till

send

tills.i.till

rec send

sendreceive

get reply

locklock

receivesend

b.i

b.i db

dbb.i

tills.i.data

tills.i.ack

b.i

tills.i.ack

N:Natural

receive

tills.i.data⊕ i:[1..N]

∀ i:[1..N]

⊕ i:[1..N]

⊕ i:[1..N]

⊕ i:[1..N]

∀ i:[1..N]

Figure 14: System Architecture Communication Diagram

(generic) components or component patterns. This treatment of connectors is
compatible with remarks from [MT00] which state that connectors are partic-
ular kinds of components used to model interactions which, however, may not
correspond to a compilation unit in the implemented system. To complete this
remark we may quote [AG97]: ”explicit connectors are better for intuitive expres-
sion of architecture, implicit connectors as components provide a simpler formal
semantics”.

A connector may then be seen as a generic pattern resulting from an abstrac-
tion over the subcomponents of an architecture. As an example, let us consider
a centralized client-server architecture, with a star topology, where the clients
may additionally communicate altogether as in a ring network (Fig. 15).

This architecture is made up of a Server and several concurrent Clients. The
clients communicate with their two neighbours using their NEXT and PREV

ports. The server communicates with a client using G and H ports. The resulting
StarRing composite component is generic on the number of clients (N), on the
Server and the Client component types, and on the G, H, NEXT, and PREV ports.
The Server and the Clients subcomponents are also generic on, respectively, G

and {H, NEXT, PREV}.
Instead of requiring a rigid encoding of the communications in the state

behaviour of the composition subcomponents, KADL relies on an external (ex-
ogenous) glue, put in the composition models. For example, in the λ part, one

1766 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

ClientServer

s

G

c.i

PREV

s

NEXT

StarRing

H

c.i : [1..N]

i : [1..N]

c.i

c.(i+1) mod N

i : [1..N]

G H, NEXT, PREV

NEXT, PREV
G, H,

{N >= 2}
Server, Client

N:Natural

⊕

∀

Figure 15: StarRing Connector/Pattern using a Communication Diagram

may write (s.G ⇔ c.i.H) to synchronize G of s:Server and H of c.i:Client. To
formally express that communications are exclusive between the server and its
clients (i.e., one client treated at a time), this formula can be refined using the ⊕
operator: s.G ⇔ ⊕i : [1..N] (c.i.H). As explained before, these communication
constraints may be graphically represented, as in Figure 15, by a line joining
the two components with a ⊕ quantifier. The ∀ quantifier, in the same figure,
denotes that the inter-client communication represented here is valid for any
client.

The generic pattern of Figure 15 allows one to instantiate StarRing connec-
tors. One first has to give a concrete server component and several concrete
clients components, and then instantiate the different port parameters. This ex-
ample demonstrates that connectors naturally arise in KADL thanks to its first
class components and its external glue.

3.5 Dynamic Architectures

Architectural descriptions in KADL are inherently dynamic in the sense that,
taking the behavioural aspects of components into account, one may get an op-
erational semantics from the composition of the architectural components using
the definitions in Section 2. Dynamic architectures also means to adapt the archi-
tecture to changes in a system. A demonstrative example is the Faulty-Tolerant
Client-Server (FTCS) [AG97]. This is a classic client-server architecture with an
auxiliary server that can be used whenever the main server goes down. A KADL

specification of FTCS is given in Figure 16.
This example is based on the following communication scheme. Whenever

the main server is on (i.e., the formula main.@on yields) then the server and
the clients may synchronize on G/H. If the main server is off while the auxiliary
server is on, then the same can be achieved using the auxiliary server in place

1767Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

FaultyTolerantSystemClient
H

off

G

on

Server

c.i : [1..N] off
on

G

on

off

{main, aux}

G, H

H

G

N : NaturalServer, Client

Figure 16: Faulty-Tolerant Client-Server

of the main server. The corresponding glue is:

(main.@on ∧ (main.G⇔ ⊕i : [1..N]c.i.H)) ∨
(main.@off ∧ aux.@on ∧ (aux.G⇔ ⊕i : [1..N]c.i.H))

Here, most of the basic client-server pattern was kept, as it was possible to
extend it into a FTCS using the glue. However, dynamic reconfiguration often
yields more complex situations. Dynamic reconfiguration may indeed mean two
(non exclusive) things:

1. dynamic modification of the communications, as in the FTCS example;

2. dynamic modification of the architectural set of components.

To demonstrate the ability of KADL to support also the second case, let us take
into account a modified version of our case study. The tills may now be up or
down, we reuse the principles of Figure 10 for this. The new architecture is given
in Figure 17.

N-1 tills are connected by dedicated TillLines, one each, as before. The Nth

line is now used to connect a Multiplexer and additional Tills (from N to M). The
interface of the multiplexer has to be the same as a till line, yet its dynamic be-
haviour is different. The glue in the multiplexer has to connect any of its related
tills with the b.i.N bank interface. This link must be valid during a complete
cycle of send and receive to avoid the possible interleaving of communications
between the different tills connected to the multiplexer and the rest of the sys-
tem. Such treatment of cycles may be dealt with in KADL using the modal [λ]ψ

operator and the binding operator on states,
@

∃. The glue of the multiplexer for
one till (the jth) and without failure is Φj :

1768 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Till

tills.i : [1..N−1]

tills.N cx

till.j : [1..M−N]

b.i : [1..N]

bm

TillSystem

TillLine

DropMsgConnection

Multiplexer

BankManager

BankInterface

N, M:Natural {1 < N < M}

Figure 17: Multiplexer for the Till System

φ1 = self.till.j.send! ⇔ self.cx.receive?
φ2 = self.cx.send! ⇔ self.send!
φ3 = self.receive? ⇔ self.cx.receive?
φ4 = self.cx.send! ⇔ self.till.j.rec?

Φj =
@

∃ s.[φ1][φ2][φ3][φ4]@s

where
@

∃ s.[φ1][φ2][φ3][φ4]@s denotes a cycle starting from a given state (de-
noted by s), satisfying in sequence φ1 . . . φ4, and ending in the s state.

Formula Φj may be extended to take all the multiplexed tills into account
using the exclusive disjunction operator: ΦMultiplexer = ⊕j : [1..M −N].Φj .

4 Architecture Verification

In order to promote the use of formal methods in the industrial world, we agree
with [Bro85]: most important properties of specifications methods are not only
the underlying theoretical concepts but more pragmatic issues such as readabil-
ity, tractability, support for structuring, possibilities of visual aids and machine
support. The need for machine support, i.e., tools, fully yields for formal archi-
tectural languages [MT00]. In this Section we will briefly present tool-equipped
techniques that we have developed which can be applied to KADL architectures.
We will first present the finite domain ones, i.e., techniques which arbitrarily
restrict the domain of the data types in order to obtain finite LTS from STS. We
will then present new techniques we have developed which rely on the system
architecture and on bounded analysis to obtain an abstraction of the system
which can be verified.

1769Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

4.1 Finite Domain Techniques

In [CPR01b], we have proposed a framework dedicated to Korrigan which fol-
lowed two main principles: openness and extensibility. According to these prin-
ciples, it provided a library for STS and supported model transformation into
other mixed formalisms (Larch, LOTOS and SDL) with the objective to take ad-
vantage of their dedicated verification tools (model checkers or theorem provers).
As the set of possible target model languages evolve, the framework was based
on a class library reifying the different models taken into account. Transforma-
tions were implemented as methods within these classes. This design made the
framework extensible.

Our objective was also to provide tools which could be used in external formal
frameworks. Therefore, we had defined the CLAP (Class Library for Automata
in Python) library [CPR01b] which enabled one to perform (a)synchronous com-
position of any state-transition based models. CLAP served as a basis for xCLAP

[APS07], a tool dedicated to the animation of UML state diagrams extended with
formal data types (either Larch, Z or B). CLAP has been recently reimplemented
and extended as a Java plug-in for Eclipse, ETS [Poi05]. ETS is, as far as we
know, the only tool for state-transition composition which (i) enables the ex-
tension of components with any user-defined feature associated to either states
or transitions, (ii) supports an expressive external composition description lan-
guage for models (glue) and (iii) keeps the structuring on the models resulting
from the composition. ETS is used in Adaptor, a tool dedicated to model-based
software adaptation [CPS06], in order to obtain the models of adaptors which
solve behavioural mismatch between components.

Another important feature of the framework presented in [CPR01b] was the
ability to generate code in a concurrent object-oriented language, Active Java,
from the specifications. This was based on a four steps mechanism, using a
hierarchical approach where control nodes enforced an asynchronous model of
concurrency and a purely synchronous communication between components. The
code generation has been recently improved in [PNPR05] using pure Java. This
implementation relies on controllers which encapsulate protocols and channels
devoted to (possibly remote) communications between components. This enables
both synchronous and asynchronous communication and avoids the need for
centralizing control nodes.

4.2 Symbolic Analysis Techniques

The main drawback of the framework presented in [CPR01b] is that it relies on
model transformation into mixed formalisms whose tools impose to restrict the
domains of variables in order to get finite transition systems (LTS) from the STS
specifications. In cases where a lot of, or complex data types are used, this may

1770 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

prevent verification to be performed on the models (see 4.3, below). Therefore,
since [CPR01b], we have developed symbolic verification techniques which take
advantage of the architectural descriptions and the symbolic description level of
the dynamic models.

We first worked on boundedness procedures for message queues (mailboxes)
of components described using STS. This is an important property of component-
based systems as mailbox unboundedness may cause message loss and service de-
nial. At the model level, unconstrained mailboxes are also a reason for the models
state explosion when verifying them. We have proposed semi-decidable proce-
dures for this in [MPR04] using different mailbox protocols, namely FIFO (First
In First Out) and DICO, an hash-table based abstraction of FIFO. This pro-
posal has then been extended with the notions of bounded analysis and bounded
projection [PRS06]. Bounded analysis tests the boundedness of possibly infinite
systems or part of them (in presence of composition and communication) and
generates finite simulations over which verification can be performed. Bounded
projection is an approach which can make bounded analysis more efficient. The
idea is to select a subset of the data used in the behavioural models (e.g., using
properties of interest and slicing) and then do a partial evaluation of STS using
it. The computation of configuration graphs is adjusted to evaluate only guards
and actions related to the selected data. One can then analyse parts of an STS
which can be bounded and then build an abstraction of it.

These symbolic analysis techniques have been implemented in SyCLAP, an
extension of CLAP (about 4000 lines of Python). They have been successfully
applied to several benchmarks, including different distributed systems protocols
(several versions of the bakery protocol, the slip protocol, resource allocator
protocols), a component based flight reservation system and the example used
in this article.

We have also been interested in theorem proving related techniques for the
verification of STS, focusing on the development of automatic proof strategies
depending on the properties form, and on the interaction between theorem prov-
ing and model checking. In [AR02, NPR04] we have shown that the PVS theorem
prover could be used to conduct proofs on STS models. These works have been
extended in [Roy04] where a temporal logic for STS, CTL*Data, and dedicated
PVS proof techniques, have been defined. Deadlock freedom, but also properties
involving data types have been successfully proved in this context.

4.3 Application to the Example

In this Section we demonstrate verification on our case-study. Comprehensive
descriptions and verifications of the models, together with more discussion on the
limits of the finite domain techniques, are described in a technical report [PR06].

1771Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

An important remark is that the verification of our example with a representative
finite domains tool, namely CADP with LOTOS specifications, has failed due
to the high inter-relation between the behavioural and the static (data types)
aspects in the case study.

Hypotheses and verification technique. In order to illustrate the use of
SyCLAP, we work under the following hypotheses. Clients may type in either
correct or wrong PIN codes. Different (any) amounts can be asked to be with-
drawn. We consider the withdrawal daily limit for an account i as a parameter
MAXi. Closing systems by modelling (restricting the behaviours of) its external
environment is a way to reduce the verification complexity. Yet, this prevents
full-fledged verification. Here the system is not a closed one, i.e., we do not en-
force a given client behaviour: the client may perform actions in any order and
with any values, see Figure 18).

C1

pin !0 ... pin !N
askSum !0 ... askSum!MAXi
[NOT hasCard(self)] getCard ?c:Card / getCard(self, c)
[hasCard(self)] putCard !card(self) / putCard(self)
getCash ?s:Money / getCash(self, s)

Figure 18: Unconstrained Client Model

Then, a global STS for the system can be built from the component STSs,
several client STSs (depending on N, the number of tills in the system) and
the architectural description (which defines correspondences between component
events), and afterwards corresponding configuration graphs can be derived from
this global STS. Information on these graphs, for different system parameters,
are given in tables, e.g., Table 1 (due to lack of place, these graphs have not been
given here because of their size). Sizes are indicated as couples (S,T) where S is
the number of states and T the number of transitions. Variables and constants
not specified in the tables are kept unbound; this is a major difference with finite
domains tools which would require one to bound all data type domains.

N #account max Till amount MAX1 MAX2 size
2 0 1 0 0 (324, 1224)
2 0 1 1 0 (1692, 6724)
2 0 1 1 1 (8872, 36992)
2 1 1 1 1 (15912, 67176)

Table 1: Verification – Configuration Graphs (Part I)

1772 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

In Table 1 one can observe that even with only two tills and a single bank
account (remember that accounts can be shared unless otherwise specified), the
size of the configuration graphs can grow quite big. This is due to the numerous
other variables and constants that have an effect on the system, and this makes
important the use of symbolic techniques.

Model refinement from verification. As explained before, we chose not to
close the system by restricting the clients behaviours. However, symbolic verifica-
tion on the global system using SyCLAP allowed us to find out several problems.
We discovered for example that after swallowCard takes place, the passing of time
(clock) may become the only possible transition of the system. Moreover, we no-
ticed that the set of states where only clock is possible corresponded exactly to
the targets of a swallowCard event. This meant that the two were closely related.
The problem was due to the fact that the tills keep cards after three successive
wrong PIN identifications. The system could be corrected with a more advanced
model, where a client action was added to get the card back.

Safety properties and bounded projection. Another experiment was to
check if the system ensured an exclusive access to bank accounts, which was
related to the possibility of having several clients interacting at the same time
with different tills in the system. A counter-example would have been that two
clients, with the same account number, would withdraw at the same time using
two distinct tills. There, we have applied our abstraction techniques as follows
to avoid state explosion.

The parts corresponding to the database and bank interfaces have been
checked, while the remaining of the system was abstracted and a dedicated com-
ponent was devoted to the simulation of the tills, the clients and the communica-
tion links. The database contains both information on client accounts (account
identification and money amount, i.e., Ident x Money) and information related to
communications (as explained in 3.2: communication line, account information,
and withdrawal request, i.e., Natural x Ident x Money). The overall information
yield by the database is then List[Ident x Money] x List[Natural x Ident x Money],
with constraints that make it equivalent to List[Natural x Ident x Money]. Using
this information, a bounded projection decomposition over only List[Natural x

Ident], the one interesting for our exclusive access property, could be achieved
on the DataBase component STS. Then, building projection and configuration
graphs with SyCLAP, it was possible to prove that the desired exclusive access
property yield, e.g., for N=2, #account=10, MAX=3 and N=3, #account=4,

MAX=2 (see Tab. 2 for information on the related configuration graphs, note
again that unless specified, variables and constants are left unbound).

Other safety properties have also been verified in the same way, e.g., that the
PIN counter is always equal to three after a swallowCard, and that both database
and till amounts are always greater or equal than zero.

1773Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

N MAX #account size
2 2 1 (52, 118)
2 2 2 (193, 564)
2 2 10 (4561, 24580)
2 3 1 (177, 484)
2 3 2 (713, 2568)
2 3 10 (17961, 145960)
3 2 1 (309, 966)
3 2 2 (2351, 9978)
3 2 4 (19461, 107292)
3 3 1 (1895, 7290)

Table 2: Verification – Configuration Graphs (Part II)

Manual abstraction over STS. Note that other abstraction techniques such
as [CGL94, DGG97, BLO98, MV98] could be used in our context. However, this
would require complex manual transformations of the model and the properties.
Meanwhile, some abstractions are quite simple to perform on our STS, either on
the behavioural part or the data part.

As an example, we wanted to check that an existing card is either owned by
the proper client or by the till the client is connected to. This property has been
proven by abstracting the data of the system into the card identity type which
also corresponds to the clients ids. The global product has been computed for
N=1, 2 and 3 without having to choose effective values for the other parameters.
The obtained corresponding configuration graphs were bounded (see Tab. 3) and
the property could be checked.

N size
1 (24, 56)
2 (576, 2688)
3 (13824, 96768)

Table 3: Verification – Configuration Graphs (Part III)

The abstractions of the components STSs were automatic, but the abstrac-
tions on the ADT have been achieved manually. Automation is a perspective.

1774 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

5 Related Work and Models

Numerous works have addressed the formal description and analysis of compo-
nents and architectures. Most of them proceed by adapting in an ADL frame-
work different process algebras (e.g., CSP and the FDR tool for Wright [AG97],
π-calculus for Darwin [MK96], FSP and the LTSA tool for [MKG99, FUMK03],
EMPA for PADL [BCD01] and AEmilia [BBS02]). Graphical representations for
architectures have been initially supported by extensions of semi-formal nota-
tions such as UML 1.x [MRRR02, SR98]. They are now fully supported by UML

2.0 [OMG05]. In this section we compare the KADL ADL with representatives of
these two families, namely Wright for the formal ADLs and UML for the graph-
ical notations that support ADL descriptions. To end, we will relate KADL with
coordination languages as they share common features.

5.1 Formal ADLs

Wright [AG97] is a representative of process algebra based ADLs. It is a formal
ADL with first class components and connectors which can be seen as relook of
CSP, since its syntax and semantics are related to this process algebra and since
the FDR tool is used to verify Wright specifications. Architectures in Wright are
made up of three parts: type definitions, configurations and bindings. The first
part is used to define both component and connector types. A component is
given as a set of ports and a behaviour over these ports. A connector defines a
set of roles and a glue specification. A connector role describes the expected lo-
cal behaviour of the component interacting at this connector and the connector
glue then describes how the local activities of the different roles are coordinated
altogether. The second part of a Wright specification describes an architectural
configuration as a set of instances of component types and connector types. Fi-
nally, the third part describes how the component and connector instances are
connected to define the complete system. Wright supports dynamic reconfigu-
ration. Specific events denote when reconfiguration is permitted and are used
in a separate view of the architecture. The configuration program (configuror)
describes how these events trigger reconfigurations.

The semantics of the Wright constructions is defined by translation into CSP.
This enables one to take advantage of CSP model-checking and behavioural
refinement techniques. Wright allows one to check for connector, configuror, and
attachment consistency using mainly techniques to prove deadlock freedom and
behavioural refinement.

Data types are an important means to define a relation between the dynamic
interface (events) and the functional interface (operations) of components. In
KADL, not only simple dynamic properties but also properties taking into ac-
count semantics information (related to the ADT) are therefore supported, as

1775Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

demonstrated in 4.3. Meanwhile, verification is limited in Wright by state explo-
sion in case of value-passing or value encapsulation. Wright therefore supports
only very simple, bounded, data types. This is an important limitation of all
ADLs based on process algebras. The support of full data types is a major dif-
ference between Wright and KADL. More generally KADL supports STS related
models and is not limited to LTS finite state models such as Wright.

In Wright, connectors explicit the protocol of the connected components
and describe, through the glue, the expected global behaviour of the system
using process algebraic expressions. KADL is more abstract since its glue denotes
modal logic properties of the global system and not directly the global dynamic
behaviour, even if the semantics enables one to obtain it. KADL improves also
readability thanks to graphic notations for behaviours, while Wright process
algebraic notation may be less legible. Finally, Wright has no support for n-ary
composition.

5.2 Graphical Semi-Formal Notations

As seen earlier on, KADL is supported by an UML-inspired graphical notation.
When possible, we suggest to reuse and extend such common software engineer-
ing notations in the design of new formal languages. This paves the way for their
integration in model driven engineering (MDE) and on a wider scale it should
help in their acceptation outside the academic community.

A major problem with UML 1.x was its lack of support for components and
for the definition of clear architectures of concurrent systems [MM98, CPR01a,
Boc04]. Extensions of UML such as UML-RT [SR98] have partly addressed the
same issues than KADL: architectural design, dynamic and functional interfaces
of components, and reusability. While UML-RT is a purely design level notation,
KADL is concerned about formal specification and verification issues. There are
also some other differences, mainly at the communication level, but the major
one is that, to the contrary of UML-RT, KADL enables one to specify both active,
reactive and proactive systems in a uniform way.

UML 2.0 extends, cleans up and clarifies UML 1.x on several points [PD03,
Boc04]. We will focus here on architecture and scalability related ones. UML

2.0 supports a notion of component with ports, a first-class concept that de-
notes instantiable connections. The UML 1.x interface concept is extended to
deal with the required and provided aspects of component interfaces. Protocol
state machines, a restricted form of UML state diagrams, can be used to specify
service invocation sequences in interfaces. Structured classes allow the definition
of hierarchical structures. All these elements are valuable, but mainly syntactic,
improvements which increase the ability and utility of UML to deal with archi-
tecture and scalability. However, due to its expressiveness, UML still lacks means
to check consistency of dynamic behaviours and data types.

1776 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Our concerns about methods and graphical notations for formal languages
are close to [RL97, CR99] ones. However, we think we can reuse UML notations,
or partly extend them using stereotypes or profiles, rather than defining new
notations from scratch. Our notations are also more expressive and abstract
than [RL97] as far as communication issues are concerned. Our approach is dual
to the theoretical approaches that try to formalize the UML [APS07].

5.3 Coordination Languages

In comparison with more usual languages in which the interaction part of com-
positions (i.e., communication, synchronizing) is embedded within the computa-
tion part, coordination languages [PA98] promote separation of concerns hence
the definition of interaction as a first-class entity, described separately from
computation. Coordination languages are split into two categories. Data driven
languages propose expressive but low level communication mechanisms based on
shared data spaces, such as Linda tuple spaces and their Java implementation,
javaspaces. On the contrary, event driven languages such as Reo [Arb04] pro-
mote more abstract coordination patterns based on events corresponding to the
coordinated entities input and output ports.

Our proposal is clearly related to this second category which is, in our opin-
ion, more adequate for the design process than data spaces. The KADL glue,
used separately from the definition of components, can be seen as an expressive
way of modelling coordination patterns. Moreover, taking full formal data types
into account, we extend event based coordination to interactions involving data.
Using STS in place of more usual LTS, we also have a very abstract description
means for behavioural interface description languages and protocols which are
the support for coordination.

6 Conclusion

Architectural Description Languages (ADL) promote abstraction and separation
of concerns in Component Based Software Engineering. They focus on compo-
sition and interaction aspects of systems supporting the component design and
deployment process. They are also the ground on which formal methods can
be applied to analyse component architectures, coordinate components and, if
required, adapt them. As component based systems get more complex, new re-
quirements arise for ADLs and components interfaces description languages. In-
terface descriptions must be available for operations, behaviours, semantics and
quality of service (QoS); and formal techniques must address, when possible, the
specification and verification at these four description levels.

In this article, we addressed both the operation, behavioural and semantics
levels through the definition of KADL, a formal ADL based on ideas from the

1777Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Korrigan specification language. This ADL enables one to describe component
architectures formally, at a good abstraction level, using expressive interaction
structuring mechanisms based on modal logic. Both operations, their semantics
and the behaviours of components are taken into account thanks to the use of
Symbolic Transition Systems (STS), a mixed specification model supporting the
integration of fully formal data types into behaviours. We also addressed the
verification of component architectures through analysis techniques dedicated
to the use of STS in the context of interacting components. This enables one to
avoid the well-known state explosion problem arising when verifying behavioural
protocols integrating data types into lower level formal models such as Labelled
Transition Systems (LTS).

Perspectives concern the integration of KADL in the MDE process trough
model transformations from design level notations such as UML 2.0 to KADL

and from KADL to component implementation languages such as Fractal which,
thanks to its hierarchical structure, may more easily support the transforma-
tion process. We are also working on the integration of (temporal or resource
based) QoS properties in architectures and the extension of our verification and
adaptation techniques to this level.

Acknowledgements

We would like to thank the anonymous reviewers for their numerous remarks
which have helped us to improve the article.

References

[ABP04] M. Aiguier, F. Barbier, and P. Poizat. A Logic with Temporal Glue for
Mixed Specifications. In Foundations of Coordination Languages and Soft-
ware Architectures (FOCLASA’03), volume 97 of Electronic Notes in The-
oretical Computer Science, pages 155–174, 2004.

[AG97] R. J. Allen and D. Garlan. A Formal Basis for Architectural Connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213–
249, 1997.

[AKBK99] E. Astesiano, B. Krieg-Brückner, and H.-J. Kreowski, editors. Alge-
braic Foundation of Systems Specification. IFIP State-of-the-Art Reports.
Springer-Verlag, 1999.

[APS07] C. Attiogbé, P. Poizat, and G. Salaün. A Formal and Tool-Equipped Ap-
proach for the Integration of State Diagrams and Formal Datatypes. IEEE
Transactions on Software Engineering, 33(2), February 2007. to appear.

[AR02] M. Allemand and J.-C. Royer. Mixed Formal Specification with PVS. In
Workshop on Formal Methods for Parallel Programming (FMPPTA’2002)
at the International Parallel and Distributed Processing Symposium
(IPDPS), 2002.

[Arb04] F. Arbab. Reo: a channel-based coordination model for component compo-
sition. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

1778 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

[BBS02] S. Balsamo, M. Bernardo, and M. Simeoni. Combining Stochastic Process
Algebras and Queueing Networks for Software Architecture Analysis. In
International Workshop on Software and Performance (WOSP’2002), pages
190–202, 2002.

[BCD01] M. Bernardo, P. Ciancarini, and L. Donatiello. Detecting Architectural
Mismatches in Process Algebraic Description of Software Systems. In Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA’2001), pages
77–86, 2001.

[Béz05] J. Bézivin. On the Unification Power of Models. Software and System
Modeling, 4(2):171–188, 2005.

[BI03] M. Bernardo and P. Inverardi, editors. Formal Methods for Software Ar-
chitectures, volume 2804 of Lecture Notes in Computer Science. Springer-
Verlag, 2003.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infi-
nite State Systems Compositionally and Automatically. In Computer-Aided
Verification (CAV’98), volume 1427 of Lecture Notes in Computer Science,
pages 319–331. Springer-Verlag, 1998.

[Boc04] C. Bock. UML2 Composition Model. Journal of Object Technology,
3(10):47–73, 2004.

[Bro85] M. Broy. Specification and Top Down Design of Distributed Systems. In
International Joint Conference on Theory and Practice of Software Devel-
opment (TAPSOFT’85), volume 185 of Lecture Notes in Computer Science,
pages 4–28. Springer-Verlag, 1985.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. Model-Checking and Ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[CMP06] C. Canal, J. M. Murillo, and P. Poizat. Software Adaptation. L’Objet,
12(1):9–31, 2006. Special Issue on Coordination and Adaptation Techniques
for Software Entities.

[CMS02] M. Calder, S. Maharaj, and C. Shankland. A Modal Logic for Full LOTOS
Based on Symbolic Transition Systems. The Computer Journal, 45(1):55–
61, 2002.

[CPR99] C. Choppy, P. Poizat, and J.-C. Royer. From Informal Requirements to
COOP: a Concurrent Automata Approach. In Formal Methods Conference
(FM’99), volume 1709 of Lecture Notes in Computer Science, pages 939–
962. Springer-Verlag, 1999.

[CPR00] C. Choppy, P. Poizat, and J.-C. Royer. A Global Semantics for Views.
In Algebraic Methodology And Software Technology (AMAST’00), volume
1816 of Lecture Notes in Computer Science, pages 165–180. Springer-Verlag,
2000.

[CPR01a] C. Choppy, P. Poizat, and J.-C. Royer. Specification of Mixed Systems
in Korrigan with the Support of a UML-Inspired Graphical Notation. In
Fundamental Approaches to Software Engineering (FASE 2001), volume
2029 of Lecture Notes in Computer Science, pages 124–139. Springer-Verlag,
2001.

[CPR01b] C. Choppy, P. Poizat, and J.-C. Royer. The Korrigan Environment. Jour-
nal of Universal Computer Science, 7(1):19–36, 2001. Special issue: Tools
for System Design and Verification.

[CPS06] C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch
in Software Composition. In International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’06), volume 4037 of
Lecture Notes in Computer Science, pages 63–77. Springer-Verlag, 2006.

[CR99] E. Coscia and G. Reggio. JTN: A Java-Targeted Graphic Formal Notation
for Reactive and Concurrent Systems. In Fundamental Approaches to Soft-
ware Engineering (FASE’99), volume 1577 of Lecture Notes in Computer

1779Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Science, pages 77–97. Springer-Verlag, 1999.
[CVZ06] I. Cerná, P. Vareková, and B. Zimmerova. Component Substitutability via

Equivalencies of Component-Interaction Automata. In International Work-
shop on Formal Aspects of Component Software, Electronic Notes in Theo-
retical Computer Science. Elsevier, 2006.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract Interpretation of Reac-
tive Systems. ACM Transactions on Programming Languages and Systems,
19(2):253–291, 1997.

[DKM+94] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith, and Y. S. Ra-
makrishna. A Graphical Interval Logic for Specifying Concurrent Systems.
ACM Transactions on Software Engineering and Methodology, 3(2):131–
165, 1994.

[DMY02] A. David, M. O. Möller, and W. Yi. Formal Verification of UML State-
charts with Real-Time Extensions. In International Conference on Fun-
damental Approaches to Software Engineering (FASE’02), volume 2306 of
Lecture Notes in Computer Science, pages 218–232. Springer-Verlag, 2002.

[DOP00] T. Denvir, J. Oliveira, and N. Plat. The Cash-Point (ATM) ’Problem’.
Formal Aspects of Computing, 12(4):211–215, 2000.

[FECA05] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit. Aspect-Oriented Software
Development. Addison-Wesley, 2005.

[Fis97] C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In 2nd IFIP
Workshop on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), pages 423–438. Chapman & Hall, 1997.

[FUMK03] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification
of Web Service Compositions. In International Conference on Automated
Software Engineering (ASE’2003), pages 152–163. IEEE Computer Society,
2003.

[GLM01] H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001.
EASST Newsletter, 4:13–24, 2001.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex System. Science
of Computer Programming, 8(3):231–274, 1987.

[IL01] A. Ingolfsdottir and H. Lin. A Symbolic Approach to Value-passing Pro-
cesses, chapter Handbook of Process Algebra. Elsevier, 2001.

[ISO89] ISO/IEC. LOTOS: A Formal Description Technique based on the Tem-
poral Ordering of Observational Behaviour. ISO/IEC 8807, International
Organization for Standardization, 1989.

[IT02] ITU-T. Specification and Description Language (SDL), 2002.
[JJRZ05] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic Test Se-

lection Based on Approximate Analysis. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’2005), volume 3440 of Lecture Notes in Computer Science, pages
349–364. Springer-Verlag, 2005.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-
M. Loingtier, and J. Irwin. Aspect-Oriented Programming. In European
Conference on Object-Oriented Programming (ECOOP’97), volume 1241 of
Lecture Notes in Computer Science, pages 220–242, 1997.

[Lam94] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872–923, 1994.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[MK96] J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE), pages 3–14, 1996.

[MKG99] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour Analysis of Soft-
ware Architectures. In Working IFIP Conference on Software Architecture

1780 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

(WICSA1), volume 140 of IFIP Conference Proceedings, pages 35–50, 1999.
[MM98] M. J. McLaughlin and A. Moore. Real-time extensions to UML. Dr. Dobb’s

Journal of Software Tools, 23(12):82, 84, 86–93, 1998.
[MPR04] O. Maréchal, P. Poizat, and J.-C. Royer. Checking Asynchronously Com-

municating Components using Symbolic Transition Systems. In Interna-
tiona Symposium on Distributed Objects and Applications (DOA’04), vol-
ume 3291 of Lecture Notes in Computer Science, pages 1502–1519. Springer-
Verlag, 2004.

[MRK+97] L. E. Moser, Y. S. Ramakrishna, G. Kutty, P. M. Melliar-Smith, and L. K.
Dillon. A Graphical Environment for the Design of Concurrent Real-Time
Systems. ACM Transactions on Software Engineering and Methodology,
6(1):31–79, 1997.

[MRRR02] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins. Mod-
eling Software Architectures in the Unified Modeling Language. ACM
Transactions on Software Engineering and Methodology, 11(1):2–57, 2002.

[MT00] N. Medvidovic and R. N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Transactions
on Software Engineering, 26(1):70–93, 2000.

[MV98] F. Michel and F. Vernadat. Mâıtriser l’explosion combinatoire, réduction
du graphe de comportement. RAIRO, Technique et Science Informatiques,
17:805–837, 1998.

[Nie95] O. Nierstrasz. Regular types for active objects. In Object-Oriented Software
Composition, pages 99–121. Prentice Hall, 1995.

[NPR04] J. Noyé, S. Pavel, and J.-C. Royer. A PVS Experiment with Asynchronous
Communicating Components. In Workshop on Algebraic Development
Techniques (WADT’2004), 2004.

[OMG05] OMG. UML Superstructure Specification, v2.0. Document formal/05-07-
04, August 2005.

[OMG06] OMG. CORBA Component Model Specification, v4.0. Document
formal/06-04-01, April 2006.

[PA98] G. A. Papadopoulos and F. Arbab. Coordination Models and Languages.
In The Engineering of Large Systems, volume 46 of Advances in Computers,
pages 329–400. Academic Press, 1998.

[PD03] B. Powel Douglass. UML 2.0: Incremental Improvements for Scalability
and Architecture. Technical report, I-Logix Inc., 2003.

[Pla03] D. S. Platt. Introducing Microsoft .NET, Third Edition. Microsoft Press,
2003.

[PNPR05] S. Pavel, J. Noyé, P. Poizat, and J.-C. Royer. A Java Implementation of
a Component Model with Explicit Symbolic Protocols. In International
Workshop on Software Composition (SC’05), volume 3628 of Lecture Notes
in Computer Science, pages 115–124. Springer-Verlag, 2005.

[Poi00] P. Poizat. Korrigan : un formalisme et une méthode pour la spécification
formelle et structurée de systèmes mixtes. PhD thesis, University of Nantes,
France, December 2000.

[Poi05] P. Poizat. Eclipse Transition Systems. French National Network for
Telecommunications Research (RNRT), STACS Project Deliverable, 2005.

[PR06] P. Poizat and J.-C. Royer. KADL specification of the cash point case study.

Technical Report RR 2006-07, IBISC FRE 2873 CNRS, Université d’Évry
Val d’Essonne, December 2006.

[PRS04] P. Poizat, J.-C. Royer, and G. Salaün. Formal Methods for Component
Description, Coordination and Adaptation. In International Workshop on
Coordination and Adaptation Techniques for Software Entities (WCAT’04)
at ECOOP, pages 89–100, 2004.

[PRS06] P. Poizat, J.-C. Royer, and G. Salaün. Bounded Analysis and Decom-
position for Behavioural Descriptions of Components. In International

1781Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’06), volume 4037 of Lecture Notes in Computer Science, pages
33–47. Springer-Verlag, 2006.

[PV02] F. Plasil and S. Visnovsky. Behavior Protocols for Software Components.
IEEE Transactions on Software Engineering, 28(11):1056–1076, November
2002.

[RL97] G. Reggio and M. Larosa. A Graphic Notation for Formal Specifications of
Dynamic Systems. In Formal Methods Conference (FM’97), volume 1313
of Lecture Notes in Computer Science, pages 40–61. Springer-Verlag, 1997.

[Roy03] J.-C. Royer. The GAT Approach to Specify Mixed Systems. Informatica,
27(1):89–103, 2003.

[Roy04] J.-C. Royer. A Framework for the GAT Temporal Logic. In International
Conference on Intelligent and Adaptive Systems and Software Engineering
(IASSE’04), 2004.

[Smi97] G. Smith. A Semantic Integration of Object-Z and CSP for the Specifica-
tion of Concurrent Systems. In Formal Methods Europe (FME’97), volume
1313 of Lecture Notes in Computer Science, pages 62–81. Springer-Verlag,
1997.

[Sou96] J.-L. Sourrouille. A framework for the definition of behavior inheritance.
Journal of Object-Oriented Programming, 9(1):17–21, 1996.

[SR98] B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time
Systems. Technical report, Rational Software Corp., 1998.

[Sun03] Sun Microsystems. Java 2 Platform Enterprise Edition Specification, v1.4.
Final release, 11/24/03, November 2003.

[Szy98] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

1782 Poizat P., Royer J.-C.: A Formal Architectural Description Language ...

