Journal of Universal Computer Science, vol. 12, no. 11 (2006), 1651-1678
submitted: 1/5/06, accepted: 15/10/06, appeared: 28/11/06 © J.UCS

Magic Sets for the XPath Language

Jestis M. Almendros-Jiménez
(Dept. de Lenguajes y Computacién Universidad de Almerfa, Spain
jalmen@ual.es)

Antonio Becerra-Terén
(Dept. de Lenguajes y Computacién Universidad de Almeria, Spain
abecerra@ual.es)

Francisco J. Enciso-Banos
(Dept. de Lenguajes y Computacién Universidad de Almeria, Spain
fjenciso@ual.es)

Abstract: The eXtensible Markup Language (XML) is considered as the format of
choice for the exchange of information among various applications on the Internet. Since
XML is emerging as a standard for data exchange, it is natural that queries among
applications should be expressed as queries against data in XML format. This use gives
rise to a requirement for a query language expressly designed for XML resources. World
Wide Web Consortium (W3C) convened to create the XQuery language, concretely, a
typed functional language for querying XML documents. One key aspect of the XQuery
language is the use of the XPath language as basis for handling the structure of an
XML document. In this paper, we present a proposal for the representation of XML
documents by means of a logic program. Rules and facts can be used for representing the
document schema and the XML document itself. In addition, we study how to query by
means of the XPath language against a logic program representing an XML document.
It evolves the specialization of the logic program with regard to the XPath expression.
This specialization technique is based on the well-known transformation technique
called Magic Sets and studied for deductive databases. The bottom-up evaluation of
the specialized program is used for answering the query in the XPath language.

Key Words: Logic programming, XPath language, Magic sets

Category: D.1.6, H.2.3

1 Introduction

The eXtensible Markup Language (XML) is considered as the format of choice for
the exchange of information among various applications on the Internet. The use
of tags makes XML data self-describing, and the extensible nature of XML makes
it possible to define new kinds of documents for specialized purposes. As the
importance of XML has increased, a number of standards has grown up around
it, many of which were defined by the World Wide Web Consortium (W3C).
For example, XML Schema [W3C01] provides a notation for defining new types
of elements and documents; XML Path Language (XPath) [W3C04c] provides a
notation for selecting elements within an XML document; and finally, eXtensible
StyleSheet Language Transformations (XSLT) [W3C04e] provides a notation for

1652 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

transforming XML documents from one representation to another. Since XML
is emerging as a standard for data exchange, it is natural that queries among
applications should be expressed as queries against data in XML format. This
use gives rise to a requirement for a query language expressly designed for XML
resources. W3C convened to create the XQuery language, concretely, a typed
functional language for querying XML documents [W3C04d, Wad02, Cha02].
One key aspect of the XQuery language is the use of the language XPath as
basis for handling the structure of an XML document.

Logic-based languages have been proved useful in many areas since they al-
low to build small, declarative and extensible programs. For the database area,
for instance Datalog has been investigated for querying and rule-based data
manipulation. One of the key aspects of database languages based on logic pro-
gramming, Datalog among others, is the use of a fized-point operator [Apt90]
as evaluation mechanism, following a bottom-up evaluation of the program for
query solving. For efficiency reasons, a program specialization technique called
Magic Sets [BR91] is achieved with regard to a goal.

A XML document basically is a labelled tree with nodes representing composed
or non-terminal items and leaves representing values or terminal items. The
XML schema, which is also an XML document, defines the structure of well-
formed documents and thus it can be seen as a type definition. Therefore, well-
formedness analysis can be seen as type checking [SW03, HP03]. XPath consid-
ered as query language expresses a query against an XML document. Essential
to semi-structured data [ABS00] is the selection of data from incompletely spec-
ified data items as in an XML document. For such data selection, the XPath
language is a path language which provides constructors similar to regular ex-
pressions and ”wildcards” allowing a flexible node retrieval. For instance, let us
consider the following XML document:
Example of XML Document

<books>

<book year="2003">

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

<title>Data on the Web</title>

<review>A fine book.</review>

</book>

<book year="2002">

<author>Buneman</author>

<title>XML in Scotland</title>

<review>The best ever!</review>

</book>
</books>

representing a set of books, where each record stores the authors, titles and
reviews for each book; and each record has an attribute representing the pub-
lishing year. Now, with respect to the above XML document, we can consider

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1653

the following two XPath expressions, as well as the expected answers in XML
format:

XPath Expression Expected XML Answer
(1) /books/book [author=Suciul/title (1) <title> Data on the Web </title>
. <title> Data on the Web </title>
(2) /books//title) it1e> XML in Scotland </title>

where (1) requests Suciu’s book titles, and (2) requests book titles without
taking into account the structure of the book records.

1.1 Contributions of the Paper

In this paper, we are interested in the use of logic programming for handling
XML documents and XPath queries. In this context, our contributions can be
summarized as follows:

e An XML document can be seen as a logic program, by considering facts and
rules for expressing both the XML schema and document. On one hand, rules
can describe the schema of an XML document in which a (possibly recursive)
definition specifies the well-formed documents. On the other hand, each XML
document can be described by means of facts, one for each terminal item.

e Our second contribution is that once XML documents can be described by
means of a logic program, an XPath expression against the document re-
quires to obtain a subset of the Herbrand model [Apt90] represented by
the logic program. In deductive databases, the bottom-up-based computation
model [BR91, ABS01] specializes a logic program with regard to a given
query in order to compute the subset of the Herbrand model needed for an-
swering the query. Our idea is to provide a specialization program method,
but in this case, for handling of XPath expressions. Therefore, we will spe-
cialize the logic program representing an XML document with regard to an
XPath expression in order to get the answer; that is, the XML data relevant
to the query. This specialization technique is based on Magic Sets technique
allowing a bottom-up evaluation of the specialized program in order to obtain
the answer of the query.

Although the XML schema is usually available for XML documents, our
method has been studied for extracting the XML schema from the XML
document itself. It can be considered in a certain sense as type inference.

However, we think that we might adapt our technique to directly translate
XML schemas (or DTD’s) into logic rules.

e Our technique allows the handling of XML documents as follows. Firstly, the
XML document is loaded. It involves the translation of the XML document

1654 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

into a logic program. For efficiency reasons, the rules corresponding to the
XML schema are loaded in main memory, but facts, which basically represent
the XML document, are stored in secondary memory (using appropriate
indexing techniques). Secondly, the user can now write queries against the
loaded document. For query solving, the logic program (corresponding to the
XML schema) is specialized for each query, and the bottom-up evaluation of
such specialized program computes the answer.

e We have developed a prototype called XINDALOG in which we have imple-
mented XPath following the technique presented in this paper. It has been
developed under SWI-Prolog and it is hosted at http://indalog.ual.es/
Xindalog, from which it can be run. We will present benchmarks of our pro-
totype w.r.t. not too structured XML documents and XML documents of
big size.

1.2 Related Work

In order to handle XML documents, some logic languages and formalisms have
been proposed. For instance, XCERPT [SB02] proposes a pattern and rule-based
query language for XML documents using the so-called query terms including
logic variables for the retrieval of XML elements. For this language, a special-
ized unification for query terms has been studied in [BS02]. The same can be
said for XPathLog (LOPIX system) [May04], which is a Datalog-style extension
of XPath with variable bindings. Elog [BFGO01] is also a logic-based XML data
manipulation language which has been used for representing Web documents by
means of logic programming. This is also de case of X-Prolog [CF03] which can
represent XML documents into logic programming by using the DTD definition.
The Rule Markup Language (RULEML) [Bol01] translates Prolog facts and rules
into XML documents allowing the combination of XML and RDF (Resource De-
scription Framework) documents. Finally, some Prolog implementations include
libraries for XML document loading and querying such as SWI-Prolog [Wie05]
and CIAO [CHO1]. In particular, the representation of XML documents using
logic programs was proposed in PiLLoW [CHO1]. In this proposal, the document
or URL is represented as a fact and the document itself (i.e. XML or HTML
code) as a Herbrand term, which the argument of this fact. In this way, the XML
documents are represented as logic programs and also these logic programs are
used in order to access, combine or generate the documents.

In some of cited approaches, [SB02, May04] XPath is directly handled, that
is, rules and queries use a new kind of Prolog terms adapted to XML patterns.
It involves to study new unification algorithms for the new Prolog terms. How-
ever, in our work we will show how to handle XML documents not introducing
new Prolog terms, but using the traditional Prolog terms. It involves to define a

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1655

translation of the structure of XML documents to Prolog terms. It is the same
case as Prolog implementations for loading XML documents using a unique Pro-
log term for the entire XML document. However, we think that our translation
is more refined than Prolog implementations, and suitable for a more efficient
evaluation method.

With respect to the XPath queries, in the approaches [SB02, May04], the
XPath expressions are translated into Prolog goals using the new query terms,
and in the Prolog implementations, XPath is handled by using Prolog predi-
cates. In our case, the XPath queries involve a Magic sets-based program trans-
formation and bottom-up evaluation. One of the advantages of the bottom-up
evaluation is to obtain sets of facts in each step of evaluation, which is called
"set-at-time evaluation” in contraposition to the "tuple-at-time evaluation” of
the traditional top-down evaluation method. It is suitable for databases once
facts can be stored in secondary memory and therefore minimizing disk accesses.
The bottom-up evaluation of the transformed program will obtain the answer
by means of the reconstruction of the XML document representing the result
from the set of obtained facts. The reconstruction assumes the same criteria as
the translation of XML document-logic program.

With regard to [Bol01], we translate XML documents into a logic program
using facts and rules; however we are not still interested in the translation of
logic rules into XML (or RDF) documents. This translation would be interesting
when semantic information (for instance, ontologies) is handled by means of logic
programming. In fact, our idea is to consider these aspects as future work. Our
approach opens two promising research lines.

e The first one, the extending of XPath to a more powerful query language such
as XQuery; that is, the study of the implementation of XQuery in logic pro-
gramming. The current implementations of XQuery are implemented using
as host language a functional language (XDUCE and GALAX) [HP03, MS03].

e The second one, the use of logic programming as inference engine for the so-
called ”Semantic Web”, by introducing RDF documents or OWL (Ontology
Web Language) [W3C04b, W3C04a].

1.3 Structure of the Paper

The structure of the paper is as follows. Section 2 will study the translation
of XML documents into Prolog; Section 3 will present the indexing technique
over XML documents represented by means of logic programming; Section 4
will discuss the magic-sets based technique applied to XPath queries; Section 5
will explain the combination of the indexing and magic sets techniques; Section 6
will show the prototype XINDALOG developed under SWI-Prolog for the language

1656 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

XPath at the University of Almeria (url: http://indalog.ual.es/Xindalog);
Section 7 will present a full set of XPath queries tested in our prototype; Section
8 will show a benchmark of XPath queries tested in our prototype, specifying
their answer times with the program specialization and without program special-
ization w.r.t. an XPath query; and, finally, Section 9 will conclude and present
future work.

2 Translating XML Documents into Prolog

In this section, we will show how to translate an XML document into a logic pro-
gram. As commented in the introduction we will use a set of rules for describing
the XML schema and a set of facts for storing the XML document. With this
aim, we will show a set of general criteria for the building of the Prolog program
from a XML document.

As running example, we will consider the following XML document repre-
senting a book database. In the XML document tags are used for specifying
the structure of each XML element representing, in this case, a set of books
described by means of the names of the authors, the title and a review. Each
book is qualified by means of an attribute called year. For each element book,
we have three grouped sub-elements author, title and review. In addition, the
element review contains sub-elements used for formatting the text described by
the review.

An Example of XML document:

<books>

<book year="2003">
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>

<title>Data on the Web</title>
<review>A fine book.</review>
</book>

<book year="2002">
<author>Buneman</author>

<title>XML in Scotland</title>
<review>The best ever!</review>
</book>

</books>

Here, the XML database includes two books. The first one, edited in 2003,
with authors Abiteboul, Buneman and Suciu, and title ’Data on the Web’.
Finally, the opinion of the reviewers for this book is: A fine book. The second
one, edited in 2002, was written by Buneman with title XML in Scotland, and
the opinion of the reviewers is The best ever!. In this XML document, we can
see typical features of a semi-structured data model [ABS00]: heterogeneous
records, in particular, non-first normal relations, missing values, among others.
Once shown the example, now, we focus on the general criteria for translating

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1657

Document

= Element. Node number/Type number
= Attribute. Node number/ Type number

|

I D

} E
Books.xml LA

} T = Text

Books

@) G—C
Y

Year

° @ @ @ @ Revmw ‘ @ @

Author | Author [Author | Title Author Title Review

Em Em]
Abiteboul Buneman Suciu Data on the Web A book Buneman XML in Scotland

Em

fine The ° ever!

best

Figure 1: Node and type numbering in the tree structure of the above XML document

XML documents into a logic program. These criteria can be summarized as
follows:

1. Each tag (element) is translated into a predicate name. Each predicate has
three arguments.

e The first one is used for building a prolog term containing the XML
document.

e The second argument of the predicate is used for numbering each node
(called node number) of the XML document tree (see Figure 1).

e The third one is use for numbering each type (called type number) (see
Figure 1).

Next, we will explain the use of node and type number in the logic program.

2. For un-tagged elements grouped together tagged elements the predicate name
unlabeled is used.

3. Each non-terminal tag is translated into a function symbol named as "name-
element” + type with an argument for each (sub)element and an additional
argument for storing the list of attributes.

4. Each terminal element is translated into a fact, numbered as in the figure 1. For
instance, the above XML document can be represented by means of a logic
program as follows:

1658 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

Prolog program of an XML document

Rules (Schema): Facts (Document):
books (bookstype(A, [1), L,1) :- year(’2003’, [1, 1], 3).
book(A, [BIL],2). author (’Abiteboul’, [1, 1, 1], 3).
book(booktype(A, B, C, [D]), L ,2) :- author (’Buneman’, [2,1, 1], 3).
author (A, [EIL],3), author (’Suciu’, [3,1,1], 3).
title(B, [FIL],3), title(’Data on the Web’, [4, 1, 1], 3).
review(C, [GIL],3), unlabeled(’A’, [1, 5, 1, 11, 4).
year (D, L,3). em(’fine’, [2, 5, 1, 1], 4).
review(reviewtype(A,B,[1),L,3):- unlabeled(’book.’, [3, 5, 1, 1], 4).
unlabeled(A, [J|L],4), year(’2002°, [2, 1], 3).
em(B, [KIL],4). author (’Buneman’, [1, 2, 1], 3).
review(reviewtype(A,[1),[IIL],3):- author (’Buneman’, [1, 2, 1], 3).
em(A,[JIL],5). title(’XML in Scotland’, [2, 2, 1], 3).
em(emtype(A,B, [1),L,5) :- unlabeled(’The’, [1, 1, 3, 2, 1], 6).
unlabeled (A, [GI|L],6), em(’best’, [2, 1, 3, 2, 1], 6).
em(B, [HI|L],6). unlabeled(’ever!’, [3, 1, 3, 2, 11, 6).

In this example, we can see the translation of each tag into a predicate
name: books, book, etc. Each predicate has three arguments. The first one
consists on a function symbol with the same name as the tag, but adding
the suffix type, which encapsulates the XML document. Therefore, we have
bookstype, booktype, etc. Each function symbol has arity n + 1 where n
is the number of subelements of the given element, and it has an extra-
argument which is devoted to store the attribute list. The second argument is
used for numbering each node. We have numbered the nodes of the XML tree
by levels and from left to right starting from 1. For instance, the three facts
for the authors of the first book are numbered [1,1,1], [2,1,1] and [3,1, 1],
representing the authors 'Abiteboul’, ‘Buneman’ and ’Suciu’, respectively,
and [1, 2, 1] for representing ‘Buneman’ in the second book (see Figure 1). Let
us remark that the numbering in the facts is in reverse order with respect
to the numbering in the XML tree due to the use of lists for representing
them. The last argument of the predicates is a number used for numbering
each type. It will explained in the next point. Finally, each element, which is
not labelled but grouped, is translated into a label called unlabeled. This
is the case of ”A” and "book.” in the first review.

5. In the case of a non-terminal does not always have the same structure, we intro-
duce more than one rule with different type number for each kind of subelements.
For instance, in the running example we have in each schema rule sequences
of type numbers: 1-2, 2-3-3-3-3, 3-4-4, 3-5, 5-6-6. From these ones, the
most significative ones are 3-4-4 and 3-5 which distinguish two cases for the
type review. The first type is used in the first book where fine is empha-
sized but ”A” and "book.” not. The second type is used in the second book
where ”The best ever!” is emphasized but "best” is doubly emphasized.
The so-called type number is vital to distinguish each kind of type in the
same element. Let us remark that the use of different type numbers for the

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1659

same "type” as review can be justified due to the occurrence of different in-
stances of the same type in different positions in the document and possibly
with some missing values. However, when the instances occur in the same
position (i.e. level of the XML tree) and with the same kind of values, they
are numbered with the same type number. To illustrate this problem let the
following document be:

<books>

<book year="2003">
<author>Abiteboul</author>
<title>Data on the Web</title>
<review>A fine book.</review>
</book>

<book year="2002">
<author>Buneman</author>
<title>XML in Scotland</title>
</book>

</books>

where we have two kinds of records, one with author, title, review and year,
and the second one with author, title and year. In this case, we have to
consider the following schema rules:

books (bookstype(A, [1), L,1):-
book(A, [CIL],2).

book (booktype(A, B, C, [D]), L,2) :-
author (A, [GIL],3),
title(B, [HIL],3),
review(C, [I|L],3),
year(D, L,3).

book (booktype(A, B, [C]), L,2) :-
author (A, [G|L],4),
title(B, [HIL],4),
year(C, L,4).

author (’Abiteboul’,[1,1,1],3).

author (’Buneman’, [1,2,1],4).

The use of numbers 2-3-3-3-3 and 2-4-4-4 in the above rules and in the cor-
responding facts allows the distinction of the subelements of Abiteboul and
Buneman’s books. The use of the same numbering can imply ambiguity, given
that Abiteboul’s book is also of the type described by second rule of book.
The same can be said for the case of review in the running example. The tag
review has two rules, one for the case: 7A fine <\em> book.” and
other one for ” The best <\em> ever! <\em> ", where
in the first case the sole emphasized text is "fine”, and in the second case
all is emphasized, and "best” is doubly emphasized. The facts and rules in
this case are:

1660 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

unlabeled(’A’, [1, 5, 1, 11, 4).
em(’fine’, [2, 5, 1, 1], 4).
unlabeled(’book.’, [3, 5, 1, 1], 4).
unlabeled(’The’, [1, 1, 3, 2, 1], 6).
em(’best’, [2, 1, 3, 2, 1], 6).
unlabeled(’ever!’, [3, 1, 3, 2, 1], 6).
review(reviewtype(A,B, [1),L, 3):-

unlabeled (A, [JIL],4),

em(B, [K|L],4).
review(reviewtype(A,[]),L,3):-

em(A, [K|IL],5).
em(emtype(A,B,[1), L,5) :-

unlabeled (A, [GIL],6),

em(B, [H|L],6).

They allow to distinguish that the first case is built from the first review
rule and the second from the second review rule together with the em rule.

6. Whenever there is more than one value for the same sub-tag in the same element,
we introduce one fact for each value, numbered with the same type number,
but distinct node number. For instance w.r.t. the running example:

author (’Abiteboul’, [1, 1, 1], 3).
author (’Buneman’, [2, 1, 1], 3).
author (’Suciu’, [3, 1, 1], 3).

Let us remark that we could use a unique fact and use a Prolog list for
storing the three elements. We believe that both choices can be sound, and
our transformation technique could be adapted.

7. In the case of an element has several attributes, a Prolog list is used for storing
them. For instance, with respect to the following document:

<book year="2003" ,keyword="XML”>
<author>Abiteboul</author>
<title>Data on the Web</title>
<review>A fine book.</review>
</book>

we consider the following rule:

book (booktype(A, B, C, [D,J]), L, 2) :-
author (A, [GIL],3),
title(B, [HIL],3),
review(C, [I|L],3),
year(D,L,3),
keyword(J,L,3).

8. In the case of recursively defined XML documents, they are handled by means
of a recursive rule. For instance:

em (emtype(A,B,[1),L,5) :-
unlabeled(A, [GIL],6),
em(B, [H|L],6).

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1661

This rule expresses that an emphasized text can include other(s) emphasized
text(s).

9. In the case of using the XML schema, XML types can be identified with Prolog-
style types whenever it is possible. In the case of handling of lists of integers
and strings, we introduce lists. Integers, Reals, etc can be handled by means
of the type Integer, Real of the host language distribution. For instance,
consider the following XML document and its corresponding rule:

<book year="1999 2003”>
<author>Abiteboul</author>
<title>Data on the Web</title>
<review>A fine book.</review>
</book>

book (booktype(d, B, C, [Y]), L,2) :-
author (A, [GIL],3),
title(B, [HIL],3),
review(C, [IIL],3),
year(Y,L,3).
year([’1999°,°2003°], [1,1],1) .

The use of XML types enables to use more sophisticated queries by using
binary operators as >, <, mod, ... and other string and list operations. For
simplicity, in this paper we have only considered values in the type string,
but other kinds of types can be considered as well as operations on them.
Finally, let us remark that by using the XML schema we can adopt the
name used by a XML ”complextype” element for naming function symbols;
and also the "mixed” attribute can be translated into ”unlabeled” predicate

name.

3 Indexing

In this section, we would like to present how to index XML documents repre-
sented by means of a logic program wherein the main goal is to obtain an efficient
retrieval of XPath queries. It can be summarized as follows.

o We use main memory for the handling of schema rules.
e We use secondary memory for the handling of facts.
e We have considered file indexing for the facts.

e In particular, we have two kind of indexes: one for indexing predicate names,
and other one for indexing each group of items.

The use of main memory for storing schema rules is justified due to in the
most of cases the number of schema rules is small. The use of secondary memory

1662 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

for storing facts is justified since XML documents can be too big to be stored
in main memory. File indexing is justified for efficiency reasons. Firstly, our
approach requires to recover facts for a given predicate, in this case we use the
first kind of index. Secondly, our approach requires the recover of the elements
grouped in the same record; in this case we use the second kind of index.

For instance, w.r.t. the running example, we need to generate the following
set of indexes with respect this set of facts:

group facts
(0) year(°2003’, [1, 1], 3).
(1) author(’Abiteboul’, [1, 1, 1], 3).

first index [second index [1,1] (2) author(’Buneman’, [2, 1, 1], 3).
first index|second index title pos(4, 0). (3) author(’Suciu’, [3, 1, 1], 3).
pos(1, 0). pos(10, 8). (4) title(’Data on the Web’, [4, 1, 1], 3).
pos(2, 0). pos(5, 5). (5) unlabeled(’A ’, [1, 5, 1, 1], 4).
author
pos(3, 0). pos(7, 5). [5,1,1] (6) em(fine, [2, 5, 1, 1], 4).
pos(9, 8). unlabeled pos(11, 11). (7) unlabeled(’ book.’, [3, 5, 1, 1], 4).
on pos(6,5). pos(13, 11). (8) year(’2002’, [2, 1], 3).
pos(12,11). pos(0, 0). [2,1] (9) author (’Buneman’, [1, 2, 1], 3).
year pos(8, 8). (10) title(’XML in Scotland’, [2, 2, 11, 3).

(11) unlabeled(’The ’, [1, 1, 3, 2, 1], 6).
[1,3,2,1]| (12) em(best, [2, 1, 3, 2, 1], 6).
(13) unlabeled(’ ever!’, [3, 1, 3, 2, 1], 6).

The first index allows the recovering of the facts by means of the predicate
name: author, year, and so on. Therefore the first index key is the name of the
predicate and the first index value is the set of relative positions of the facts
for the predicate. The second index allows to recover the relative position of the
group in which a fact is included. Therefore the second index key is the number
of the relative position of the fact and the second index value is the relative
position of the group in which is included.

With this aim the first index stores for each predicate name annotations of
the form pos(n,m), in which n denotes the relative position of a fact for the
predicate and m the relative position of the group of this fact.

For instance, author facts are stored in positions 1, 2, 3 and 9, given by the
annotation pos(1,_),pos(2,-),pos(3,.), pos(9,-), and the group of each author,
that is, the record in which the author is included starts in positions 0, 0, 0 and
8, respectively, given by the annotation pos(1,0), pos(2,0), pos(3,0),pos(9,0).
Each ”group” of facts has the same sequence of node numbers with the exception
(but not always) of the first number. This common sequence of node numbers
can be considered as the identifier of the group. For instance, w.r.t. the running
example, the first group can be identified by [1, 1] and contains facts numbered
with [1,1], [1,1,1], [2,1,1], [3,1,1] and [4, 1, 1], the second of the group [5, 1, 1],
and so on. The reason for this grouping criteria is that each group of facts will
be used in the same schema rule. For instance, in this case:

book (booktype(A, B, C, [D]), L ,2) :-
author(A, [E|IL],3),
title(B, [FIL],3),
review(C, [G|L],3),
year(D, L,3).

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1663

and thus they are usually recovered at the same time. In Section 5, we will
explain the combination of the evaluation method with the indexing.

4 Magic Set Transformation for XPath Expressions

In this section, we will present the magic set transformation technique for query-
ing XPath expressions against an XML document represented by means of a logic
program. With this aim, we will present the general criteria for the transforma-
tion technique.

4.1 Filtered rules

Since we use magic set transformations, firstly we need to add magic filters to
each rule. For instance, with respect to our running example, we will consider
the following set of rules:

Filtered Rules

books (bookstype(A, [1),L,1) :-
mg-books (bookstype(A, [1),L,1),
book(A, [CIL],2).
book (booktype(A, B, C, [D]),L,2) :-
mg-book (booktype(A, B, C, [D]),L,2),
author (A, [GIL],3),
title(B, [HIL],3),
review(C, [I|L],3),
year(D,L,3).
review(reviewtype(A,B,[1),L,3):-
mg_review(reviewtype(A,B,[]),L,3),
unlabeled(A, [JIL],4),
em(B, [K|L],4).
review(reviewtype(A,[1),L,3):-
mg_review(reviewtype(4,[1),L,3),
em(A, [KIL],5).
em(emtype(A,B, [1),L,5) :-
mg_em(emtype (A,B, [1),L,5),
unlabeled(A, [GIL],6),
em(B, [HIL],6).

Filtered Facts

year(’2003’, [1, 11,3):- mg_year(’2003’, [1, 1],3).
author (’Abiteboul’, [1, 1, 1],3):-
mg_author (’Abiteboul’, [1, 1, 1],3).

They are the so-called filtered rules and facts like typical magic-set based trans-
formations.

4.2 Magic Transformation

Now, we present the general criteria for the specialization technique:

1664 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

1. The handling of an XPath query involves the introduction of one or more passing
rules and one or more seeds.

2. The seeds are generated from either the last element or the element situated
before the first boolean condition on the XPath expression.

3. The passing rules are generated from the seed to terminal tags.

e For instance, we can assume a XPath query such as /books/book/author,
requiring the authors in the book database. In this case, we have to generate
the seed mg-author(X,Y, 3) where X, Y are logic variables, and the number 3
indicates the type number. The bottom-up evaluation of the filtered program
from this seed will result on the following set of facts which represents the
following XML document:

Computed Set of Facts Represented XML Document
<result>
author (’Abiteboul’, [1, 1, 1],3). <author>Abiteboul</author>
author (’Buneman’, [2, 1, 1],3). <author>Buneman</author>
author (’Suciu’, [3, 1, 1]1,3). <author>Suciu</author>
author (’Buneman’, [1, 2, 1],3). <author>Buneman</author>
</result>

In order to build the XML document, the idea is to consider the schema rules
and the computed set of facts. In this case, author has no schema rules, and
therefore the result can be built directly from the facts, considering the
predicate name as tag and following the node numbering for the ordering of
the XML elements.

e Now, we can assume the XPath expression /books/book. Now, the seed is
mg_book(X,Y,2), and since book has attributes and subelements, we need to
generate the following passing rules which enable, from bottom-up evalua-
tion, to generate, for each book, facts for author, title, review and year.

mg-author (A, [DIL] ,3) :-

mg-book (booktype(A, E, F, [G]),L,2).
mg-review(A, [DIL],3) :-

mg-book (booktype(E, F, A, [G]),L,2).
mg-title(A, [DIL],3) :-

mg-book (booktype(E, A, F, [G]),L,2).
mg_year(A,L,3) :-

mg-book (booktype(D, E, F, [A]),L,2).
mg-unlabeled(4A, [JIL],4):-

mg_review(reviewtype(A,B,[]),L,3).
mg-em(B, [KIL],4):-

mg_review(reviewtype(A,B,[]),L,3).
mg_em(A, [KIL],5):-

mg_review(reviewtype(4, [1),L,3).
mg-unlabeled(4, [GIL],6) :-

mg_em(emtype(A,B, [1),L,5).
mg_em(B, [HIL],6):-

mg_em(emtype(A,B, [1),L,5).

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1665

They are built as usual in magic-set based transformations but in this case
without considering a left-to-right information passing strategy. The bottom-
up evaluation of the above filtered rules together these passing rules from
the seed mg_book(X,Y,Z,2) is able to compute the following set of facts:

author(’Abiteboul’, [1, 1, 1], 3).

author (’Buneman’, [2, 1, 1], 3).

author (’Suciu’, [3, 1, 11, 3).

title(’Data on the Web’, [4, 1, 1], 3).
unlabeled(’A’, [1, 5, 1, 1], 4).

em(’fine’, [2, 5, 1, 1], 4).

unlabeled(’book.’, [3, 5, 1, 1], 4).

year(’2003’, [1, 1], 3).

author (’Buneman’, [1, 2, 1], 3).

title(’XML in Scotland’, [2, 2, 1], 3).
unlabeled(’The’, [1, 1, 3, 2, 1], 6).

em(’best’, [2, 1, 3, 2, 1], 6).
unlabeled(’ever!’, [3, 1, 3, 2, 1], 6).
year(’2002°, [2, 1], 3).
review(reviewtype(’A’,’fine’,[]),[5, 1, 1],3).
review(reviewtype(’book’,’fine’,[]),[5, 1, 1],3).
review(reviewtype(emtype(’The’,’best’,[]),[]),
3, 2, 1],3).
review(reviewtype(emtype(’ever!’,’best’,[]),[]),
3, 2, 1],3).

em(emtype(’The’,’best’,[]),[1, 3, 2, 1],5).
em(emtype(’ever!’,’best’,[]),[1, 3, 2, 1],5).

From this set of facts we can build the following answer in XML format:

<result>

<book year="2003">
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>
<title>Data on the Web</title>
<review>

A fine book.
</review>

</book>

<book year="2002">
<author>Buneman</author>
<title>XML in Scotland</title>
<review>

 The best ever!
</review>

</book>

</result>

In order to build this XML document, we need to consider the following
subset of schema rules, including the schema from book (i.e. the last element
in the XPath expression) up to terminal tags:

1666

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

book (booktype(A, B, C, [D]),L,2) :-
author (A, [G|L],3),

title(B, [HI|L],3),
review(C, [I|L],3),
year(D, L,3).

review(reviewtype(A,B,[]1),L,3):-
unlabeled (A, [JIL],4),
em(B, [K|L],4).

review(reviewtype(A,[1),L,3):-
em(A, [K|L],5).

em(emtype(A,B,[1), L,5) :-
unlabeled(A, [GIL],6),
em(B, [HIL],6).

These schema rules together with the generated facts allow the reconstruc-
tion of the XML document representing the result. It is easy to build a
program for writing the XML document representing the result into a file.
The ideas is to follow the path from the last element to the XPath query up
to terminal elements rebuilding the original structure, following the schema
rules. Let us remark that the last group of facts, in bold style, are only com-

puted as auxiliary results and they are not needed for the reconstruction of
the XML document.

With respect to the generated seeds, in general a set of seeds is generated,
concretely one for each element to be retrieved. Next, we show different
examples of XPath expressions with their corresponding generated seeds.

XPath Expression

Generated Seed

(1) /books/book/author

(1) mg_author(X,Y,3)

(2) /books/book

(2) mg-book(X,Y,2)

(8) /books/book/*

mg-author (X, Y, 3)
(3) mg-title(X,Y,3)

mg-review(X,Y, 3)

In case (3), the XPath expression requests the subelements of book, and thus
a seed for each one of them is generated.

However whenever a condition is introduced, the seed is forwarded to the
first occurrence of a condition. For instance, let us consider the XPath ex-
pression /books/book[author = Suciu]/title. In this case, we have a con-
dition in the form of author = Suciu. Now, we have to generate the seed
mg_book(booktype('Suciu’, A,B), C,2). That is, the seed is forwarded to the
element situated before of the first boolean condition, in this case book. In ad-
dition, mg_book is instantiated with Suciu in the function symbol booktype,
and, of course, in the position representing the authors. In addition, we have
to consider the following passing rules:

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1667

mg-author (A, [DIL],3) :-
mg-book (booktype(A, E, F, [G]),L,2).
mg-title(A, [DIL],3) :-
mg_book (booktype(E, A, F, [G]),L,2),
author(E,[H|L],3).

In the bottom-up evaluation the seed will firstly trigger the retrieval of
the author 'Suciu’. In particular, it retrieves the node numbers of Suciu’s
books. It is achieved due to the instantiation of the corresponding argu-
ment in the seed and the use of the first passing rule. Afterwards, it allows
the retrieval of Suciu’s book titles. With this aim, note that the predi-
cate author(E, [H|L], 3) has been included as condition for the passing rules
corresponding to the element title. It ensures that Suciu’s book titles are
the only computed. The use of author(E,[H|L],3) is vital for efficient re-
trieval of such titles, given that the node number has been instantiated
in this predicate in the first step and the information is passed to the
predicate of title in the second step. It corresponds, in some sense, with
a left-to-right information passing strategy. In this case, the generated fact
is author(’Suciv/, [3,1,1],3) in which the node number [3,1, 1] is used for
retrieving the fact title(’Data on the Web/,[4,1,1],3). Next, we show the
computed facts by means of the bottom-up evaluation as well as the XML
document represented by these facts:

Computed Set of Facts Represented XML Document
<result>
bl i bl
a‘_lthor(Suciu’, [3,1,11,3). <title>Data on the Web</title>
title(’Data on the Web’, [4,1,1],3).
</result>

Let us remark that there is an additional computed fact: author('Suciv’, [3, 1,
1], 3), which is not used for the building of the resulting XML document, but
that it has been used for computing the relevant fact. The XML document
can be directly built from the fact, given that title has no schema rules.

e In the case of two or more conditions, such as /books/book|@year = 2002
and title = Data on the Web]/author, we have to consider the seed mg_book
(booktype(A, Data on the Web’,C,['2002']), L,2), as well as the following
passing rules:

mg_year(A, L,3) :-
mg_book (booktype(E, F, G, [A]), L,2).
mg-title(A, [DIL],3) :-
mg_book (booktype(E, A, F, [G]),L,2),
year(G,L,3).
mg-author (A, [DIL],3) :-
mg_book (booktype(A, E, F, [G]),L,2),
year(G,L,3),
title(G,[E|L],3).

In the passing rules, we follow a left to right strategy of the boolean condi-
tion. That is, starting from the seed mg_book(booktype(A,'Data on the Web’,

1668 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

C,['2002]),L,2), firstly the first passing rule triggers the retrieval of books
for this year 2002. Afterwards, the second passing rule triggers the retrieval
of titles of this year (using the node number instantiated in the previous
step); concretely book titled "Data on the Web”. Finally, the last passing
rule retrieves the author of such books, using node numbers instantiated in
the previous steps.

e In the case of a boolean condition ’or’, such as /books/book[@year = 2002 or
title = Data on the Web|/author, we need to consider the following two
seeds:

(a) mg_book(booktype(A,B,C,[2002']),L,2) and
(b) mg_book(booktype(A,’Data on the web’,C,D),L,2),

together with the following passing rules:

mg_year(A, L,3) :-
mg_book (booktype(E, F, G, [A]), L,2).
mg-title(A, [DIL],3) :-
mg_book (booktype(E, A, F, [G]),L,2).
mg-author (A, [DIL],3) :-
mg_book (booktype(A, E, F, [G]),L,2),
year(G,L,3).
mg-author (A, [DIL],3) :-
mg-book (booktype(A, E, F, [G]),L,2),
title(G, [EIL],3).

In this case, each seed triggers different searchings. The first seed together
with the first passing rule triggers the retrieval of books of year 2002, and the
second one together with the second passing rule, the retrieval of books titled
”Data on the Web”. Finally, authors are generated from both searchings.

o Whenever the occurrences of conditions are at different level of the XPath
query, such as the XPath expression /books/book[@Qyear = 2002]/author
[name = Serge] with respect to the following XML document:

<books>
<book year="2003">
<author>Abiteboul<name>Serge</name></author>
<title>Data on the Web</title>
<review>A fine book.</review>
</book>
<book year="2002">
<author>Buneman <name>Peter</name></author>
<title>XML in Scotland</title>
</book>
</books>

then the seed is mg_book(booktype (authortype(A, Serge’, B), C,D, ['2002]),
L,2) and the passing rules are as follows:

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

mg_year(A,L,3) :-
mg_book (booktype(E, F, G, [A]),L,2).
mg-author (A, [DIL],3) :-
mg_book (booktype(A, E, F, [G]),L,2),
year(G,L,3).
mg-name(A, [E|L],4) :-
mg_author (authortype(4,G, [1),L,3).

1669

Here, firstly, we filter the books by year, next we retrieve authors for these

books, and finally author names are filtered and recovered.

XPath is a rich query language with many variants. The main cases have been

shown. The handling of the rest of cases involves modifications on the number

of seeds and the form of passing rules.

5

Combining Indexing and Magic Sets

Now, we would like to explain how the indexing technique presented in Sec-
tion 3 is used for efficient recovering of the facts needed for answering a XPath
query. For instance, let us assume the following query: /books/book[Qyear =
2002 and author = Buneman|/review w.r.t. the running example. Now, the

transformation is as follows:

Passing Rules

Filtered Rules

(1) books(bookstype(A,[]1),B,1) :-
mg_book (bookstype (A, [1),B,1),
book (A, [CIB],2).

(2) book(booktype(4,B,C, [D]), [E,F],2) :-
mg_book (booktype(4,B,C, [D]),E,2),
author (4, [F|E],3),
review(C, [G|E],3).

(3) review(reviewtype(4,B,[1),C,3):-
mg_review(reviewtype(4,B,[1),C,3),
unlabeled (A, [DIC],4),
em(B, [E|C],4).

(4) review(reviewtype(4,[1),B,3):-
mg_review(reviewtype(4,[1),B,3),
em(A, [CIB],5).

(5) em(emtype(A,B,[]),C,5) :-
mg_em(emtype(4,B,[1),C,5),
unlabeled (A, [DIC],6),
em(B, [E|C],6).

('7) mg-book(A, [BIC],2):-
mg_books (bookstype (A, [1),C,1).

(8) mg_author (A, [BIC],3) :-
mg_book(booktype(A, D, E, [F]),C,2),
year(F,C,3).

(9) mg_year(A,B,3) :-
mg_book (booktype(C,D,E, [A]),B,2).

(10) mg_review(A,[BIC],3) :-
mg-book (booktype (D,E, 4, [F1),C,2),
year(F,C,3),
author (D, [G|C],3).

(11) mg_unlabeled(A, [BIC],4):-
mg_review(reviewtype(A,D, [1),C,3).

(12) mg_em(4, [BIC],4):-
mg_review(reviewtype(D,A, []),C,3).

(13) mg_em(4, [BIC],5):-
mg_review(reviewtype(4,[1),C,3).

(14) mg_unlabeled(A, [BIC],6):-
mg_em(emtype(A,D, [1),C,5).

(15) mg_em(4, [BIC],6):-
mg_em(emtype(D,A,[1),C,5).

Filtered Facts

Seed

(6) mg_book(booktype(’Buneman’,A,B, [?2002°]),

B

(16) year(’2003’,[1,1],3):-
mg_year (°2003°,[1,1],3).
(17) author(’Abiteboul’,[1,1,1],3):-
mg_author (’Abiteboul’, [1,1,1],3).
(18) author(’Buneman’,[2,1,1],3):-
mg_author (’Buneman’, [2,1,1],3).
(19) author(’Suciu’,[3,1,1],3):-
mg_author (’Suciu’, [3,1,1],3).

In the bottom-up evaluation, in general, the generated magic predicates have

the form: mg_tag(., [Vary, ..

., Vary,Ny,..
XML document, and the second argument is a list [Vary,..

., Np], =), where tag is a label of the
. Varg, Nyi, ... Ng]

1670 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

representing a partially instantiated node number, in which Vary,...,Var, are
variables and Ny, . . ., N, are natural numbers. There is a particular case: mg_tag(-,
Var,_), in which there is a variable instead of a list. This particular case corre-
sponds to the seed.

In addition, each time a fact is recovered, the system stores together the
identifier of its group the relative position of the group (i.e. the starting point
in the fact file of the group in which the element is stored). For instance, with
regard to the example, if year (2002, [2, 1], 3) is recovered, the system stores that
the group [2, 1] is stored from position 8.

Now, the index accessing can be summarized as follows: Each time a magic
predicate mg_tag(-, [Vary, ...,Vary, Ni,...,Ny|,_) is generated then:

(a) Whenever [Var,,...,Vary,, Ny, ..., N,] matches to a previously stored relative
position, the system uses the relative position of the group and the second
index for the retrieval of facts for tag.

(b) Whenever the stored positions do not match to [Vars,...,Vary, Ni,..., Ny,
the system uses the first index for the retrieval of the elements of tag, and
stores the new group position.

In the case tag(-, Var,_) the first index will be used for recovering the facts.
Now, we show the trace of the execution of the above XPath query with
respect to the indexing presented in Section 3.

e adding of mg_book(booktype(Buneman, A, B, [2002]), C, 2) (Rule 6)
e adding of mg_year(2002,B, 3) (Rule 9)

o first index accessing to position 0 due to mg_year(2002,B,3); recovering
year(2003, [1, 1], 3); storing that the group position of [1,1] is 0.

e first index accessing to position 8 due to mg_year(2002,B,3); recovering
year(2002, [2, 1], 3); storing that the group position of [2,1] is 8.

e adding of year(2002, [2, 1], 3) (Rule 24)
e adding of mg_author(Buneman, [B, 2, 1], 3) (Rule 8)

e second index accessing to position 8 due to mg_author(Buneman, [B, 2, 1], 3)
and that the group position of [2, 1] is 8;
recovering author(Buneman, [1, 2, 1], 3)

e adding of author(Buneman, [1,2,1],3) (Rule 25)
e adding of mg_review(4, [B,2,1],3) (Rule 10)

e adding of mg_unlabeled(4,[B,C,2,1],4) (Rule 11)

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1671

e adding of mg_em(A, [B,C,2,1],4) (Rule 12)
e adding of mg_em(A, [B,C,2,1],5) (Rule 13)
e adding of mg unlabeled(A,[B,C,D,2,1],6) (Rule 14)

e first index accessing to position 11 due to mg_unlabeled(A, [B,C,D, 2, 1],6);
recovering unlabeled (The,[1,1, 3,2, 1],6); storing that the group position
of [1,3,2,1] is 11.

e adding of unlabeled(The,[1,1,3,2,1],6) (Rule 27)

o first index accessing to position 13 due to mg_unlabeled(A, [B,C,D, 2, 1],6);
recovering unlabeled (ever!, [3,1, 3,2, 1], 6); storing that the group position
of [1,3,2,1] is 11.

e adding of unlabeled(ever!, [3,1,3,2,1],6) (Rule 29)
e adding of mg_em(A, [B,C,D,2,1],6) (Rule 15)

e second index accessing to position 11 due to mg_em(A, [B, C,D, 2, 1], 6) and that
the group position of [1,3,2, 1] is 11; recovering em(best, [2,1, 3,2, 1],6)

e adding of em(best, [2,1,3,2,1],6) (Rule 28)

e adding of em(emtype(The, best, []),[1,3,2,1],5) (Rule 5)

e adding of em(emtype(ever!,best,[]),[1,3,2,1],5) (Rule 5)

o adding of review(reviewtype(emtype(The, best,[]),[]),[3,2,1],3) (Rule 4)

e adding of review(reviewtype(emtype(ever! best,[]),[]),[3,2,1],3) (Rule
4)

e adding of book(booktype(Buneman, A, reviewtype(emtype(The, best, []),[]),
[2002]), [2,1],2) (Rule 2)

e adding of book(booktype(Buneman, A, reviewtype(emtype(ever! best, []),
[1):[2002]), [2, 1],2) (Rule 2)

6 XINDALOG Prototype

In this section, we briefly show our prototype, named XINDALOG. This proto-
type has been developed under SWI-Prolog [Wie05] and hosted in a web site at
http://indalog.ual.es/Xindalog. This web site has been developed by using
a CGI (Common Gateway Interface) application in order to link the web site
with the prototype. From the main page of the web site, you can access to a

1672

basic description of XINDALOG, XML, XPath, as well as the demo. We have im-
plemented two releases of the prototype: a bottom-up and a top-down version.

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

In the web site, there are some examples to be tested.

Figure 2: http://indalog.ual.es/Xindalog

Figure 4: Query example

Figure 5: Query result

7 Examples of XPath Queries in XINDALOG

Our prototype has been tested by means of complex XPath queries and not too
structured XML documents. The following table shows XPath examples tested

w.r.t. the following document.

XPath Query

Meaning

® /books/book[@year and @pages]/*

® /books/book/author/@*
©® //book

©® //book[review="Very good”]/author
© //Qyear
® /books/* /author

® /books/book[review="Good”]/
author[name="John Durant”]

To obtain the books which have
publishing year and number of pages
To obtain all the attributes of the authors
To obtain all the books

included in the XML document

To obtain all the authors

of books with a very good review

To obtain all the years occurring in
the XML document

To obtain all the authors

inside book records

To obtain all the author information

whose name is John Durant and the review is good

Figure 3: Bottom-up demo

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1673

<books year="2006">
A book collection
<book>empty</book>
<book year="2003" pages="984">
The first book
<author english="yes" spanish="yes">
Benz
<name>Brian</name>
</author>
<author>John Durant</author>
<author>John Durant</author>
<title>XML Programming Bible</title>
<review>Good</review>
</book>
<book year="2002">
The second book
<author>Dino Esposito</author>
<title>Applied XML Programming for Microsoft .NET</title>
<review>Good</review>
</book>
<book>
The third book
<author>Apt, Krzystof R.</author>
<title>The Logic Programming Paradigm and Prolog</title>
<review>Very good</review>
</book>
<book year="1994" pages="560">
The fourth book
<author english="yes" spanish="no">
Leon Sterling
</author>
<author>Ehud Shapiro</author>
<title>The Art of Prolog</title>
<review>Very good</review>
</book>
<book2 year="2001">
The fifth book
<author english="yes">
Elliotte Rusty Harold
</author>
<title>XML Bible</title>
<review2>Good</review2>
</book2>
<book year="2003" pages="984">
The first book
<author english="yes" spanish="yes">
Benz
<name2>Brian</name2>
<firstname>
Brian
<lastname>Benz</lastname>
<others>no more</others>
</firstname>
</author>
<author>John Durant</author>
<author>John Durant</author>
<title>XML Programming Bible</title>
<review>Very good 2</review>
</book>
</books>

Table 1: A small XML document

1674 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

XPath Query Meaning
® /books[book="The first book”]/book|To obtain the books
[@year="2003" and review="Good”] |of the year 2003 and good review

/author[name="Benz"]/../.. whose author is Benz
® /books/book/text() To obtain the books with textual information
® /books/book[author/name]/title To obtain the book titles whenever

the books have author name

XPath Query Meaning
® /books/(book | book2)/(review2 | review)|To obtain the reviews
of the two kinds of books

® /books/book/(author | title) To obtain the book authors and titles
® /books/(book | book2)//text() To obtain the textual information
from the two kinds of books
o //Q* To obtain all the attributes of the document
© /*/*/title To obtain the titles that are at 3rd level
o /*¥/*//* To obtain all the elements and their nested
from the 3rd level
® /*/book2/* To obtain all information from book2 at 2nd level
® //*//author/.. To obtain the records containing

author information from the 1st level

8 Benchmarks of XPath Queries in XINDALOG

In this section, we would like to show benchmarks of XPath queries under the
XINDALOG prototype.

Our prototype has been tested by means of XML documents of big size. This
test allows us to know if we get reasonable benchmarks when extensive disk
accesses are needed. We have considered the following file sizes: 64KB, 128KB,
256KB, 512KB, and, finally, 1024KB. For each file size, we have computed the
following answer times:

e Translation time; it represents the time needed for translating a XML document
into PROLOG facts and rules;

e Evaluation time; it represents the time of the bottom-up evaluation of the
transformed program w.r.t. a XPath query;

e Visualization time; it represents the time needed for formatting and browsing
the query result.

We have considered the XPath query /books/book[review="good"]/title,
which requests only the titles of those books whose review is good. For this
query, we consider the following cases:

e The program 1is not specialized, that is, we generate all the passing rules
without taking into account the XPath expression. However, the seed is
instantiated w.r.t. the XPath query.

e The program is specialized, that is, we generate only the passing rules needed
for the XPath query. The seed is also instantiated.

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1675

With Program Specialization

XPath Query: /books/book [review="good"]/title

File size| Translation | Evaluation |Browsing Total time

64KB | 0,750sg 0,973sg | 0,017sg | 1,704sg
128KB| 2,171sg 3,344sg | 0,031sg| 5,546sg
256KB| 6,485sg 12,467sg | 0,063sg | 19,015sg

512KB 22,312sg 47,859sg | 0,125sg [1min 10,296sg
1024KB|1min 21,563sg|3min 9,453sg| 0,234sg |[4min 31,250sg

Without Program Specialization

XPath Query: /books/book [review="good"]/title

File size| Translation | Evaluation |Browsing| Total time
64KB 0,780sg 7,563sg 0,079sg 8,422sg
128KB 2,095sg 28,843sg 0,157sg 31,095sg

256KB 6,579sg 1min 51,108sg | 0,297sg | 1min 57,984sg
512KB 22,468sg 7min 15,142sg | 0,500sg | 7min 38,110sg
1024KB|1min 21,735sg|28min 49,906sg| 1,219sg |30min 12,860sg

Once shown the answer times, we think that there exists an important im-
provement of answer times by considering the program specialization w.r.t. the
proposed query. Obviously, as was commented previously, our specialization pro-
gram technique improves the answer times whenever only certain parts of a XML
document are demanded. In fact, if we consider the XPath query /books, wherein
the full document is demanded, then the program specialization has no effect,
and thus the answer times with and without program specialization are the same.
In this case, the answer times are the following:

With and Without Program Specialization

XPath Query: /books

File size| Translation Evaluation |Browsing| Total time
64KB 0,750sg 1,500sg 0,062sg 2,312sg
128KB 2,110sg 5,485sg 0,140sg 7,735sg
256KB 6,562sg 21,047sg 0,235sg 27,844sg
512KB 22,328sg |1min 23,470sg| 0,422sg |1min 46,220sg
1024KB|1min 24,407sg|5min 29,203sg| 0,843sg |6min 54,453sg

1676 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

Other query examples with their corresponding answer times requiring program
specialization w.r.t. the query are the following:

XPath Query: /books/book[review="very good"]/title

File size| Translation |Evaluation|Browsing| Total time
64KB 0,750sg 0,031sg | 0,0sg 0,781sg
128KB 2,094sg 0,031sg | 0,016sg 2,141sg
256KB 6,486sg 0,062sg | 0,0sg 6,548sg
512KB 22,640sg 0,110sg 0,0g 22,750sg
1024KB|1min 24,937sg| 0,173sg | 0,015sg [lmin 25,125sg

Note that the XPath query (a) /books/book[review="very good"]/title is
very similar to the XPath query (b) /books/book [review="good"]/title. How-
ever, there exists an important difference in the evaluation time for all file sizes.
What is the reason of this difference? The reason is due to the number of elements
to be retrieved. In the case (a), there exist a lot of elements with review = good
in the document and thus the query needs to retrieve a big number of elements.
Whereas, the number of elements with review = very good is too smaller, and
thus, in the case (b), we need to retrieve a smaller number of elements.

XPath Query: /books/book/title

File size| Translation |Evaluation|Browsing| Total time
64KB 0,766sg 0,063sg | 0,016sg 0,845sg
128KB 2,077sg 0,158sg | 0,015sg 2,250sg
256KB 6,625sg 0,453sg | 0,032sg 7,110sg
512KB | 22,345sg 1,453sg | 0,047g 23,845sg
1024KB|1min 22,203sg| 5,468sg | 0,079sg |lmin 27,750sg

Finally, in this query, we are demanded all elements title inside elements book
occurring in the XML document. In this case, in spite of requiring a big number
of elements, the evaluation time is reasonably good. Remark that this query
has no conditions, and thus no extra evaluations for checking a possible condition
are needed.

9 Conclusions and Future Work

In this paper, we have presented how to represent and index XML documents
by means of logic programming. Moreover, we have studied how to transform
such programs by means of the magic set transformations and how to combine
the bottom-up evaluation with the indexing technique in order to obtain the
answers w.r.t. an XPath query. As future work, we will study how to extends
our work in order to translate a XQuery query into logic programming.

Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ... 1677

Acknowledgements

We would like to thank anonymous referees for their useful comments. In addi-
tion, we would like to remark that this work has been partially supported by
the Spanish MCYT under grant TIC2002-03968, the Spanish MEC under grant
TIN2005-09207-C03-02, and EU (FEDER).

References

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations
to Semistructured Data and XML. M. Kaufmann, 2000.

[ABS01] J. M. Almendros-Jiménez, A. Becerra-Terén, and J. Sdnchez-Herndndez. A
Computational Model for Funtional Logic Deductive Databases. In Proc. of
ICLP, LNCS 2237, pages 331-347. Springer, 2001.

[Apt90] K. R. Apt. Logic programming. In Handbook of Theoretical Computer Sci-
ence, chapter 10, pages 493-574. MIT Press, 1990.

[BFGO1] R. Baumgartner, S. Flesca, and G. Gottlob. The Elog Web Extraction Lan-
guage. In Proc. of International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR, LNCS 2250, pages 548-560.
Springer, 2001.

[Bol0l] H. Boley. The Rule Markup Language: RDF-XML Data Model, XML
Schema Hierarchy, and XSL Transformations. In Proc. of INAP, pages 124—
139. Prolog Association of Japan, 2001.

[BR91] C. Beeri and R. Ramakrishnan. On the Power of Magic. JLP, 10(3,4):255—
299, 1991.

[BS02] F. Bry and S. Schaffert. Towards a Declarative Query and Transformation
Language for XML and Semistructured Data: Simulation Unification. In
Proc. of ICLP, LNCS 2401, pages 255-270. Springer, 2002.

[CF03] J. Coelho and M. Florido. Type-based xml processing in logic programming.
In Proceedings of the Fifth International Symposium on Practical Aspects of
Declarative Languages (PADL’08), pages 273-285. LNCS 2562, 2003.

[CHO1] D. Cabeza and M. Hermenegildo. Distributed WWW Programming using
(Ciao-)Prolog and the PiLLoW Library. TPLP, 1(3):251-282, 2001.

[Cha02] D. Chanberlin. XQuery: An XML Query Language. IBM Systems Journal,
41(4):597-615, 2002.

[HP03] H. Hosoya and B. C. Pierce. XDuce: A Statically Typed XML Processing
Language. TOIT, 3(2):117-148, 2003.

[May04] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML
Data Manipulation Language. TPLP, 4(3):239-287, 2004.

[MS03] A. Marian and J. Simeon. Projecting XML Documents. In Proc. of VLDB,
pages 213-224. Morgan Kaufmann, 2003.

[SB02] S. Schaffert and F. Bry. A Gentle Introduction to Xcerpt, a Rule-based
Query and Transformation Language for XML. In Proc. of RuleML, 2002.

[SWO03] J. Simeon and P. Wadler. The Essence of XML. In Proc. of POPL, vol-
ume 38, pages 1-13. ACM, 2003.

[W3C01] W3C. XML Schema 1.0. Technical report, www.w3.org, 2001.

[W3C04a] W3C. OWL Ontology Web Language. Technical report, www.w3.org, 2004.

[W3C04b] W3C. Resource Description Framework (RDF). Technical report,
www.w3.org, 2004.

[W3C04c] W3C. XML Path Language (XPath) 2.0, Draft. Technical report,
www.w3.org, 2004.

[W3C04d] W3C. XQuery 1.0: An XML Query Language. Technical report,
www.w3.org, 2004.

1678 Almendros-Jimenez J.M., Becerra-Teron A., Enciso-Banos F.J.: Magic Sets ...

[W3C04e] W3C. XSL Transformations (XSLT) Version 2.0. Technical report,
www.w3.org, 2004.

[Wad02] P. Wadler. XQuery: A Typed Functional Language for Querying XML. In
AFP, LNCS 2638, pages 188-212. Springer, 2002.

[Wie05] J. Wielemaker. SWI-Prolog SGML/XML Parser, Version 2.0.5. Technical
report, Human Computer-Studies (HCS), University of Amsterdam, March
2005.

