
Constraint Based Methods for Biological Sequence

Analysis

Maryam Bavarian
(Computing Science Department
Simon Fraser University, USA

mbavaria@sfu.ca)

Veronica Dahl
(Computing Science Department
Simon Fraser University, USA

veronica@cs.sfu.ca)

Abstract: The need for processing biological information is rapidly growing, owing to
the masses of new information in digital form being produced at this time. Old method-
ologies for processing it can no longer keep up with this rate of growth. The methods
of Artificial Intelligence (AI) in general and of language processing in particular can
offer much towards solving this problem. However, interdisciplinary research between
language processing and molecular biology is not yet widespread, partly because of the
effort needed for each specialist to understand the other one’s jargon. We argue that
by looking at the problems of molecular biology from a language processing perspec-
tive, and using constraint based logic methodologies we can shorten the gap and make
interdisciplinary collaborations more effective. We shall discuss several sequence anal-
ysis problems in terms of constraint based formalisms such Concept Formation Rules,
Constraint Handling Rules (CHR) and their grammatical counterpart, CHRG. We pos-
tulate that genetic structure analysis can also benefit from these methods, for instance
to reconstruct from a given RNA secondary structure, a nucleotide sequence that folds
into it. Our proposed methodologies lend direct executability to high level descriptions
of the problems at hand and thus contribute to rapid while efficient prototyping.

Key Words: protein structure, RNA secondary structure, gene prediction, concept
formation, constraint handling rules, constraint handling rule grammars

Category: I.2.1, D.3.2, D.3.3

1 Introduction

The application to molecular biology of Artificial Intelligence (AI) methods such
as logic programming and constraint reasoning constitutes a fascinating inter-
disciplinary field which, despite being relatively new, has already proved quite
fertile. For instance, our book Logic Grammars [1] was widely used to help
discover the human genome [23]. Our work on plant pathogen identification
for Agriculture and Agri-Food Canada [30] yielded spectacular results: whereas
with previous tools, the processing time increases exponentially with sequence
length or number of sequences, we provided a novel algorithm for which pro-
cessing time increases linearly with the amount of data to be analysed. Our

Journal of Universal Computer Science, vol. 12, no. 11 (2006), 1500-1520
submitted: 1/5/06, accepted: 15/10/06, appeared: 28/11/06 © J.UCS

methods can moreover be viewed as modules to be embedded within higher
level while still efficiently executable descriptions of other interesting molecular
biology problems.

Over the past decade there has been a dramatic increase of collection rates for
biological data, making the need for resorting to AI methods even more acute. Si-
multaneously, the intersection between logic programming and constraint reason-
ing has been maturing into extremely interesting methodologies, most notably
Constraint Handling Rules, or CHR [18]. Dahl has applied these methodologies
first to human language processing, through implementing Property Grammars
[7, 9] (a linguistic formalism based on constraints between sentence constituents
rather than on the traditional notion of phrase structure) in CHR, and through
a parsing system for balanced parenthesis [8] and then to cognitive sciences,
through generalizing these results into a general cognitive theory of concept
formation [17] with applications to cancer diagnosis [5, 4], to medical report in-
terpretation [28] and to concept extraction [14]. We are presently applying CHR
methodologies to the problem of genetic structure analysis, in particular, we
have obtained excellent results for reconstructing a nucleotide sequence which
can fold into a given RNA secondary structure: whereas previous approaches,
while working well for short sequences, are computationally hard for longer ones
(more than 500 nucleotides), our methodology by using heuristics obtains ap-
proximate but useful results in O(n) time for such long sequences.

In this tutorial paper we share the expertise obtained in the course of this
work in a pedagogical fashion. We first provide a short intuitive introduction to
the main concepts involved in biological sequence analysis. Next we survey the
CHR formalism itself, as well as its grammatical counterpart, CHRG [12], and
our own CF (Concept Formation) formalism, exemplifying each with simplified
subproblems within those we have addressed in the literature above referenced.
We then discuss three major sequence processing problems (gene prediction,
RNA secondary structure and protein structure) and compare the methods we
advocate in this article with previously used methods.

2 Biological sequence analysis: the problem

We are interested in the general problem of protein generation from DNA. DNA
(Deoxyribonucleic Acid) is a nucleic acid that contains the genetic instructions
specifying the biological development of all cellular forms of life (and many
viruses) working like an information archive in each organism. DNA is often
referred to as the molecule of heredity, as it is responsible for the genetic prop-
agation of most inherited traits and it is replicated and transmitted to the off-
spring during reproduction. DNA can be looked at as a template for building
other DNAs and proteins. DNA is encoded with four building blocks, called nu-
cleotides or bases, which are: A (Adenine), C (Cytosine), G (Guanine) and T

1501Bavarian M., Dahl V.: Constraint Based Methods ...

(Thymine). DNA can be read and replicated and it is believed that much of the
role that DNA plays in forming proteins depends on this. These characteristics
make the linguistics treat a gene as a ‘word’ while a genome, the total genetic
material of species as ‘text’ in DNA code.

The central dogma of molecular biology considers how a sequence of DNA
bases turns into a sequence of amino acids which in turn, forms proteins. The
procedure is as follows: the information from a gene recipe is copied from a strand
of DNA to a strand of messenger RNA (mRNA). The mRNA molecules then
travel out of the nucleus and ribosome molecules read the genetic information
inside mRNA and translate them into amino acids based on the genetic coding
scheme . This strand of amino acids is then folded to make the three dimensional
structure of the protein.

DNA =⇒RNApolymerase pre − mRNA =⇒Splicesome RNA =⇒Ribosome Protein

There are some important facts regarding these transformations. First of all,
in the first transformation, genes are the material that would be processed by
RNA polymerase machinery. The second fact is that splicesome can generate
different RNA resulting in different proteins. And finally, some generated pro-
teins of this process might work as a barrier in forming other proteins and on
the other hand some of them might accelerate the production of others [13].

The major processes in protein production are:

1. Transcription: DNA sequences are transcribed by a biological machine
called RNA polymerase into sequences called Pre-mRNA, in which the nu-
cleotide T has changed to U(Uracil).

2. Splicing: Pre-mRNA is transformed into mRNA by another biological ma-
chine called splicesome.

3. Translation: another biological machine, called ribosome, reads the triplets
of consecutive nucleotides (called codons) in mRNA and generates amino
acids in parallel.

4. Folding: amino acids twist and fold to form proteins.

Computational methods have been used in each step of the transformation
to simulate the work of these machines. Here we only focus on the language
of DNA which consists of four words: A,C,T,G. As we mentioned, nucleotide
T would be transformed into nucleotide U in transcription step. The words of
this language group together to code for different amino acids. For instance,
the sequence UUU corresponds to the amino acid known as phenylalanine. A
first programming problem could be to implement in Prolog the translation of
codons into aminoacids- an easy enough task for any of us, and while challenging

1502 Bavarian M., Dahl V.: Constraint Based Methods ...

for biologists, a good introduction to interdisciplinary work. The core predicate
contains table-like information such as:

translate([u,u,g],tryptophan).

translate([u,u,a],leucine).

translate([u,u,c],leucine).

and we can conceive a logic grammar version as well, containing such grammar
rules as:

s([u,u,g]) --> [tryptophan].

s([u,u,a]) --> [leucine].

s([u,u,c]) --> [leucine].

As we can observe from this example, we are dealing with an ambiguous
language: different codons can code for a given amino acid.

Further Logic Programming (LP) base methodologies will be examined, which
can accommodate more sophisticated problems of biological sequences. In the
next section, we introduce them through simple examples for didactical pur-
poses, and later we shall expand on their use for three substantial biological
sequence analysis problems: gene prediction, RNA secondary structure and pro-
tein secondary structure.

3 Overview of the proposed methodologies

3.1 Assumption Grammars

3.1.1 The methodology

In human communication as well as in AI, assumptions play a central role. Lin-
guists and logicians have uncovered their many facets. For instance, the assump-
tion of a looking glass’ existence and unicity in “The looking glass is turning
into a mist now” is called a presupposition; the assumption that a polite request,
rather than a literal question, will be “heard” in “Can you open the door?” is
an implicature [15].

Assumptions [15, 16] are basically backtrackable assertions which can serve
among other things to keep somewhat globally accessible information (an as-
sertion can be used, or consumed, at any point during the continuation of the
computation).

Assumption Grammars are logic grammars augmented with a) linear and
intuitionistic implications scoped over the current continuation (i.e., the remain-
der of the computation from the current point in time) and b) hidden multiple
accumulators useful in particular to make the input and output strings invisible.
Intuitionistic assumptions */1 adds temporarily a clause usable in later proofs.

1503Bavarian M., Dahl V.: Constraint Based Methods ...

Such a clause can be used an indefinite number of times like asserted clauses ex-
cept that it vanishes on backtracking. Linear assumptions +/1 adds temporarily
a clause usable at most once in later proofs. For consuming these assumptions,
one can use -/1.

In the next section we introduce Assumption Grammars through a natural
language processing example (anaphora), and next we shall show its uses for
processing biological sequences.

3.1.2 An example

We shall now illustrate how assumption grammars can deal with intersentential
dependencies through the example of anaphora, in which a given noun phrase in
a discourse is referred to in another sentence, e.g. through a pronoun. We refer
to the noun phrase and the pronoun in question as entities which co-specify,
since they both refer to the same individual of the universe [15].

As a discourse is processed, the information gleaned from the grammar and
the noun phrases as they appear can be temporarily added as hypotheses ranging
over the current continuation. Consulting it then reduces to calling the predicate
in which this information is stored.

We exemplify the hypothesizing part through the following noun phrase rules:

np(X,VP,VP) --> proper_name(X), *specifier(X).
np(X,VP,R) --> det(X,NP,VP,R), noun(X,F,NP), *specifier(X,F).

pronoun(X,[masc,sing]) --> [he].
pronoun(X,[fem,sing]) --> [her].

anaphora(X) --> pronoun(X).

noun(X,[fem,sing],woman(X)) --> woman.

The intuitionistic assumption, *specifier(X), keeps in X the noun phrase’s
relevant information. In the case of a proper name, this is simply the constant
representing it plus the agreement features gender and number; in the case of
a quantified noun phrase, this is the variable introduced by the quantification,
also accompanied by these agreement features.

Potential co-specifiers of an anaphora can then consume the most likely co-
specifiers hypothesized (i.e., those agreeing in gender and number), through a
third rule for noun phrase:

np(X,VP,VP) --> anaphora(X), -specifier(X).

Semantic agreement can be similarly enforced through the well-known technique
of matching syntactic representations of semantic types.

1504 Bavarian M., Dahl V.: Constraint Based Methods ...

3.1.3 Applications

Assumptions can be applied to find some patterns in biological sequences such
as tandem repeats. A tandem repeat is a nucleotide sequence that results from
a class of mutation event called tandem duplication which converts a stretch of
DNA code (called the “pattern”) into two or more copies, each following the pre-
ceding one in contiguous fashion [25]. One of the reasons for identifying tandem
repeats is that according to biology and genetics sciences, tandem repeats occur
frequently in genomic sequences and they can have a potential role in gene reg-
ulation, including development of immune system cells. Many genetic diseases
such as Huntington’s disease and Friedreich’s ataxia (FRDA) are also shown to
be associated with uncontrolled expansions of tandem repeat patterns.

Searls in [25] has introduced some grammar rules for finding tandem repeats.
These grammar rules can be represented in assumption grammar as follows:

tandem_repeat --> [X],{push(X)},tandem_repeat.

tandem_repeat --> repeat.

repeat --> {-stack([])},[].

repeat --> {pop(X)}, repeat, [X].

push(X):- -stack(Y), +stack([X|Y]).

pop(X):- -stack([X|Y]), +stack(Y).

Here we make use of a global variable as a stack, add on to it through assumption
(noted ’+’) , and remove elements from it through consumption (noted ’-’).
Assumptions are available in some modern logic programming environments such
as BinProlog and CHRGs.

Another example which is very similar to tandem repeat is inverted repeat.
Inverted repeats are also common features of nucleic acids, which in the case
of DNA result whenever a substring on one strand is also found nearby on the
opposite strand [25]:

inverted_repeat --> [X],{push(X)}, inverted_repeat.

inverted_repeat --> repeat.

repeat --> {pop(X)},~[X],repeat.

repeat --> {-stack([])},[].

push(X):- -stack(Y),+stack([X|Y]).

pop(X):- -stack([X|Y]),+stack(Y).

3.2 Constraint Handling Rule, Constraint Handling Rule
Grammars

3.2.1 The methology

Constraint handling rules (CHR) is a concurrent committed-choice constraint
logic programming language which has proved useful for algorithms dealing with

1505Bavarian M., Dahl V.: Constraint Based Methods ...

constraints [19]. By presenting a highly executable framework, CHR has tried to
form a bridge between theory and practice in logic programming. It also provides
programmers efficiently executable specifications by supporting rapid prototyp-
ing. To this day, CHR has been applied in several applications including theorem
proving with constraints, combining forward and backward chaining, combining
deduction and abduction, bottom-up evaluation with integrity constraint, etc
[19].

CHR works on constraint stores with its rules interpreted as rewrite rules over
such stores. A string to be analyzed such as “leucine tryptophan phenylalanine”
is entered as a sequence of constraints

token(0,1,leucine),token(1,2,tryptophan),token(2,3,phenylalanine)

that comprise an initial constraint store. The integer arguments represent word
boundaries, and a grammar for this intended language can be expressed in CHR
as follows.

token(X0,X1,tryptophan) ==> codon(X0,X1,[u,u,g]).

token(X0,X1,leucine) ==> codon(X0,X1,[u,u,a]).

token(X0,X1,leucine) ==> codon(X0,X1,[u,u,c]).

token(X0,X1,phenylalanine) ==> codon(X0,X1,[u,u,u]).

We say that ambiguity is inherently treated because all possibilities will be
expressed in the constraint store resulting from an ambiguous input. In the
above example, for instance, both a codon [u,u,a] and a codon [u,u,c] will be
found between points 0 and 1.

CHR Grammars, or CHRGs for short, are based on Constraint Handling
Rules [19] and were introduced in [11, 10] as a bottom-up counterpart to definite
clause grammars (DCGs) defined on top of CHR in exactly the same ways as
DCGs take their semantics from and are implemented by a direct translation
into Prolog. CHRGs are executed as CHR programs that provide robust parsing
with an inherent treatment of ambiguity.

The input and output arguments of the above translation example can be
made implicit if using CHRG, which uses ::> for the rewrite symbol. The first
rule, for instance, would become:

token(tryptophan)::> codon([u,u,g])

We use the version of CHR that is an extension of Sicstus Prolog1, and
notation with capital letters for variables, etc., is as in Prolog. Here we restrict
ourselves to the subset of CHR consisting of propagation rules only, for which it
is easy to specify declarative and procedural semantics.

A CHR program is a finite set of rules of the form
1 Sicstus Prolog Manual: http://www.sics.se/isl/sicstuswww/site/
documentation.html

1506 Bavarian M., Dahl V.: Constraint Based Methods ...

Head ==> Guard|body

where Head and Body are conjunctions of atoms and Guard is a test constructed
from built-in predicates; the variables in Guard and Body occur also in Head;
in case the Guard is the local constant “true”, it is omitted together with the
vertical bar. Its logical meaning is the formula ∀(Guard → (Head → Body)) and
the meaning of a program is given by conjunction.

A derivation starting from an initial state called a query of ground constraints
is defined by applying rules as long as it adds new constraints to the store. A
rule as above applies if it has an instance H==>G|B with G satisfied and H in
current store, and it does so by adding B to the store.

It is to be noted that if the application of a rule adds a constraint c to the
store which already is there, no additional rules are triggered, e.g., p ==> p does
not loop as it is not applied in a state including p.

There are three types of CHR rules:

– Propagation rules which add new constraints (body) to the constraint set
while maintaining the constraints inside the constraint store for the reason
of further simplification.

– Simplification rules which also add as new constraints those in the body,
but remove as well the ones in the head of the rule.

– Simpagation rules which combine propagation and simplification traits,
and allow us to select which of the constraints mentioned in the head of the
rule should remain and which should be removed from the constraint set.

The factors strengthening CHR include the combination of propagation and
multi-set transformation of logical formulae in a concurrent, guarded rule-based
language [19]. The rewrite symbols for the first two rules are respectively: ==>,
<=> and for simpagation rules, the notation is Head1\Head2<=>body. Anything
in Head1 remains in the constraint set and anything in Head2 is removed from
the constraint set and body is added to the constraint store.

The CHRG notation makes the word boundary arguments implicit and, anal-
ogously to DCGs, includes a syntax for using non-grammatical constraints. The
corresponding rewrite symbols for CHRG are <:> for simplification and simpa-
gation rules and ::> for propagation rules.

3.2.2 Applications

In Section 3.1, we introduced tandem repeats and their importance and showed
an implementation of them using Assumption Grammar. Using the same tech-
nique we now present the same program in CHRG:

1507Bavarian M., Dahl V.: Constraint Based Methods ...

![X],tandem([X|Y]) <:> tandem(Y).

repeat(L) ::> tandem(L).

[X] ::> repeat([X]).

repeat(Y),![X] <:> repeat([X|Y]).

tandem(P1,P2,[]) ==> tandem_repeat(P1,P2).

In this implementation instead of using stacks, we make use of a list argu-
ment inside the constraints tandem/1 and repeat/1. A tandem repeat is formed
when we have a constraint tandem/1 for which the list argument is empty. This
implementation is also capable of identifying tandem repeats inside the input
string. The ! sign is used before the predicate inside simpagation rules that are
needed to stay inside the constraint store.

Using string grammars [25], it is possible to solve this problem differently.
The solution given below, finds every possible string inside the input string and
by identifying similar strings discovers the tandem repeats.

[X], string(Y) ::> string([X|Y]).

[X] ::> string([X]).

string(X),string(X) ::> tandem_repeat(X).

This implementation can also be extended to identify any number of tandem
repeats:

[X], string(Y) ::> string([X|Y]).

[X] ::> string([X]).

tandem_repeat(X,C),string(X) <:> C1 is C+1 | tandem_repeat(X,C1).

string(X),string(X) ::> tandem_repeat(X,2).

The inverted repeat problem can also be solved in CHRG and CHR using
the same techniques. Comparing the three suggested implementations (one with
assumption grammar and two using CHRG), we can suggest that depending
on the goal of the user any of them can be utilized. The first implementation
is very straightforward and is applicable whenever we are only interested in
understanding whether or not an input string is a tandem repeat. The second
implementation can also give us the opportunity to identify tandem repeats
which are hidden inside an input string. The third implementation does not seem
as efficient as the other two as it tries to find all the possible strings inside the
input string, however it is able to recognize more than two consecutive tandem
repeats inside the input string.

3.3 Concept Formation Grammars

3.3.1 The methodology

In [17], we introduced a cognitive model of Concept Formation, which has been
used for oral cancer diagnosis [5] and specialized into grammatical concept for-

1508 Bavarian M., Dahl V.: Constraint Based Methods ...

mation, with applications to property grammar parsing [14].
The grammatical counterpart of Concept Formation is an extension of CHRGs

which dynamically handles properties between grammar constituents and their
relaxation, as statically defined by the user.

Let’s first exemplify within the traditional framework of rewrite rules which
implicitly define a parse tree. Whereas in CHRG we would write the following
toy grammar2:

[a] ::> determiner(singular).

[boy] ::> noun(singular).

[boys] ::> noun(plural).

[laughs] ::> verb(singular).

determiner(Number),noun(Number),v(Number) ::> sentence(Number).

To parse correct sentences such as “a boy laughs”, in CFGs we can also allow
incorrect sentences to be generated, but ask the system to point out to us which
properties are violated by such incorrect sentences. This requires the following:

– a definition of all properties in terms of a system predicate prop/2.

– a declaration of what properties can be relaxed, done through the system’s
(Prolog) predicate relax/1, and for properties to be called through the system
predicate acceptable/1.

For instance, an agreement property to check that the number of a subject’s
determiner (NDet) coincides with that of the noun (Nn) and with that of the
main verb (Nv), and which can be defined in Prolog as:

agreement(Ndet,Nn,Nv):- Ndet=Nn, Nn=Nv.

must be expressed in terms of the system predicate prop/2 as follows, with all
concerned arguments grouped into a list:

prop(agreement,[Ndet,Nn,Nv]):- Ndet=Nn, Nn=Nv.

If we now want to relax this property, so that number mismatches are de-
tected but do not block the parse, we can use the system predicate relax/1, as
follows:

relax(agreement).

2 Terminal symbols are denoted between brackets as in DCGs; the double colon arrow
indicates CHR grammar rules, as opposed to CHR proper.

1509Bavarian M., Dahl V.: Constraint Based Methods ...

A property is then considered “acceptable” if it either succeeds, or if it fails
but has been relaxed:

acceptable(prop(P,A)):-call(prop(P,A)); relax(P).

Therefore, properties must be tested through the system predicate accept-
able/1. For our example, we would write:

determiner(Ndet), noun(Nn), v(Nv) ::>

acceptable(prop(agreement,[Ndet,Nn,Nv])) | sentence(Nv).

The system will now accept also sentences which do not agree in number,
while pointing out the error in the list of violated properties, as a side effect of
the parse. In the case of “a boy laughs”, the agreement property will appear in
the list of violated properties automatically constructed as a result of the parse.

Degrees of acceptability can also be defined using binary versions of “relax”
and “acceptable”, whose second argument evaluates to either true, false, or a
degree of acceptability, according to whether (or how much of) the property is
satisfied. This allows the user as well to relax specific constraints rather than
types of constraints, by specifying right-hand side conditions on these binary
counterparts. It would be interesting to allow the user to rank constraints, but
this facility is not included in our current model. For full details, see [17].

Figure 1: A hairpin loop

3.3.2 Application

It is believed that in biology there are no rules without exceptions [26]. For
example, previously scientists believed that a gene can only be responsible for one
protein, however the recent works in this area has proved this to be wrong. A gene
may generate several proteins under different circumstances. Concept formation
features gives us the ability to write rules for biological transformations that are
closer to what happens in real life. As an example we show how to use concept
formation rules in finding hairpin loops, one of the common patterns seen in RNA

1510 Bavarian M., Dahl V.: Constraint Based Methods ...

structure. As shown in Figure 1, a hairpin loop consists of a stem which leads
to a loop at the end. According to the biochemical laws the loop part should
at least contain three nucleotides, but in some rare RNA structures, it might
happen that a loop contains only two nucleotides. Concept Formation Rules is
ideally suited to model molecular biology situations such as these because it
allows the user to state exceptions declaratively and handles them invisibly and
efficiently.

The case of loops with only 2 nucleotides, for instance, can be directly im-
plemented by the CF rule:

stem(X1,Y1,X2,Y2),loop(X,Y)==> X is X2+1,Y is Y2-1,

acceptable(prop(length,[X,Y])) | hairpin(X,Y).

4 More sophisticated applications of the proposed
methodologies

4.1 Gene prediction

The fundamental physical and functional unit of heredity is called a gene. It is an
ordered sequence of nucleotides located in a particular position on a particular
chromosome that encodes a specific functional product (i.e., a protein or RNA
molecule). Genes determine many aspects of anatomy and physiology by control-
ling the production of proteins. Each individual has a unique sequence of genes,
or genetic code. If you take a look at scientific sections of the newspapers, maga-
zines or internet, you will probably encounter such articles as: “Researchers find
genes for depression”, “Researchers find gene that causes liver cancer in mice”,
“Two new lung cancer genes” etc. Discovery of genes that influence disease risk
in human populations is of key importance to the pharmaceutical industry. This
is because identifying the gene automatically identifies the protein in which al-
teration of function causes disease. For the pharmaceutical industry, this protein,
together with other proteins that are part of the same physiological pathway,
becomes a potential drug target. Once a drug target has been identified, modern
techniques allow the pharmaceutical industry to rapidly screen large numbers of
chemical compounds for action on this target. It is expected that drugs acting
directly on the proteins, in which genetically determined alteration of function
causes disease, will be highly effective in preventing or treating these diseases.
This is one of the reasons why researchers in various branches of science are
trying to identify genes. The problem of identifying genes responsible for certain
diseases or characteristics has many difficulties. One of them is the fact that
there are often several genes that are responsible for certain diseases. By study-
ing the DNA of the individuals and their families having rare diseases one may
be more successful in pinning down the main responsible genes[13].

1511Bavarian M., Dahl V.: Constraint Based Methods ...

The order in which the bases of DNA are linked in a gene is called the
sequence of a gene. There exist two types of genes: RNA genes and protein
coding which is our focus here. Stretches of DNA that code for proteins are called
exons. In eukaryotes, cells with membrane-bound nucleus, exons in a given gene
are generally separated from each other by stretches of DNA that do not contain
instructions for constructing proteins, they are called introns.

There are various approaches for the problem of gene finding but here our
focus is on the computational methods. Computational gene finding is the pro-
cess of identifying potential coding regions in an uncharacterized region of the
genome. This area is still a subject of active research. There actually exist many
different gene-finding software packages and no program is capable of finding
everything. Common techniques include homology, combinatorial dynamic pro-
gramming, probabilistic modeling especially Hidden Markov Models and neural
nets but here another approach in logic programming is used. Cohen has pro-
posed a set of grammar rules for finding genes [13] and here we have translated
the same grammar into CHRG.

This approach is based on the fact that beginning and ending of the genes
are marked by some special codons (start and stop). The start codon is the
sequence ATG while the stop codon might take any of the three possible forms:
TAA,TAG, or TGA. The main part of the gene is placed between the start and
stop codon and is composed of exons interrupted by introns, distinguished from
each other through a set of relatively complicated rules:

start_codon,gene_body, stop_codon ::> gene.

start_codon,stop_codon ::> gene.

[a,t,g] ::> start_codon.

[t,a,a] ::> stop_codon.

[t,a,g] ::> stop_codon.

[t,g,a] ::> stop_codon.

exon_body,left ::> gene_body.

exon_body ::> gene_body.

left ::> gene_body.

[a,g],intron_body,right ::> right.

[a,g],exon_body,left ::> right.

[a,g],left ::> right.

[a,g],right ::> right.

[a,g],exon_body ::> right.

[a,g] ::> right.

[g,t],intron_body,right ::> left.

[g,t],exon_body,left ::> left.

[g,t],exon_body ::> left.

[g,t],left ::> left.

1512 Bavarian M., Dahl V.: Constraint Based Methods ...

[g,t],right ::> left.

[g,t] ::> left.

base ::> intron_body.

base ::> exon_body.

base,[a] ::> base.

base,[c] ::> base.

base,[g] ::> base.

base,[t] ::> base.

[a] ::> base.

[c] ::> base.

[g] ::> base.

[t] ::> base.

4.2 RNA secondary structure

In biology there is an important relationship between structure and function.
The shape of the molecules usually determine whether or not two compounds
can interact with each other [29]. Here we examine the structure of RNA and
how it can be represented and solved by means of constraint handling rules.
RNA (ribonucleic acid) is a chemical found in cells which codes for amino acid
sequences. Each RNA molecule is made up of four different compounds called
nucleotides or bases, each noted with one of the letters: A, C, G, and U (Uracil).
During the transformation process of proteins, synthesis of RNA molecules are
directed by DNA sequences.

RNA molecules have two sets of structural information: the primary structure
and the secondary structure. The linear arrangement of the four compounds
(nucleotides A,C,G and U) is known as the primary structure of RNA. As we
already mentioned the primary structure of RNA and DNA are very similar to
each other and the only difference is that instead of nucleotide U in RNA, DNA
contains nucleotide T. However, in the actual structure, DNA is formed by a
double helix while RNA is typically single stranded. This strand of nucleotides
is folded onto itself by pairings of the nucleotide A with U and C with G which
are called Watson-Crick base pairs or canonical base pairs. Pairing also might
happen between nucleotide G and nucleotide U but this is not very frequent. The
structure made by these pairings is called RNA secondary structure . Each base
in the secondary structure can be paired with at most one base. The tertiary
structure of RNA is the actual 3D structure of RNA in nature. The secondary
and tertiary structure of RNA determine the RNA interaction with other cell
components. A number of structural motifs are found inside RNA secondary
structure such as helix, hairpin loop, bulge loop, internal loop, etc (Figure 2).

1513Bavarian M., Dahl V.: Constraint Based Methods ...

Figure 2: Common motifs in RNA secondary structure

There are many problems in biology that involve RNA, but here we only
focus on two of these problems which are strongly related to each other. The
first problem is the problem of RNA secondary structure prediction where given
the primary structure of an RNA, the secondary structure is to be determined.
The second problem is in fact the inverse of the first problem: given a secondary
structure, a sequence of nucleotide is asked for that folds onto that structure.
Below, we will show how we can use our methods to solve these two interesting
and at the same time challenging problems.

4.2.1 RNA secondary structure prediction

The problem of RNA secondary structure prediction consists of determining
which secondary structure will be adopted by a given sequence of nucleotides
(Figure 3). One of the significant benefits of understanding the secondary struc-
ture of RNA is to determine its chemical and biological properties. Although it is
not yet possible to reliably predict RNA tertiary structure, there are fairly good
RNA secondary structure prediction algorithms available. Clearly, the tertiary
structure of RNA is much more useful and gives us a better insight of RNA func-
tions, but while it is still quite difficult to predict, researchers use the secondary
structure to explain most of the functionalities of RNA.

Several methods have tackled this problem so far, yet there are two main
approaches. The most common method is finding minimum free energy [31]. In
this method we look for the structure out of all possible folds with the least free
energy. There are several factors which determine the free energy of a fold, some
of them are: the number of GC pairs in comparison to AU and GU (the reason
is that the GC pairs form a more stable structure), number of base pairs in a
double helix, the number of bases which are not paired.

The second method of RNA secondary structure prediction deals with se-
quence comparison. It uses multiple sequence alignment, so for finding the sec-
ondary structure of a given RNA we have to first align it with a couple of similar
sequences and from the homology, derive the secondary structure.

1514 Bavarian M., Dahl V.: Constraint Based Methods ...

Figure 3: RNA secondary structure prediction

The formation of secondary structure of RNA can be shown by a few grammar
rules [3]:

S → cSg|gSc|aSu|uSa|gSu|uSg

S → aS|gS|uS|cS
S → a|g|u|c

S → SS

The first rule pairs either a Watson-Crick base pair or a GU pair. The second
rule is used to form the regions in which the bases are unpaired (such as loops).
The third rule accepts a sequence of the length of one nucleotide as a valid RNA
sequence and the last one can be used to join two structures together. These rules
are relatively simple, but at the same time ambiguous. The reason for ambiguity
is that there might be more than one derivation for the same sequence, e.g. for
the short sequence cccg, we have:

S ⇒ cS ⇒ ccSg ⇒ cccg

S ⇒ cSg ⇒ ccSg ⇒ cccg

The translation of the RNA grammar rules in CHRG format would be :

(1) [c],s,[g] ::> s.

(2) [a],s,[u] ::> s.

(3) [g],s,[u] ::> s.

(4) s,s ::> s.

(5) [a] ::> s.

(6) [g] ::> s.

(7) [c] ::> s.

(8) [u] ::> s.

1515Bavarian M., Dahl V.: Constraint Based Methods ...

The first three rules should also be written for GC, UA and UG base pairs
as well. This piece of code is very simple and it can be directly executed on a
Sicstus Prolog engine (the code needed for CHRG should be compiled first).

This program will try to find all the possible secondary structures for the
sequence, but it would probably take a long time to finish. Other techniques
of RNA secondary structure prediction have some criteria for choosing the best
solution, e.g. the one with the minimum free energy. According to these, we have
to add some features to the existing rules to somehow prioritize in selecting rules.
For instance while parsing a sequence when it comes up with a base C, it has
to decide between choosing rule (1) and rule (7) (the current code accepts both
of them and follows both branches according to that). To give priority to the
rules, we have to find the probabilities that govern the known RNA secondary
structures (which have been found by biological or computational methods).
Sakakibara et al. have tried to solve this problem by using a stochastic context
free model [24]. We suggest another method for finding these probabilities by
using Constraint Handling Rules. For the input, we use a number of RNA se-
quences for which the secondary structure is known and we give this input to a
program similar to the one written in CHRG. This new program keeps track of
the number of times each of the rules has been used (to make the input struc-
ture) and at the end by running the program for each structure, we would be
able calculate the probability of each rule according to those numbers and find
the average between all the input structures. The reason why we used CHR here
is that this language gives us a bottom-up framework that can be exploited to
find the possible parse for each structure.

4.2.2 RNA secondary structure design

As mentioned earlier, the problem of RNA secondary structure design is defined
as follows: given an RNA secondary structure, find an RNA sequence which folds
onto the given structure (Figure 4). Major motivations to solve this problem in-
clude design of artificial RNA nanostructures, drug design, and ribozyme therapy
[2]. Moreover, finding a solution to the problem of RNA secondary structure de-
sign might assist in solving the same problem for DNA (due to their analogous
structures) which consequently can be used in DNA self-assembly computation.
Complexity-wise this problem is believed to be computationally hard [2] but it
has not been proven yet.

Previously there were only two major algorithms for solving this problem:
RNAinverse [20] and RNA-SSD [2]. These methods generate outstanding results
while designing shorter RNA sequences (less than 500 bases), however because of
a bottle-neck in their algorithm which involves repeated calls to RNA secondary
structure algorithms, they happen to be very slow while designing longer RNA
sequences. In [6], we have introduced a new algorithm for solving this problem

1516 Bavarian M., Dahl V.: Constraint Based Methods ...

which uses the RNA grammar discussed above, and a nucleotide composition
probabilistic model. Moreover, we have used CHR rules to implement the RNA
grammar.

Figure 4: RNA secondary structure design

We have calculated these nucleotide composition probabilities by comparing
a number of RNA sequences from several RNA database. After comparing 100
test cases with various length from 100 to 1500 bases, we found the following
probabilities for each base pair:

PCG = 0.53, PAU = 0.35, PGU = 0.12

The other probabilities which are of interest are the probabilities for an un-
paired base to be one of A, C, G, or U. The results are as follows:

PG = 0.18, PA = 0.34, PC = 0.27, PU = 0.20

Inserting the probabilities into the rules is the most challenging part of the
implementation. In our implementation, it is done by generating a random vari-
able in the guard section of the rules, which is the only part that accepts Prolog
predicates. This random variable is then tested according to the probabilities:
for instance for the following rule if the random variable I is less than 0.53, it
will assign a GC pair to pair(X1,Y1). The L parameter in s contains the list of
bases already added to the sequence and find(M,N,I) assigns a base pair to M

and N based on the random variable I.

pair(X1,Y1)\s(X,Y,L) <=> X1 is X-1,Y1 is Y+1,random(I),

find(M,N,I), append([X1:M,Y1:N],L,L1) | s(X1,Y1,L1).

All the other rules inside the RNA grammar are translated to CHR rules
combined with probabilities similar to the rule above.

1517Bavarian M., Dahl V.: Constraint Based Methods ...

4.3 Protein structure

Proteins are the molecules responsible for much of the structure and activities of
organisms. From a chemical point of view, proteins are long polymers containing
thousands of atoms. The proteins are typically 200–400 amino acids long which
means that they require at least 600–1200 letters for the DNA message to specify
them (not including the introns).

Protein architecture could be analyzed in three levels like RNA and DNA.
Primary structure would be the order of the amino acids in the sequence which
has been formed by three codons translation. Secondary structure however repre-
sents how some of the amino acids in the sequence form common structures such
as alpha helices, beta sheets, etc. Alpha helices are common structures of pro-
teins, characterized by a single, spiral chain of amino acids stabilized by hydrogen
bonds, while beta sheets consist of two or more amino acid sequences within the
same protein that are arranged adjacently and in parallel, but with alternating
orientation such that hydrogen bonds can form between the two strands. Finally
the tertiary structure would be the exact conformation of a whole protein.

Here we only discuss the problem of protein secondary structure prediction.
What makes this problem rather difficult is that identical short sequences of
amino acids can adopt different secondary structure in different contexts [27].
Muggleton et al. have tried to solve this problem by using Inductive Logic Pro-
gramming (ILP) [21, 22]. They have applied an ILP program to learn secondary
structure prediction rules. The output of their program is a small set of rules
which can predict which of the residues in the sequence are part of the alpha
helices. This set of rules can also be translated into CHRG. A sample rule in
CHRG format is:

res(X1),res(_),res(X2),res(X3), res(Y),res(X4), res(X5),_,X6) ::>

not_aromatic(X1),not_k(X1), hydrophobic(X2),

not_aromatic(X3),not_p(X3),

not_aromatic(Y),not_p(Y), not_p(X4), not_k(X4),

hydrophobic(X5),less_hydro(X1,X5),

less_volume(X5,X3),not_aromatic(X6),

less_hydro(X6,X2) | alpha(Y) .

In this example, res/1 represents a residue and the predicates in the guard
are the chemical characteristics that each residue should have.

5 Conclusion

We have covered several high level methods for pattern description of biological
sequences, and exemplified the advantages of these methods for several concrete

1518 Bavarian M., Dahl V.: Constraint Based Methods ...

such problems. We have shown how to translate codons to aminoacids using
DCGs, how Assumption Grammars allow us to modularize stack manipulation
in global terms, which we used for implementing tandem and inverted repeats,
how Constraint Handling Rules promote direct bottom-up execution of the same
problem, as well as having a grammatical version which we used for more direct
aminoacid string translations, and how Concept Formation Grammars can in
particular accommodate rules with exceptions.

We consider the main advantage of these methods to be the coupling of direct
executability with economy of expression within high level specifications that are
meaningful for humans and thus can promote quick prototyping of specialized,
interdisciplinary knowledge. On the other hand, the discussed methodologies do
exhibit some run-time inefficiencies. For future work, some intermediate systems
can be designed to automatically translate these high-level languages into low-
level ones. This way we would have methods that are not only understandable
and more user friendly but at the same time efficient and practical.

With this work we hope to stimulate further interactions between molecular
biology, logic and AI.

References

1. Abramson, H. , Dahl, V.,Logic Grammars, Springer-Verlag, 1989.
2. Andronescu, M., Fejes, A.P., Hutter, F., Hoos, H.H.,Condon, A., A new algorithm

for RNA secondary structure design, Journal of Mol. Bio. 336(3), 607–624, 2004.
3. Baldi, P., Bioinformatics: the machine learning approach, Cambridge, Mass. :MIT

Press, 1998.
4. Barranco-Mendoza, A., Stochastic and Heuristic Modelling for Analysis of the

Growth of Pre-Invasive Lesions and for a Multidisciplinary Approach to Early Can-
cer Diagnosis, Ph.D. Thesis, Simon Fraser University, Burnaby, BC, 2005.

5. Barranco-Mendoza, A., Persaoud, D.R. and Dahl, V. A property-based model for
lung cancer diagnosis, 8th Annual Int. Conf. on Computational Molecular Biology,
RECOMB 2004, San Diego, California, March 27-31 (accepted poster), 2004.

6. Bavarian, M., Dahl, V., RNA secondary structure design using Constraint Handling
Rules , WCB 2005.

7. Bes, G. and Blache, P., Proprieties et analyse d’un langage, In Proc. TALN99, 1999.
8. Bes, G., Dahl, V., Guillot, D., Lamadon, L., Milutinovici. I. and Paulo, J.,A parsing

system for balanced parenthesis in NL texts. Poster and Demo at the Lorraine-
Saarland Workshop on Prospects and Advances in the Syntax/Semantics Interface,
Loria-Nancy ,2003.

9. Blache, P. and Balfourier, J. M., Property Grammars: a Flexible Constraint-based
Approach to Parsing, In Proc. IWPT-2001, 2001.

10. Christiansen, H., CHR as Grammar Formalism, a First Report, In Sixth Annual
Workshop of the ERCIM Working Group on Constraints, Apt, K.R., Bartak, R.,
Monfroy, E., Rossi, F., (eds.), Prague, 2001.

11. Christiansen, H.,Logical Grammars Based on Constraint Handling Rules,(Poster
abstract). In Proc. 18th International Conference on Logic Programming, Stuckey,
P. (ed.) Lecture Notes in Computer Science, 2401, Springer-Verlang, p. 481, 2002.

12. Christiansen, H. CHR Grammars, International Journal in Theory and Practice of
Logic Programming, special issue on Constraint Handling Rules, 2005.

1519Bavarian M., Dahl V.: Constraint Based Methods ...

13. Cohen, J., Computational Molecular Biology: A Promising Application Using Logic
Programming and Constraint Logic Programming, Lecture Notes in Artificial Intel-
ligence, 1999.

14. Dahl, V. and Blache, P., Directly Executable Constraint Based Grammars,In Proc.
Journees Francophones de Programmation en Logique avec Contraintes, Angers,
France, 149–166, 2004.

15. Dahl, V. and Tarau, P.,Assumptive Logic Programming, In Proc. ASAI 2004, Cor-
doba, Argentina, 2004.

16. Dahl, V., Tarau, P., and Li, R.,Assumption Grammars for Processing Natural Lan-
guage. In Proc. Fourteenth International Conference on Logic Programming, MIT
Press, 256–270, 1997.

17. Dahl, V. and Voll, K., Concept Formation Rules: An Executable Cognitive Model
of Knowledge Construction, In Proc. First International Workshop on Natural Lan-
guage Understanding and Cognitive Sciences (NLUCS’04), Porto, Portugal, April
2004.

18. Frühwirth, T.,User-Defined Constraint Handling, Poster, International Conference
on Logic Programming (ICLP 93), Budapest, Hungary, MIT Press, June 1993.

19. Frühwirth, T. W.,Theory and Practice of Constraint Handling Rules,In Journal of
Logic Programming, 37:95–138, 1998.

20. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.,
Fast Folding and Comparison of RNA Secondary Structures , Monatshefte f. Chemie
125:167–188, 1994.

21. Muggleton, S., Inductive logic programming, Proceedings of the ILP-91 interna-
tional workshop, Vianna de Castelo, Portugal, 2-4 March 1991.

22. Muggleton, S.,King,R.D., Sternberg.,M.J.E.,Protein secondary structure prediction
using logic-based machine learning, Protein Engineering, 5:647-657, 1992.

23. Overbeek, R.A., Invited Tutorial: Logic Programming and Genetic Sequence Anal-
ysis, JICSLP, Washington, DC,1992.

24. Sakakibara, Y., Brown, M., Hughey, R., Mian, S., Sjolander, K., Underwood, R.,
Haussler, D. Stochastic Context-Free Grammars for tRNA Modeling, Nucleic Acids
Research. 1994 Nov 25;22(23):5112-20.

25. Searls, D.B., The computational linguistics of biological sequences, Artificial intel-
ligence and molecular biology, American Association for Artificial Intelligence, p
47-120, 1993.

26. Searls, D.B., Grand challenges in computational biology, In Computational meth-
ods in molecular biology, S. L. Salzberg, D. B. Searls and s. Kasif, Eds. Elsevier
Amsterdam, The Netherlands, 1998.

27. Schulze-Kremer, S., Molecular bioinformatics: algorithms and applications, Water
de Gruyter, New York 1996, p12.

28. Voll, K.,A Methodology of Error Detection: Improving Speech Recognition in Radi-
ology , PhD thesis, Simon Fraser University, 2006.

29. Waterman, M. S., Introduction to computational molecular biology: Maps , se-
quences and genome,Chapman&Hall, p327-340, 1995.

30. Zahariev, M., Dahl, V. and Levesque, A. (Technical Report), Efficient Algorithms
for the Discovery of Oligonucleotide signatures for DNA Sequences and Groups of
Sequences.

31. Zuker, M., Sciences 244, 48-52, 1989.

1520 Bavarian M., Dahl V.: Constraint Based Methods ...

