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Abstract This paper presents a branching schema for the solving of a wide range
of interval constraint satisfaction problems defined on any domain of computation,
finite or infinite, provided the domain forms a lattice. After a formal definition of the
branching schema, useful and interesting properties, satisfied by all instances of the
schema, are presented. Examples are then used to illustrate how a range of operational
behaviors can be modelled by means of different schema instantiations. It is shown how
the operational procedures of many constraint systems (including cooperative systems)
can be viewed as instances of this branching schema. Basic directives to adapt this
schema to solving constraint optimization problems are also provided.
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1 Introduction

Solving a constraint satisfaction problem (CSP) means finding assignments of
values to the variables such that all constraints are satisfied. A CSP can have
many solutions; usually either any one or all of the solutions must be found.
However, sometimes, because of the cost of finding all solutions, partial CSPs
are used where the aim is just to find the best solution within fixed resource
bounds. An example of a partial CSP is a constraint optimization problem (COP)
that assigns a value to each solution and tries to find an optimal solution (with
respect to these values) within a given time frame.

Constraint solving algorithms have received intense study from many re-
searchers, and one of the main issues has been in developing new and more effi-
cient methods to solve classical CSPs [Freuder and Hubbe, 1995, Wallace, 1993]
and partial CSPs [Freuder and Wallace, 1992, Meseguer and Larrosa, 1995]. See
[Kumar, 1992, Ruttkay, 1998, Smith, 1995, Van Hentenryck, 1995] for more in-
formation on constraint solving algorithms and [Kondrak and Van Beek, 1997,
Nadel, 1989] for selected comparisons.
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There are two steps in constraint solving, constraint propagation and
constraint branching. The basic idea of constraint propagation algorithms (also
called filtering or arc consistency algorithms) consists of removing, from the
domains associated to the constrained variables, inconsistent values that can
never be part of any solution. This process reduces significantly the search tree
and possibly the computational effort to find a solution if one exists (or to prove
the optimality of this in case of an optimization problem) or to demonstrate
that there is no solution. In general, the results are propagated through the
whole constraint set and the process is repeated until a stable set is obtained.
In the scientific literature, one can find a number of proposals that identify
some general principles for constraint propagation (e.g., [Apt, 1999, Apt, 2000,
Apt, 2005, Apt and Monfroy, 2001, Bistarelli et al., 1999, Bistarelli, 2004,
Fernández and Hill, 2004, Schiex et al., 1995, Van Hentenryck et al., 1992]).

The main drawback of constraint propagation algorithms is that they are
usually incomplete in the sense that often they are not enough for solving a
CSP, that is to say, they do not eliminate all the non-solution elements from the
domains and as consequence, it is necessary to employ some additional strategy
or another kind of algorithm to solve it. One complementary method to the
propagation algorithms is the so called constraint branching that divides the
variable domains to construct new subproblems (i.e., branches in the search tree)
on which constraint propagation is reactivated. However, regarding constraint
branching, to our knowledge, there is no study specifically focused to find a
general framework. Perhaps the main reason for it is that constraint branching
is basically accepted as a means of generating further constraint propagation
and the branching heuristics are very specific to the computation domain. So,
most of the work existing in the literature that deals with constraint branching
is concerned with specific computation domains.

In [Fernández and Hill, 2004], an interval constraint propagation schema for
solving CSPs (a set of interval constraints defined on a set of lattice structure
computation domains) is described. The schema removes inconsistent values
from the initial domain of the variables that cannot be part of any solution.
It is shown how the results are propagated through the whole constraint set
and the process is repeated until a stable set is obtained. However, although the
propagation schema is correct, guaranteed to find a most general solution to the
constraint store representing a CSP ([Fernández and Hill, 2004][Theorem 1]), it
is incomplete in the sense that it may not determine exactly which values in the
domains (i.e., intervals) of the constrained variables are the correct answers to
the problem.

This paper proposes a branching schema that is complementary to the con-
straint propagation schema described in [Fernández and Hill, 2004]. The com-
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bination of these two schemas forms a complete1 interval constraint solving
framework that can be used on any set of domains which have the structure
of a lattice, independently of their nature and, in particular, their cardinality.
As consequence it can be used for most existing constraint domains (finite or
continuous) and, as for the framework described in [Fernández and Hill, 2004],
is also applicable to combined domains and cooperative systems.

As for the constraint propagation algorithm in [Fernández and Hill, 2004],
we define a number of interesting properties that are satisfied by any instance
of the branching schema and show that the operational procedures of many
interval constraint systems (including cooperative systems) are instances of our
branching schema.

Therefore, this paper represents an attempt to find general principles for
interval constraint branching, on any (set of) domain(s) not necessarily numeric
with lattice structure.

The structure of the paper is as follows: [Section 2] concerns related work;
[Section 3] introduces some preliminary concepts used throughout the paper;
[Section 4] provides further key concepts specific to the proposed constraint
branching schema; [Section 5] defines the main functions involved in interval
constraint branching; [Section 6] describes a parameterized generic branching
schema that allows (complete) solving of interval CSPs defined on any set of
lattices, stating its main properties; [Section 7] gives an outline of how to extend
this schema for partial constraint solving (i.e., constraint optimization); [Sec-
tion 8] illustrates, by means of an example, how the choice of the parameters in
the schema can influence the solving; [Section 9] concludes the paper. Proofs of
stated results are included in the Appendix.

2 Related work

Here we discuss some relevant works that have been done on constraint branching
in specific computation domains. Of course the list is not exhaustive.

For instance, considering the discrete domain, branching is usually called la-
beling [Van Hentenryck, 1989], and labeling often consists of a combination of
two processes: variable and value ordering, that basically means selecting a vari-
able and assigning it a value from its domain in order to reactivate constraint
propagation. The order in which variables and values are instantiated is guided
by heuristics and is assumed to have a significant influence on the shape of the
search tree and thus the performance of the solution [Apt, 2003]. An empirical
study on the influence of different branching strategies in labeling was devel-
oped recently in [Park, 2006]. Surprisingly, one of the conclusions reached in

1 ‘Complete’ in the sense that the correctness and completeness of the branching
schema can be guaranteed.
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this work was that, for finite domain CSPs, the choice of the branching strat-
egy does not matter much if an effective variable ordering is selected. However,
in optimization problems, there was some evidence that domain splitting im-
proves the running time. In any case, this work considered only three branching
strategies (namely 2-way branching, k-way branching and domain splitting - see
below) in the finite domain so that the conclusions cannot be generalized to other
computation domains. Also [van Hoeve and Milano, 2004](extended version) an-
alyzes constraint branching by comparing labeling and partitioning (see below)
and draws interesting conclusions (e.g., partitioning on depth-first based search
strategies should be preferred to labeling when a partial order is defined on the
computation domain; however partitioning reduces the effect of constraint prop-
agation with respect to labeling). This work also proposes postponing branching
decisions when the value ordering heuristic produces ties.

In addition to the variable and value ordering, it is well-known that the
election of the tree traversal heuristic greatly influences the performance of the
solving, and for this reason we can find different proposals for traversing the
search tree in specific ways that try boosting the search for a(n optimal) so-
lution in a CSP (COP). For instance [Harvey and Ginsberg, 1995] proposes a
limited discrepancy search strategy as a replacement to the standard depth-first
search, whereas [van Hoeve, 2006] uses the solution generated by a semidefinite
relaxation to define search ordering and tree traversal.

On infinite domains, labeling is rarely applied as for FD. Of course there are
exceptions such as that shown in [Monfroy, 1996, Monfroy et al., 1995] that ap-
plies labeling to process the solutions on infinite and continuous domains. Before
applying labeling, the only values a variable can take are roots of an univariate
polynomial so that in fact only discrete and finite domains are considered.

Traditionally, on the continuous domain (i.e., the real domain) the branch-
ing process consists of splitting the domain of a variable in two or more parts
(i.e., intervals) so as to continue with the search for a solution in each of the
derived partitions. This process is usually called domain splitting or interval
partitioning and was implemented in well-known systems such as CLP(BNR)
[Older and Benhamou, 1993] and CLIP [Hickey, 2000]. These systems provide
interval constraint solving on which a real variable has associated an inter-
val (in the usual meaning of set theory) and a classical strategy of “divide
and conquer” in the solving of problems involving real numbers is usually em-
ployed. When no more propagation is possible, the interval solver uses a sort
of domain splitting to return each answer. This method is called split-and-solve
[Benhamou and Older, 1997]. The split-and-solve method repeatedly selects a
variable, splits its associated interval into two or more parts and uses backtrack-
ing to look for solutions in each partition. Of course, there is the necessity of a
termination test that avoids the infinite splitting of ranges (at least theoretically
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because in practice the real domain is finite since the precision of a machine is
finite). Particularly, CLP(BNR) extends this strategy to the Boolean and inte-
ger domains. Other methods of interval partitioning for continuous constrained
optimization can be found in the literature (e.g., [Pedamallu et al., 2006]).

There are many papers that are concerned with the constraint optimiza-
tion problem and branch and bound (B&B), the most common technique used
to solve these problems. For instance, [Bistarelli et al., 2000] presents an exten-
sion of the definition and properties of the labeling procedure from classical
CSPs to the soft CSP framework. An implementation of a complete solver based
on B&B with variable labeling for soft constraint propagation is published in
[Bistarelli et al., 2002]. In a very different work, [Appleget and Wood, 2000] de-
scribes a technique called ‘explicit-constraint branching’ to improve the perfor-
mance of B&B algorithms for solving certain mixed-integer programs. Also, in
[Vu et al., 2005], a uniform view of search strategies inside the whole constraint
solving process, here named branch-and-prune methods, for solving CSPs com-
pletely defined in the real domain is presented. This work is based on an interval
reasoning. Other similar proposals, to that of branch-and-prune, of constraint
branching embedded in methods like B&B can be found in the literature; e.g.,
[Perregaard, 2003] examines the feasibility of applying the ideas for strengthen-
ing cuts to the simple branching disjunctions for the purpose of creating better
mixed integer branches in B&B methods applied to solved mixed integer pro-
grams.

3 Preliminaries and previous work

Here we summarize the main notation and terminology used throughout the
paper. To make the paper self-contained, some of the concepts and notations
introduced here are taken from previous work [Fernández and Hill, 2004].

3.1 Sets and lattices

If L is a set, then #L denotes its cardinality, ℘(L) its power set and ℘f (L) the
set of all the finite subsets of L. Also, if L is a partially ordered set, then L is
a lattice if lubL(x, y) and glbL(x, y) exist, for any two elements x, y ∈ L, where
glbL/2 and lubL/2 denote, respectively, the functions that return the greatest
lower bound and the least upper bound of two elements in L. The dual of L,
denoted by L̂, is the lattice that contains the dual element of any element in L,
that is to say, L̂ = {â | a ∈ L}, and where the ordering is reversed with respect
L, that is to say, if a, b ∈ L, then â � b̂ if and only if b � a

The domain on which the values are actually computed, is called a computa-
tion domain. The key aspect of the constraint system described in this paper is
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that it can be built on any computation domain provided it is a lattice. Through-
out the paper, we let L denote a (possibly infinite) set of computation domains,
with lattice structure, containing at least one element L. If it exists, ⊥L (resp.
�L) denotes the bottom element (resp. the top element) of L. With each compu-
tation domain L ∈ L, we associate a set of variable symbols VL that is disjoint
from VL′ for any L′ ∈ L\{L}. We define VL = ∪{VL|L ∈ L}. It is assumed (with-
out loss of generality) that all L ∈ L are lifted lattices2. In rest of the paper,
(L,�, glbL, lubL,⊥L,�L) denotes a (possible lifted) lattice on L with ordering
�, (possibly fictitious) bounds ⊥L and �L.

Example 1. Most classical constraint domains are lattices. For instance,

(Integer ,≤,mini ,maxi ,⊥Integer ,�Integer),

(�,≤,mini ,maxi ,⊥�,��),

(Bool ,⇒,∧,∨, false, true),

(Set L,⊆,∩,∪, ∅, L)

are lattices for the integers, reals, Booleans and sets, respectively, under their
usual orders where mini and maxi functions return, respectively, the minimum
and maximum element of any two elements in the integers or reals. Note that
Integer and � are lifted lattices and include the fictitious elements �Integer ,
⊥Integer , �� and ⊥�. For the Booleans, it is assumed that Bool = {false, true}.
For the set lattice, we assume that Set L = ℘(L), for each L ∈ L, where
L = {Integer ,�,Bool} ∪ {Set L | L ∈ L}. Note that L is an infinite set of
computations domains.

Lattice Products Let L1 and L2 be two (lifted) lattices. Then the direct prod-
uct 〈L1, L2〉 and the lexicographic product (L1, L2) are lattices where:

glb(〈x1, x2〉, 〈y1, y2〉) = 〈glbL1
(x1, y1), glbL2

(x2, y2)〉;
glb((x1, x2), (y1, y2)) = if x1 = y1 then (x1, glbL2

(x2, y2))

elsif x1 ≺ y1 then (x1, x2)

elsif x1 � y1 then (y1, y2)

else (glbL1
(x1, y1),�L2);

lub is the dual of glb;

�〈L1,L2〉 = 〈�L1 ,�L2〉 and ⊥〈L1,L2〉 = 〈⊥L1 ,⊥L2〉;
�(L1,L2) = (�L1 ,�L2) and ⊥(L1,L2) = (⊥L1 ,⊥L2).

2 The lifted lattice of L is L∪{⊥L,�L} where ⊥L is the greatest lower bound of L, if it
exists, and is a new element not in L such that ∀a ∈ L,⊥L ≺ a, otherwise; similarly,
�L is the least upper bound of L, if it exists, and is a new element not in L such
that ∀a ∈ L, a ≺ ⊥L, otherwise.
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Moreover,

〈x1, y1〉 � 〈y1, y2〉 iff x1 � y1 and x2 � y2;

(x1, y1) � (x2, y2) iff x1 ≺ x2 or x1 = x2 and y1 � y2.

3.2 The bounded computation domains

To allow for continuous and infinite domains, any underlying computation do-
main L is first replaced by two extended forms of the domain, a left and a right
bounded computation domain. For it, we defined open and closed bounds of the
intervals; we first defined the bracket domain B as a lattice containing just ‘)’
and ‘]’ with ordering ‘)’ ≺B ‘]’. We let ‘}’ denote any element of B. Then we con-
structed the (right) simple bounded computation domain (for L) to be the lattice
resulting from the lexicographic product (L, B) and is denoted Ls. Throughout
the paper, an element t=(a,‘}’) ∈ Ls will often be denoted as ‘a}’ or a}. The
mirror (of Ls) (also called the left bounded computation domain) is the lexico-
graphic product (L̂, B) (where L̂ is the dual lattice of L) and is denoted by Ls.
The mirror of an element t=(a,‘}’) ∈ Ls is the element (â, ‘}’) ∈ Ls and is also
denoted as t, ‘{a’, â} or simply a} as it is evident that if t = â} then t = a}.

Example 2. When L = Integer , 6] denotes (6, ‘]’) and 6] denotes (6̂, ‘]’). Also

0) ≺ 0] ≺ 1) ≺ 1] ≺ . . . ≺ �L) ≺ �L] in Integers,

�L) ≺ �L] ≺ . . . ≺ 1) ≺ 1] ≺ 0) ≺ 0] in Integers,

glbLs(3], 5]) = lubLs(3], 3)) = 3], denoted also as 3],

glbLs(3], 5]) = lubLs(3], 5]) = 5] = (5̂, ‘]’), denoted also as [5,

lubLs(3], 5]) = glbLs(3], 5]) = 3] = (3̂, ‘]’), denoted also as [3.

Moreover, when L = Set Integer , {1, 3}) denotes ({1, 3}, ‘)’) and {1, 3}) denotes

(̂{1, 3}, ‘)’). Also

{1}] ≺ {1, 3}) ≺ {1, 3}] ≺ {1, 3, 5}] in Set Integers,

{1, 3, 5}] ≺ {1, 3}) ≺ {1, 3}] ≺ {1}] in Set Integers,

glbLs({4}], {4, 6}]) = {4}], denoted also as {4}]
lubLs({3}], {4, 6}]) = {3, 4, 6}], denoted also as {3, 4, 6}]
lubLs({4}], {4, 6})) = glbLs({4}], {4, 6}]), {4}] = ( ˆ{4}, ‘]’), denoted also as [{4}.

To enable user defined propagation and constraint cooperation we also ex-
tended the simple bounded computation domain (i.e., Ls) to include an addi-
tional construct called an indexical (i.e., functions that propagate the bounds
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of the interval associated to constrained variables) to form a new domain called
the bounded computation domain Lb (see [Fernández and Hill, 2004]).

3.3 The interval domain

The interval domain (for some L ∈ L) which was used for the constraint propa-
gation consists of the set of pairs 〈s, t〉, where s ∈ Ls is in the left and t ∈ Ls is
in the right bounded computation domain. Then, the interval domain Rb

L over
L is defined as the direct product 〈Lb, Lb〉 whereas the simple interval domain
Rs

L over L is defined as the direct product 〈Ls, Ls〉. A simple range is an element
of Rs

L. An element r ∈ Rb
L is called a range and, also, if r ∈ Rs

L, then we also
say it is simple. A simple range r = 〈s, t〉 (also denoted as s, t) is consistent if
3 s �Ls t and, if s = a) and, for some b ∈ B, t = a′

b, then a �= a′. Note that
Rs

L ⊂ Rb
L.

Example 3. In the domains �, Integer and Set Integer ,

〈2.3], 8.9)〉 ∈ Rs
� is consistent, simple and can also be written [2.3, 8.9);

〈2.3], 2.2]〉 ∈ Rs
� is inconsistent, simple and can also be written [2.3, 2.2];

glbRb
�

( 〈3.2], 6.7]〉, 〈1.8), 4.5]〉
)

= 〈3.2], 4.5]〉 can also be written [3.2, 4.5];

lubRb
�

( 〈3.2], 6.7]〉, 〈1.8), 4.5]〉
)

= 〈1.8), 6.7]〉 can also be written (1.8, 6.7];

〈1], 10]〉 ∈ Rs
Integer is consistent; 〈1), 1]〉, 〈5], 2]〉 ∈ Rs

Integer are inconsistent;

〈{1}], {1, 3}]〉 ∈ Rs
Set Integer is consistent and can also be written [{1}, {1, 3}];

〈{1, 3}], {1}]〉, 〈{1, 3}], {1, 4}]〉 ∈ Rs
Set Integer are inconsistent and simple.

Non-simple ranges (i.e., those belonging to Rb
L\Rs

L) are constructed via op-
erators and indexicals - i.e., overloaded functions min/1, max/1 and val/1 (see
[Fernández and Hill, 2004]).

3.4 The constraint domain

X ∈ ℘f (VL) denotes the set of constrained variables in a CSP. Let x ∈ VL. Then
x � r is called an interval constraint for L with constrained variable x if r ∈ Rb

L.
Also, x � r is simple (resp. consistent) if r is simple (resp. consistent), and
non-simple (resp. inconsistent) otherwise. If t ∈ L, then x = t is a shorthand for
x � [t, t]. The interval constraints domain over X for L is the set of all interval
constraints for L with constrained variables in X and is denoted by CX

L . The
union

CX def=
⋃
{CX

L | L ∈ L}
3 Despite that s and t belong to different domains, s and t can be compared as, by

applying the duality principle of lattices [Davey and Priestley, 1990], both s and t
belong to Ls.
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is called the interval constraint domain over X for L. The ordering for CX is
inherited from the ordering in Rs

L. We define c1 �CX c2 if and only if, for some
L ∈ L, c1 = x � r1, c2 = x � r2 ∈ CX

L and r1 �Rs
L

r2. The intersection in a
domain L ∈ L of two simple constraints c1, c2 ∈ CX

L where c1 = x � r1, c2 =
x � r2 and x ∈ VL is defined as c1 ∩L c2 = glbCX

L
(c1, c2) = x � glbRs

L
(r1, r2).

If Sx ⊆ CX
L is a set of simple constraints with constrained variable x, then we

define
⋂

L Sx = glbCX
L

(Sx).
If S ∈ ℘f (CX), then S is a constraint store for X . If S contains only simple

constraints, then it is simple. If S is simple, then it is consistent if all its con-
straints are consistent. The set of all simple constraint stores for X is denoted
by SX . A constraint store S is stable if there is exactly one simple constraint for
each x ∈ X in S. The set of all simple stable constraint stores for X is denoted
by SSX .

Let S, S′ ∈ SSX where cx, c′x denote the (simple) constraints for x ∈ X in S

and S′, respectively. Then S � S′ if and only if, for each x ∈ X , cx � c′x. Let
�SSX be the set {x � ⊥Rs

L
| x ∈ X ∩ VL, L ∈ L}. Then, with these definitions,

SSX forms a lattice.

3.5 Stabilization, propagation and solution

Let S ∈ SX , S′ ∈ SSX and, for each x ∈ X , Sx = {c ∈ S | c = x � r}. Then, if
S′ =

{⋂
L Sx

∣∣ L ∈ L, x ∈ X ∩ VL

}
, we say that S′ is the stabilized store of S

and write S �→ S′.

Example 4. Suppose r, w ∈ V� and i ∈ VInteger . Then S �→ S′ if, for instance,

S =
{

r � 〈8.3), 20.4]〉, w � 〈1.2], 10.5)〉, i � 〈0], 10]〉,
r � 〈1.0], 15.0]〉, w � 〈5.6), 15.3)〉, i � 〈2], 15)〉

}
,

S′ =
{

r � 〈8.3), 15.0]〉, w � 〈5.6), 10.5)〉, i � 〈2], 10]〉
}
.

Constraint store stabilization defines an ordering in the sense that if S, S′ ∈
SSX , X ′ ⊆ X , C ∈ SX′

, and S ∪ C �→ S′, then S′ � S.
Constraint propagation allows the generation of new simple interval con-

straints during the process of constraint solving. Interval constraints are prop-
agated with respect to a constraint store S ∈ SSX via an evaluation function
(see [Fernández and Hill, 2004][Section 4.2] for details). Also, if C ⊆ CX and
C′ = {c′ | ∃c ∈ C . c is propagated wrt. S ∈ SSX to c′} then we say that C is
propagated to C′ (using S) and write C �S C′.

A solution is a constraint store that cannot be further reduced by constraint
propagation. More formally, a solution for C ∈ ℘(CX) is a consistent store R ∈
SSX where C �R C′, R ∪ C′ �→ R. This concept establishes an ordering of the
solution wrt. the store to solve in the sense that, if R is a solution for C ∪ S,
then, R � S.
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3.6 Precision

A generic concept of constraint precision was also defined. Let CCX
L be the set

of all consistent (and thus simple) interval constraints for L with constrained
variables in X , x ∈ X ∩ VL for any L ∈ L and �I denote the lexicographic
product (�+, Integer) where �+ is the (lifted) domain of non-negative reals.
Then we define

precisionL ::CCX
L → �I

precisionL

(
x � 〈ab, cd〉

)
=

(
â �L c, b �B d

)

where �L ::
{

(â, c)
∣∣ a, c ∈ L, a � c

} → �+ is a (system or user defined) strict
monotonic function and �B :: B×B → {0, 1, 2} is the strict monotonic function

‘]’ �B ‘]’ def= 2 ‘]’ �B ‘)’ def= 1

‘)’ �B ‘]’ def= 1 ‘)’ �B ‘)’ def= 0.

Observe that precisionL is defined only on consistent constraints and thus the
function �L only needs to be defined when its first argument is less than or
equal to the second. This function must be defined for each computation domain
including any fictitious top or bottom elements.

Example 5. Let Integer , � and Set Integer and let also �2 = 〈�,�〉. Suppose
that i1, i2 ∈ Integer , r1, r2, w1, w2 ∈ � and s1, s2 ∈ Set Integer where i1 � i2,
r1 � r2, w1 � w2 and s1 � s2. Then

î1 �Integer i2 = i2 − i1,

r̂1 �� r2 = r2 − r1,

̂〈r1, w1〉 ��2 〈r2, w2〉 = +
√

(r2 − r1)2 + (w2 − w1)2,

ŝ1 �Set Integer s2 = #s2 −#s1.

Assume that i ∈ VInteger , r ∈ V�, y ∈ V�2 and s ∈ VSet Integer . Then

precisionInteger (i � 〈1], 4]〉) = (3.0, 2),

precision�(r � 〈3.5), 5.7)〉) = (2.2, 0),

precision�2(y � 〈(2.0, 3.0)], (3.4, 5.6)]〉) = (2.95, 2),

precisionSet Integer (s � 〈{}], {3, 4, 5})〉) = (3.0, 1).

Note that the binary operators used in this example, that is, − and + as
well as the unary operators # and ‘square’ need to be defined for both the lifted
bounds. The unary operator ‘square root’ must be defined just for the lifted
upper bound.
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The precision of a consistent simple stable constraint store S ∈ SSX is the
sum of the precisions of each of its elements (i.e., constraints) and where the
sum in �I is defined as (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).

Proposition1. Suppose S, S′ ∈ SSX are consistent stores where S ≺s S′. Then
precision(S) <�I precision(S′).

4 Key concepts for branching

In the rest of the paper, we continue to use L to denote any domain in L,
X ∈ ℘f (VL) the set of constrained variables, CX

L the set of all interval constraints
for L with constrained variables in X , CX the interval constraint domain over
X for L and SSX the set of all simple stable constraint stores for X . Also L<

denotes any totally ordered lattice in L.
Notation. If {c1, . . . , cn} ∈ SSX and i ∈ {1 . . . , n}, then

{c1, . . . , cn}[ci/c′] = {c1, . . . , ci−1, c
′, ci+1, . . . , cn}.

Definition 2. (Divisibility) Let c = x � s, t be a consistent interval constraint
in CX

L . Then, c is divisible if s �=Ls t and non-divisible otherwise.
Let S ∈ SSX be a consistent constraint store. Then S is divisible if there

exists c ∈ S such that c is divisible and non-divisible otherwise.

Thus a non-divisible constraint will have the form x � [a,a] denoting x = a;
hence it may be viewed as an assignment of a variable to a specific value.

Example 6. Let x, y ∈ VInteger , r, w ∈ V� and S, S′ ∈ SS{x,r}. Then,

x � [1,4] and r � (1.0,3.2] are divisible;

y � [2,2] and w � [1.5,1.5] are non-divisible.

Also

S =
{

x � [1,1], r � [1.0,1.0]
}

is non-divisible;

S′ =
{

x � [1,4], r � [1.0,1.0]
}

is divisible.

Proposition3. Let X ∈ ℘f (VL).

(1) Let also c, c′ ∈ CX
L such that c ≺CX

L
c′. Then, if c is consistent, c′ is divisible.

(2) Let also S, S′ ∈ SSX such that S ≺s S′. Then, if S is consistent, S′ is
divisible.
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As already mentioned, in [Fernández and Hill, 2004] we defined the concept
of solution for a constraint store to be a consistent stable store that produces no
further constraint narrowing by means of constraint propagation. In this paper
we want to capture the more common meaning of solution as the assignment
of values to variables that satisfies all the constraints. So as to distinguish the
previous concept defined in [Fernández and Hill, 2004] from the concept defined
in this paper, we use the term solution to refer the concept already defined and
the term authentic solution to refer the new concept defined in this paper.

Definition 4. (Authentic and partial solution) Let C ∈ ℘f (CX) be a constraint
store for X and R ∈ SSX . Then, R is an authentic solution for C if R is both
non-divisible and a solution for C.

R′ ∈ SSX is a partial solution for C if there exists an authentic solution R′′

for C such that R′′ ≺s R′. In this case we say that R′ covers R′′.

Example 7. Let x, y ∈ VInteger , X = {x, y}, C ∈ ℘f(CX) where

C =
{

x � [0,max(y), y � min(x), 100]
}

and S, S′ ∈ SSX where

S =
{

x � [1,4], y � [2,5]
}
, S′ =

{
x � [1,1], y � [3,3]

}
.

Then, S is a solution (and also a partial solution) for C whereas S′ is an
authentic solution for C.

The set of all authentic solutions for C is denoted as Sola(C).

Definition 5. (Constraint store stack) A constraint store stack for X is a (pos-
sibly empty) finite sequence (S1, . . . , S�) of stores in SSX . Stack(X) denotes the
set of all constraint store stacks for X . The operation push/2 is defined for any
P ∈ Stack(X) and S ∈ SSX as follows

Precondition : { P = (S1, . . . , S�) }
push(P, S)

Postcondition : { P = (S1, . . . , S�, S�+1), S�+1 = S and P ∈ Stack(X) }.
where the operation top/1 over P is defined as:

Precondition : {P = (S1, . . . , S�) and � > 0}
top(P ) = S

Postcondition : {S = S�}.
Let P ′ = (S′

1, . . . , S
′
�′} ∈ Stack(X) be another constraint store stack for X .

Then P �p P ′ if and only if for all Si ∈ P (1 ≤ i ≤ �), there exists S′
j ∈ P ′

(1 ≤ j ≤ �′) such that Si �s S′
j . In this case we say that P ′ covers P .
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5 Branching process

Branching [Apt, 2003] often involves two kinds of choice usually called variable
ordering and value ordering. Variable ordering selects a constrained variable and
value ordering splits the domain associated to the selected variable in order to
introduce a choice point. In this section we explain these by describing the main
functions that define them.

The selecting function provides a schematic heuristic for variable ordering.

Definition 6. (Selecting function) Let S = {c1, . . . , cn} ∈ SSX . Then

choose :: {S ∈ SSX | S is divisible} → CX

is called a selecting function for X if choose(S) = cj where 1 ≤ j ≤ n and cj is
divisible.

Example 8. Suppose that X = {x1, . . . , xn} is a set of variables constrained
respectively in L1, . . . , Ln ∈ L and that S = {c1, . . . , cn} ∈ SSX is any divisible
constraint store for X where for all i ∈ {1, . . . , n}, ci is the simple interval
constraint in S with constrained variable xi. A naive strategy that selects the
“left-most” divisible interval constraint in S is specified below.

Precondition : {S = {c1, . . . , cn} ∈ SSX is divisible}
choosenaive(S) = cj

Postcondition : {j ∈ {1, . . . , n}, cj is divisible and

∀i ∈ {1, . . . , j − 1} : ci is non-divisible}.

When branching, some interval constraints need to be partitioned, into two
or more parts, so as to introduce a choice point. We define a splitting function
which provides a heuristic for value ordering.

Definition 7. (Splitting function) Let L ∈ L and k > 1. Then

splitL :: CX
L → CX

L × . . .× CX
L︸ ︷︷ ︸

k times

is a k-ary splitting function for L if, for all divisible c ∈ CX
L , splitL(c) =

(c1, . . . , ck) satisfies the following conditions:

Completeness : ∀c′ ≺CX
L

c with c′ non-divisible, ∃i ∈ {1, . . . , k} . c′ �CX
L

ci.

Contractance : ci ≺CX
L

c, ∀i ∈ {1, . . . , k}.
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Example 9. Let X = {i, b, r, s} be a set of variables where i ∈ VInteger , b ∈ VBool ,
r ∈ V� and s ∈ VSet Integer and let4 i � [a, a′], b � [false, true], r � {c,d}
and s � {e, f} be divisible interval constraints in CX where a, a′ ∈ Integer ,
c,d ∈ � and e, f ∈ Set Integer . Then, the following functions are binary splitting
functions respectively for the domains Integer , Bool , � and Set Integer

split Integer ( i � [a,a′]) = ( i � [a, a], i � [a + 1, a′] ),

splitBool( b � [false, true] ) = ( b � [false, false ], b � [true, true] ),

split�(r � {c,d}) = ( r � {c, c′), r � [c′,d} ),

splitSet Integer (s � {e, f}) = ( s � {e, f\g], s � [e ∪ g, f} ).

Here, split Integer is a naive enumeration strategy in which values are chosen
from left to right; splitBool divides the only divisible Boolean interval constraint
into the two non-divisible Boolean interval constraints; split� computes the mid
point c′ = c+d

2.0 of the interval [c,d]; and splitSet Integer is a valid splitting func-
tion for the domain of sets of integers if we define g = {l} and l ∈ f\e.

Lemma8. Let choose/1 be a selecting function for X, C ∈ ℘f (CX), S =
(c1, . . . , cn) ∈ SSX a divisible constraint store, cj = choose(S), cj ∈ CX

L for some
L ∈ L, splitL/1 a k-ary splitting function for L and (cj1, . . . , cjk) = splitL(cj).
Then

(a) ∀i ∈ {1, . . . , k} : S[cj/cji] ≺s S;

(b) if S′ ∈ Sola(C) and S′ ≺s S, then ∃i ∈ {1, . . . , k} : S′ �s S[cj/cji].

5.1 The precision map as a normalization rule

The precision map mentioned in [Section 3] also provides a way to normalize
the selecting functions (i.e., the variable ordering) when the constraint system
supports multiple domains.

Example 10. The well-known first fail principle [Haralick and Elliot, 1980] often
chooses the variable constrained with the smallest domain. However, in systems
supporting multiple domains it is not always clear which is the smallest domain
(particularly if there are several infinite domains). In our framework, one way to
“measure” the size of the domains is to use the precision map defined on each
computation domain.
4 Observe that in the integer and Boolean domains only intervals with close brackets

are considered since open brackets can always be transformed to close brackets (see
[Fernández and Hill, 2004][Section 8.1]) e.g., i � (1,8) is equivalent to i � [2, 7].
Note also that in the Boolean domain there is just one unique case of divisible
interval constraint (i.e., b � [false, true ]) and thus only this case is considered in the
definition of splitBool .
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For instance, suppose that X = {x1, . . . , xn} is a set of variables constrained,
respectively, in L1, . . . , Ln ∈ L and that S = {c1, . . . , cn} ∈ SSX is any divisible
constraint store for X where for each i ∈ {1, . . . , n}, ci is the simple interval
constraint in S with constrained variable xi. Here the first fail principle can be
emulated by defining choose/1 to select the interval constraint with the smallest
precision. We denote this procedure by chooseff .

Precondition : {S = {c1, . . . , cn} ∈ SSX is divisible}
chooseff (S) = cj

Postcondition : {j ∈ {1, . . . , n}, cj is divisible and

∀i ∈ {1, . . . , n}\{j} : ci divisible =⇒ precisionLj
(cj) ≤�I precisionLi

(ci)}.

Observe that it is straightforward to include more conditions e.g., in case of
ties, if ci, ck, cj have the same (minimum) precision, the “left-most” constraint
can be chosen i.e., cminimum(i,k,j).

6 Branching operational schema

In this section, we continue to use L to denote any domain in L, X ∈ ℘f (VL)
the set of constrained variables, CX the set of all interval constraint domain for
X and SSX the set of all simple stable constraint stores for X .

In [Fernández and Hill, 2004], solve/2, a generic operational schema for in-
terval constraint propagation that computes a solution (if it exists) for C ∪ S is
defined. To guarantee termination, an extended schema solveε/2, where ε ∈ �+

is also defined. The schema solveε(C, S) where C ∈ ℘f (CX) and S ∈ SSX is
given in [Figure 1] where cx, c′x denote, respectively, the consistent constraints
for x ∈ X in S and S′.

6.1 solveε/2: new properties

Before describing the branching schema, we state here some additional properties
of the schema solveε/2 that were not stated in [Fernández and Hill, 2004].

Lemma9. (More properties of solveε/2) Let C ∈ ℘f (CX), S, Sf ∈ SSX and
ε ∈ �+ ∪ {0.0}. Suppose that Sf is the value of the constraint store S after a
terminating execution of solveε(C, S). Then,

(a) Sf �s S;

(b) ∀R ∈ Sola(C ∪ S) : R �s Sf ;

(c) If Sola(C ∪ S) is not empty and Sf is non-divisible then Sf ∈ Sola(C ∪ S);
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procedure solveε(C, S)

begin

if S is consistent then (0)

C := C ∪ S; (1)

repeat

C �S C′; %% Constraint Propagation (2)

S′ := S; (3)

S′ ∪C′ �→ S; %% Store stabilization (4)

until S is inconsistent or

(∀x ∈ X ∩ VL : precisionL(c′x)− precisionL(cx) � (ε, 0); (5)

endif;

endbegin.

Figure 1: solve/2: a generic schema for interval constraint propagation

(d) If ε = 0.0 and Sf is non-divisible then Sf ∈ Sola(C ∪ S).

Property (a) makes sure that the propagation procedure never gains values,
property (b) guarantees that no solution covered by a constraint store is lost in
the propagation process and properties (c) and (d) ensure the computed answers
are correct5.

6.2 Branching Schema

We now describe a generic schema for branching, complementary to solve(C, S),
that will provide completeness for the interval constraint solver.

There are a number of values and subsidiary procedures that are assumed to
be defined externally to the main branch procedure:

– a selecting function choose/1 for X ;

– a k-ary splitting function splitL for each domain L ∈ L (for some integer
k > 1);

– a precision map for each L ∈ L;
5 In [Fernández and Hill, 2004], we ‘only’ assured that, if a solution exist, the final

state of constraint store S contains the most general solution (that probably is not
an authentic solution).
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– a constraint store stack P for X .

It is assumed that the external procedures have an implementation that termi-
nates for all possible values.

The branching schema is given in [Figure 2]. This requires the following pa-
rameters: a finite set C ∈ ℘f (CX) of interval constraints to be solved, a constraint
store S ∈ SSX , a bound p ∈ �I and also requires a non-negative real bound α.

procedure branchα(C, S, p)

begin

solveε(C, S); (1)

if S is consistent then (2)

if S is non-divisible or (p < ��I and p − precision(S) ≤ (α, 0)) then (3)

push(P, S); (4)

else (5)

cj ← choose(S); (6)

(cj1, . . . , cjk)← splitLj
(cj), where cj ∈ CX

Lj
and Lj ∈ L; (7)

branchα(C, S[cj/cj1], precision(S)) ∨
. . . . . . . . . . . . . . . ∨

branchα(C, S[cj/cjk], precision(S));

⎫⎬
⎭ %% Choice Points (8)

endif;

endif;

end.

Figure 2: branchα/3: a generic schema for interval constraint solving

Theorem 10. (Properties of the branchα/3 schema) Let C ∈ ℘f (CX), S ∈
SSX , ε, α ∈ �+ and p = ��I . Then, the following properties are guaranteed:

1. Termination: if α > 0.0 and the procedure solveε/2 terminates for all values6

then branchα(C, S, p) terminates;

6 Observe that termination of this procedure is always guaranteed if ε > 0.0 -see
Theorem 2 in [Fernández and Hill, 2004].
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2. Completeness: if α = 0.0 and the execution of branchα(C, S, p) terminates,
then the final state for the stack P contains all the authentic solutions for
C ∪ S;

3. Approximate completeness: if the execution of branchα(C, S, p) terminates
and R ∈ Sola(C ∪ S), then the final state for the stack P contains either R

or a partial solution R′ that covers R.

4. Correctness: if α = 0.0 and ε = 0.0, the stack P is initially empty and the
execution of branchα(C, S, p) terminates with R in the final state of P , then
R ∈ Sola(C ∪ S).

5. Approximate correctness or control on the result precision: If Pα1 and Pα2

are non-empty constraint store stacks for X resulting from any terminating
execution of branchα(C, S, p) (where initially P is empty) when α has the
values α1 and α2, respectively, and α1 < α2 then

Pα1 �p Pα2 .

(In other words, the set of (possibly partial) solutions in the final state of the
stack is dependent on the value of α in the sense that lower α, better the set
of solutions.)

Observe that, just as for the bound ε in the solveε/2 procedure, the bound
α also guarantees termination and allows the precision of the results to be con-
trolled. Note also that this schema can be used for any set of computation
domains for which a splitting function and precision map are defined.

Example 11. Let L = {Integer ,�,Set Integer}. Instances of the branchα/3
schema can be specified for each L ∈ L. These are defined by instantiating
the subsidiary procedures specified in [Section 6.2]. For instance, assuming as
selecting function chooseff as defined in Example 10, instances are defined by
considering the definitions for �L/2 (that constructs the precision map) and
splitL of Examples 5 and 9 respectively.

7 Interval constraint optimization

The schema in [Figure 2] can be adapted to solve COPs by means of three new
subsidiary functions.

Definition 11. (Subsidiary functions and values) Let L< ∈ L be a totally or-
dered domain7. Then we define
7 Normally L< would be 	.
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– a cost function, fcost :: SSX → L<;

– an ordering relation, � :: L< × L< ∈ {>, <, =};
– a cost bound, δ ∈ L<.

Then the extended branching schema, branchα+/3, is obtained from branchα/3
by replacing Line 4 in [Figure 2] with:

if fcost(S) � δ then (4*)

δ ← fcost(S);

push(P, S);

endif;

Theorem 12. (Properties of the branchα+/3 schema) Let C ∈ ℘f (CX), S ∈
SSX , ε, α ∈ �+ and p = ��I. Suppose that the procedure solveε/2 terminates
for all values8. Then, the following properties are guaranteed:

1. Termination: if α > 0.0 then the execution of branchα+(C, S, p) terminates;

2. If fcost is a constant function with value δ and � is =, then all properties
shown in Theorem 10 hold for the execution of branchα+(C, S, p).

3. Soundness on optimization: If at least one authentic solution with a cost
higher than ⊥L< (resp. lower than �L<) exists for C ∪ S , α = 0.0, �
is > (resp. <), δ = ⊥L< (resp. �L<), the stack P is initially empty and
the execution of branchα+(C, S, p) terminates with P non-empty, then the
element on the top of P is the first authentic solution found that maximizes
(resp. minimizes) the cost function.

Unfortunately, if α > 0.0, we cannot guarantee that the top of the stack
contains an authentic solution or even a partial solution for the optimization
problem. However, if the cost function fcost/1 is monotonic, solutions can be
compared.

Theorem 13. (Approximate soundness) Suppose that, for i ∈ {1, 2}, Pαi is the
constraint store stack resulting from the execution of branchαi+(C, S, p) where
αi ∈ �+ ∪ {0.0}. Then, if α1 < α2 the following property hold.

If Pα1 and Pα2 are not empty, and top(Pα2 ) is an authentic solution or
covers a solution for C ∪ S, then, if fcost/1 is monotonic and � is < (i.e., a
minimization problem),

fcost(top(Pα1)) �L< fcost(top(Pα2 )),

8 Again note that termination of this procedure is always guaranteed if ε > 0.0 -see
Theorem 2 in [Fernández and Hill, 2004].
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and, if fcost/1 is anti-monotone and � is > (i.e.,a maximization problem),

fcost(top(Pα1)) �L< fcost(top(Pα2 )).

A direct consequence of this theorem is that by using a(n) (anti-)monotone
cost function, the lower α is, the better the (probable) solution is.

Observe that it is straightforward to transform the schema branchα+/3 into
a B&B schema by adding, before Line 1 in [Figure 2], a test such as

if fcost(S) � δ then . . .

With this addition, branches in the search tree that have not the possibility to
improve the best solution found up to that point are not considered for further
branching. This B&B schema clearly depends on the definition of the function
fcost/1; this should return the highest (resp. lowest) cost possible for its argu-
ment (i.e., considering all combinations of all the values that the constrained
variables can take in the store) in the solving of a maximization (resp. mini-
mization) problem.

8 The schema parameters

In this section, we show how the choice of the parameters in the definition of
branchα/3 determines the method of solving for a set of interval constraints i.e.,
the schema branchα/3 allows a set of interval constraints to be solved in many
different ways, depending on the values for fcost , δ and �.

Theorem 12(2) has shown that to solve classical CSPs, fcost should be de-
fined as the constant function9 δ and the parameter � should have the value
=. Moreover, Theorem 12(3) has shown that a CSP is solved as a COP by in-
stantiating � as either > (for maximization problems) or < (for minimization
problems). In all cases, the value δ should be instantiated to the initial cost value
from which an optimal solution must be found. Some possible instantiations are
summarized in [Table 1] where [Column 1] indicates the type of CSP, [Column
2] gives any conditions on the cost function, [Column 3] gives the range of the
cost function (usually, this is �), [Column 4] gives the initial definition of the �
operator, and [Column 5] displays the initial value for δ.

The schema also permits a mix of maximization and minimization criteria (or
even to give priority to some criteria over others). This is the case (see [Row 4]
of [Table 1]) when L< is a compound domain and the ordering in L< determines
how the COP will be solved.
9 Usually δ ∈ 	.
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CSP Type fcost L< � δ

Classical CSP constant � = fcost(S)
Typical Minimization COP any cost function � < ��
Typical Maximization COP any cost function � > ⊥�

Max-Min COP any cost function � × � < ��×�

Table 1: CSP type depends on parameters instantiation

8.1 An example

The following example illustrates the flexibility of the schema to solve a set of
interval constraints in different ways. Let X = {x1, x2, x3, x12, x123} ⊂ VInteger

and the following set of constraints defined on X

C =
{

x1 + x2 + x3 ≤ 1,

x1 ≤ 1, x2 ≤ 1, x3 ≤ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
}
.

A way to define these constraints is via the high level constraints ≤/2 and plus/3
as defined in [Fernández and Hill, 2004][Example 12] (for L = Integer) so that
C can be coded as

{
plus(x1, x2, x12), plus(x12, x3, x123), x123 ≤ 1,

x1 ≤ 1, x2 ≤ 1, x3 ≤ 1,

0 ≤ x1, 0 ≤ x2, 0 ≤ x3

}

Observe that due to the plus constraint definition two variables x12, x123 ∈
VInteger have been added. However these additions can be easily reduced by
considering alternative definitions e.g., it is possible to declare a plus constraint
with four arguments as plus(x, y, z, w) ≡ plus(x, y, xy), plus(xy, z, w).

Consider also the following cost functions

fcost1, fcost2 :: SSX → �, fcost3, fcost4 :: SSX → �2,

defined for each S = {x1 � r1, x2 � r2, x3 � r3, x12 � r12, x123 � r123} in
SSX as follows

fcost1(S) = 1.0; %% Constant function

fcost2(S) = mid(r1) + mid(r2) + mid(r3); %% x1 + x2 + x3

fcost3(S) = (fcost2(S),mid(r1) + mid(r3)); %% (x1 + x2 + x3, x1 + x3)

fcost4(S) = (fcost2(S),mid(r2) + mid(r3)); %% (x1 + x2 + x3, x2 + x3)

1486 Fernandez A.J., Hill P.M.: An Interval Constraint Branching Scheme ...



where mid({a, b}) is a function from Rs
� to � that returns the mid point in the

range {a, b} i.e., mid({a, b}) = a+b
2.0 (e.g., mid([1.0,4.0)) = 2.5).

[Table 2] shows different instantiations of the schema branchα(C, S, p) with
α = 0.0 and ε = 0.0, choosenaive as defined in Example 8 and split Integer as
defined in Example 9. It is assumed that initially p = ��I , the global stack P

is empty and S is the top element of SSX . In [Table 2]:

– column 1 indicates the way in which the CSP is solved (where Max-Min
means that we have mixed criterias for the optimization);

– column 2 indicates the initial value of δ;

– column 3 indicates the cost function;

– column 4 indicates the � relation;

– column 5 indicates where, in the final state of the stack P , the authentic
solution(s) is (are) positioned; and

– column 6 references the subfigure of [Figure 3] that shows the final state of
the stack P 10.

Note that since the integer domain is finite, termination is guaranteed even if
α = 0.0 and ε = 0.0.

CSP Type δ Cost function � Solution Figure
Classical CSP 1.0 fcost1 = Any in the stack 3(a)
Maximization COP ⊥� fcost2 > stack top 3(b)
Minimization COP �� fcost2 < stack top 3(c)
Max-Min COP (i) (⊥�,��) fcost3 <1 stack top 3(d)
Max-Min COP (ii) (⊥�,��) fcost4 <1 stack top 3(e)
Max-Min COP (iii) (⊥�,��) fcost3 <2 stack top 3(f)
Max-Min COP (iv) (⊥�,��) fcost4 <2 stack top 3(g)

Table 2: Different solvings of the CSP

In [Table 2], each execution of the schema gives rise to a different way of
solving C ∪ S. In particular, [Row 1] indicates how to solve the problem as a
10 In [Figure 3], (a, b, c) denotes a constraint store

S = {x1 � [a, a], x2 � [b, b], x3 � [c, c], x12 � [d, d], x123 � [e, e] }
where d and e are arbitrary integers. For instance, (0, 1, 0) denotes the constraint
store S = {x1 � [0, 0], x2 � [1, 1], x3 � [0, 0], . . .}. In addition, in the subfigures of
[Figure 3], the value to the right of each element (a, b, c) denotes its cost.
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Solution S fcost1(S) fcost2(S) fcost3(S) fcost4(S)
(1,0,0) 1.0 1.0 (1.0,1.0) (1.0,0.0)
(0,1,0) 1.0 1.0 (1.0,0.0) (1.0,1.0)
(0,0,1) 1.0 1.0 (1.0,1.0) (1.0,1.0)
(0,0,0) 1.0 0.0 (0.0,0.0) (0.0,0.0)

Table 3: Evaluation of the solutions to the problems

    (1,0,0)

    (0,1,0)

    (0,0,1)

    (0,0,0)

1.0

1.0

1.0

    (0,0,0) 0.0

1.0    (0,0,1)

    (0,0,0) 0.01.0

    (0,0,0)

    (0,1,0)

(0,0)

(1,0)

    (0,0,0) (0,0)

    (1,0,0) (1,0)

    (0,0,0)

    (0,0,1)

    (0,1,0)

(0,0)

(1,1)

(1,0)

    (0,0,0)

    (0,0,1)

    (1,0,0)

(0,0)

(1,1)

(1,0)

(a) (b) (c)

(d) (e) (f) (g)

Figure 3: Final state of global stack P for different CSP solvers

classical CSP. Here fcost is a constant function with value δ (where δ is 1.0)
and � is =. In this case, all authentic solutions are pushed on the stack (see
[Figure 3(a)]) as stated in Theorem 12(2) (see also Theorem 10(2)). [Rows 2-3]
show how the problem can be solved by maximizing and minimizing the function
fcost2 respectively. The optimal solution is that on the top of the stack (see
[Figures 3(b) and 3(c)]). [Rows 4-7] indicate how to mix optimization criteria
where <1 and <2 are defined on �2 as follows:

(a, b) <1 (c, d) ⇐⇒ (a ≥ c ∧ b < d) ∨ (a > c ∧ b ≤ d);

(a, b) <2 (c, d) ⇐⇒ a > c ∨ a = c ∧ b < d.

[Row 4] corresponds to the problem of maximizing x1 + x2 + x3 and minimiz-
ing x1 + x3; [Row 5] corresponds to maximizing x1 + x2 + x3 and minimizing
x2 + x3; [Row 6] corresponds to first maximizing x1 + x2 + x3 and, if this can-
not be further optimized, then minimizing x1 + x3 (this is consequence of the
ordering <2 that gives priority to the maximization of the first component over
the minimization of the second one); and [Row 7] does the same but minimizing
x2 + x3. [Figure 3] shows the final state of the global stack for each of these
cases. [Table 3] shows the cost of each authentic solution with respect to the
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four cost functions considered in this example. Note that, in all the cases, we
have assumed a (left-to-right) depth-first strategy for tree traversal.

By defining alternative orderings on �2, problems involving other mixed op-
timization criterias can also be solved.

9 Concluding Remarks

This paper is an attempt to find general principles for branching in interval
constraint solving. The branching schema provided here is a generic schema for
solving sets of interval constraints on finite and continuous domains as well on
combined domains and it is useful to prove and devise generic properties of
interval constraint solving.

Our branching schema generalizes the well-known split-and-solve method of
the CLP(BNR) system [Benhamou and Older, 1997] to any domain with lattice
structure what means that it is valid both for classical domains (i.e., real, inte-
gers, Boolean and sets) and for new (possibly combined) domains. In this gener-
alization, we propose an interval branching schema that extends the generic and
cooperative interval propagation schema described in [Fernández and Hill, 2004].
This extension provides a generic schema for interval constraint solving that al-
lows problems defined on any set of lattices to be solved in terms of interval
constraints.

To achieve this, we have first defined the concept of authentic solution as
an assignment of values to variables that satisfies all the constraints. Then, by
using a schematic formulation for the branching process, we have indicated which
properties of the main procedures involved in branching are responsible for the
key properties of interval constraint solving. Then we have extended the schema
for optimization and have shown that, in some cases, the methods for solving
CSPs depend on the ordering of the range of the cost functions.

Key properties such as correctness and completeness are proved and by means
of a precision map similar to that defined for the propagation schema described in
[Fernández and Hill, 2004], we have shown that termination may be guaranteed.
We have shown by example how the precision map is a means to normalize the
heuristic for variable ordering on systems supporting multiple domains (e.g.,
cooperative systems).

We have indicated how the branching schema can be adapted as a B&B

schema. The branching schema can also be used for most existing constraint
domains (finite or continuous) and, as for the propagation framework de-
scribed in [Fernández and Hill, 2004], is also applicable to multiple domains
and cooperative systems. The behavior of several existing interval constraint
systems such as clp(FD) [Codognet and Diaz, 1996], clp(B) and clp(B/FD)
[Codognet and Diaz, 1994], DecLic [Goualard et al., 1999], CLIP [Hickey, 2000],
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Conjunto [Gervet, 1997] or CLP(BNR) [Benhamou and Older, 1997] can be ex-
plained as an instance of the schema presented in this paper.
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Appendix: Proofs

Proof. (Proposition 1 on page 11) This is a direct consequence of the result in
[Fernández and Hill, 2004][Proposition 7] that precisionL is strict monotonic for
any L. �

Proof. (Proposition 3 on page 11) We prove the cases separately.
Case (1). Suppose that c = x � r and c′ = x � r′, where r = s, t and

r′ = s′, t′. By hypothesis c is consistent and thus r is consistent and also r ≺Rs
L

r′.
By ordering on ranges, then r′ is consistent and thus c′ is consistent. Therefore,
by definition of range

s �Ls t ∧ s′ �Ls t′.

Moreover, as r ≺Rs
L

r′, by the ordering on ranges and the definition of simple
interval domain,

s ≺Ls s′ ∧ t �Ls t′∨
s �Ls s′ ∧ t ≺Ls t′.
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It follows by the duality principle for lattices [Davey and Priestley, 1990] that

s′ ≺Ls t′.

Therefore, by Definition 2, c′ is divisible.

Case (2). By hypothesis S is consistent and thus, by the ordering on SSX

S′ and definition of consistent simple stable constraint store, is consistent. More-
over, for all c ∈ S, c is consistent and also, there exists c′ ∈ S′ and c ∈ S such
that c ≺CX c′. By Proposition 3(1), c′ is divisible. Therefore, by Definition 2, S′

is divisible.
�

Proof. (Lemma 8 on page 14) We prove cases separately.
Case (a). By Definition 6, cj is divisible and, by the contractance property

shown in Definition 7, for all i ∈ {1, . . . , k} cji ≺CX
L

cj . Therefore, by the ordering
on SSX , for all i ∈ {1, . . . , k} S[cj/cji] ≺s S.

Case (b). By Definition 4, S′ ∈ SSX . Suppose that cj is constrained on
some variable x ∈ VL (x ∈ X) and let c′j be the simple interval constraint for x

in S′. Thus, by the ordering on SSX , c′j �CX
L

cj . Moreover, by Definition 4, S′ is
non-divisible and thus, by Definition 2, c′j is non-divisible. Also, by Definition 6,
cj is divisible so that c′j �= cj and thus c′j ≺CX

L
cj . As consequence, by the

completeness property of the splitting functions shown in Definition 7,

∃i ∈ {1, . . . , k} . c′j �CX
L

cji (1)

Therefore, again by the ordering on SSX , ∃i ∈ {1, . . . , k} such that S′ �s

S[cj/cji].
�

Proof. (Lemma 9 on page 15) In the following, let S0 be the initial value of S

and C = C ∪S0. Suppose that the procedure terminates after k iterations of the
repeat loop of solveε (i.e., Sk = Sf ) and that, for each i where 1 ≤ i ≤ k, Si is
the value of the constraint store S at step 5 of the operational schema shown in
[Figure 1], after completing i iterations of the repeat loop.

Now we prove the cases separately.
Case (a).
We show by induction on i, that after i ≥ 0 iterations of the repeat loop

Si �s S0. (2)

It follows that after k iterations Sk �s S0 and thus Sf �s S0.
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The base case when i = 0 is obvious. For the inductive step, suppose that
there are at least i > 0 iterations of the repeat loop and that, after i−1 steps, we
have Si−1 �s S0. Then, by Line 4 in the operational schema shown in [Figure 1]

Si−1 ∪ C′ �→ Si,

It follows, from the ordering defined on the constraint store stabilization,
that Si �s Si−1. Therefore by the inductive hypothesis Si �s S0.

Case (b).
Let R ∈ Sola(C ∪ S). By Definition 4, R is a solution for C ∪ S, so that by

induction on the number of iterations of the repeat loop of the schema solveε/2
and the ordering for stores defined on constraint stabilization, R �s Sk for some
k ≥ 0 and Sk = Sf .

Case (c).
Let R ∈ Sola(C ∪ S). By Case 9(b), R �s Sf . Suppose that R ≺s Sf . By

Definition 4, R is a solution for C ∪ S and, by the definition of solution, R

is consistent. Thus, by Proposition 3(2), Sf is divisible which contradicts the
hypothesis. As consequence, R = Sf and thus Sf ∈ Sola(C ∪ S).

Case (d).
By Definition 4, Sk (i.e., Sf ) is consistent and thus the procedure solveε(C, S)

terminates because

precision(Sk−1)− precision(Sk) ≤ (0.0, 0) (3)

By Line 4 of the operational schema shown in [Figure 1], in the k-th iteration,

C �Sk−1 C′; (4)

Sk−1 ∪ C′ �→ Sk. (5)

Then, by (5) and the ordering defined on the constraint store stabilization,
Sk �s Sk−1. As consequence, from (3) and Proposition 1, Sk = Sk−1. By (4),
(5) and the definition of solution, Sk is a solution for C (i.e., C ∪S0). Therefore,
as Sk is non-divisible, by Definition 4, Sk ∈ Sola(C ∪ S).

�

Now, we define some concepts that will be useful to prove the main properties
of the schema shown in [Figure 2].

A path q ∈ (Natural\{0})∗ is any finite sequence of (non-zero) natural num-
bers. The empty path is denoted by ε, whereas q . i denotes the path obtained
by concatenating the sequence formed by the natural number i �= 0 with the
sequence of the path q. The length of the sequence q is called the length of the
path q.
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Given a tree, we label the nodes by the paths to the nodes. The root node
is labelled ε. If a node with label q has k children, then they are labelled, from
left to right, q . 1, . . . , q . k.

Definition 14. (Search tree for branchα(C, S, p)) Let X ∈ ℘f (VL), S ∈ SSX ,
C ∈ ℘f (CX), α ∈ �+∪{0.0} and p ∈ �I. The search tree for branchα(C, S, p) is
a tree that has S at the root node and, as children, has the search trees for the
recursive executions of branchα/3 as consequence of reaching Line 8 of [Figure 2].

Given a search tree for branchα(C, S, p), we say that Sε = S is the constraint
store and pε = p the precision at the root node ε. Let Sq be the constraint store
and pq the precision at a node q. If q has k > 0 children q . 1, . . . , q . k, then Sq

is consistent and, if Sf
q is the constraint store Sq after a terminating execution

of solveε(C, Sq), then Sf
q is divisible so that choose(Sf

q ) = cj (for some cj ∈ CX
Lj

and Lj ∈ L) and, for some k > 0, splitLj
(cj) = (cj1, . . . , cjk). Then we say that

Sq.i = Sf
q [cj/cji] is the constraint store and pq.i = precision(Sf

q ) the precision
at node q . i, for i ∈ {1, . . . , k}.

In the following, each property stated in Theorem 10 on page 17 is proved
independently.

Proof. (Property (1) of Theorem 10 on page 17). Termination) In the following,
we show that the search tree for branchα(C, S, p) is finite so that the procedure
effectively terminates.

Let Sε = S and pε = p. If the search tree for branchα(C, Sε, pε) has only
one node then the procedure terminates. Otherwise, the root node ε has k chil-
dren with constraint stores Si where i ∈ {1, . . . , k} and Si = Sf

ε [cj/cji]. By
Lemma 8(a) and Lemma 9(a), for all i ∈ {1, . . . , k}, Si ≺s Sε and, by Proposi-
tion 1, precision(Si) <�I precision(Sε). Then, precision(Si) <�I ��I . Suppose
now that precision(Si) = (��, n) for some n ∈ Integer . Then the test in Line 2
pi − precision(Si) ≤�I (α, 0) holds and the node containing Si has no children.
Otherwise,

pi − precision(Si) >�I (α, 0) (6)

and there exists some constant � ∈ � such that

precision(Si) <�I (�× α, 0).

We show by induction on the length j ≥ 1 of a path q in the search tree that

precision(Si)− precision(Sf
q ) ≥�I

(
(j − 1)× α, 0

)
.

It follows that j ≤ � and that, all paths have length ≤ �+1 (since the second
condition in Line 3 of [Figure 2] holds) and thus there are no infinite branches.
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The base case when j = 1 follows from (6). Suppose next that j > 1 and
that the hypothesis holds for a path q of length j − 1. Let q . iq be a child of q

of length j. Then, by the condition in Line 3 of the if sentence,

pq.iq − precision(Sf
q.iq

) >�I (α, 0),

However, by the inductive hypothesis,

precision(Si)− precision(Sf
q ) ≥�I

(
(j − 2)× α, 0

)

so that, as precision(Sf
q ) is pq.iq ,

precision(Si)−precision(Sq.iq ) ≥�I
(α, 0) +

(
(j − 2)× α, 0

)
=

(
(j − 1)× α, 0

)
.

�

Proof. (Property (2) of Theorem 10 on page 17. Completeness) Let R ∈ Sola(C∪
S). Then, R is non-divisible and consistent by Definitions 4 and 2. By the or-
dering of the solution wrt. the store to solve, R �s Sε and, by Lemma 9(b),
R �s Sf

ε . If R = Sf
ε then tests in Lines 2-3 hold and R is pushed on the stack P .

Otherwise, R ≺s Sf
ε . By Proposition 3(2), Sf

ε is divisible, (and thus by Defini-
tion 2 consistent). As pε = ��I , the condition in Line 3 does not hold and node
ε has k children. By Lemma 8(a) and Lemma 9(a), for any q of length m ≥ 1 and
iq ∈ {1, . . . , k}, Sf

q.iq
≺s Sf

q . By Proposition 1, precision(Sf
q )−precision(Sf

q.iq
) >

(0.0, 0). Thus the condition pq.iq−precision(Sf
q.iq

) ≤ (α, 0) in Line 3 never holds.
It follows that all the branches in the tree terminate either with an inconsistent
store (because test in Line 2 does not hold) or with a non-divisible store (that is
also consistent by Definition 2) as result of holding tests in Lines 2 and 3. Now,
we show by induction on the length j ≥ 1 of a path q in the search tree that

R ≺s Sf
q =⇒ ∃iq ∈ {1, . . . , k} : R �s Sf

q.iq
. (7)

By hypothesis, the procedure terminates so that the search tree is finite. It
follows that there exists some path p = q . q′ with a finite length l ≥ j such that
R = Sf

p . Thus, Sf
p is non-divisible (and, by Definition 2 is consistent) and hence

tests in Lines 2 and 3 hold so that R is pushed on the stack P .
In the base case, when j = 1, Si = Sf

ε [cj/cji] (i ∈ {1, . . . , k}). By Lemma 8(b)
and Lemma 9(b), ∃i ∈ {1, . . . , k} : R �s Sf

i . Suppose next that j > 1 and that
the hypothesis holds for a path q of length j − 1 so that R �s Sf

q . If R ≺s Sf
q

then, by Proposition 3(2), Sf
q is divisible (and thus consistent by Definition 2)

so that the node Sf
q has k children. Therefore, by Lemma 8(b) and Lemma 9(b),

∃iq ∈ {1, . . . , k} : R �s Sf
q.iq

.
�

1496 Fernandez A.J., Hill P.M.: An Interval Constraint Branching Scheme ...



Proof. (Property (3) of Theorem 10 on page 17. Approximate completeness) Let
R ∈ Sola(C∪S). By the ordering of the solution wrt. the store to solve, R �s Sε.
Since the procedure terminates, as shown in proof of Theorem 10(1), all paths
in the search tree have length ≤ � + 1.

Therefore, as shown in proof of Theorem 10(2) (completeness proof), by fol-
lowing (7), there must exist some path q with no children and length j ≥ 1
such that R �s Sf

q . If R = Sf
q then R is put on the stack since, by Def-

inition 2, R is consistent so that tests in Lines 2 and 3 hold. Otherwise, as
shown in termination proof, the node Sf

q has no more children since the test
pq − precision(Sf

q ) ≤�I (α, 0) holds and Sf
q is put on the stack. As R �s Sf

q ,
by Definition 4, either Sf

q ∈ Sola(C ∪ S) or is a partial solution for C ∪ S that
covers R.

�

Proof. (Property (4) of Theorem 10 on page 17. Correctness) Let R ∈ P after
executing branchα(C, S, p). As shown in completeness proof, if α = 0.0 the test
pq − precision(Sf

q ) ≤ (α, 0) never holds, for all path q (in the search tree) of
length m ≥ 1 (observe also that Line 3 is never satisfied when q = ε since
pε �< ��I). Therefore, R is in P because there exists a path q where Sf

q = R

and the tests in Lines 2 and 3 hold. Thus, R is consistent and non-divisible and
by Lemma 9(4), R ∈ Sola(C ∪ Sq).

By induction on the length of the path q it is straightforward to prove that
Sq �s Sε. Now we prove that if R ∈ Sola(C ∪ Sq) then R ∈ Sola(C ∪ Sε). By
Definition 4 R is a solution for C ∪ Sq and thus, by the definition of solution,

C ∪ Sq �R C′

R ∪ C′ �→ R.

Then, by definition of constraint propagation, C′ = C1∪Sq where C �R C1.
Moreover, C ∪ Sε �R C′′ where C′′ = C1 ∪ Sε. Since Sq �s Sε, by definition of
stabilized constraint store,

R ∪C′ �→ R =⇒ R ∪ C′′ �→ R.

Therefore

C ∪ Sε �R C′′

R ∪C′′ �→ R.

Thus, by the definition of solution, R is a solution for C∪S and, by Definition 4,
R ∈ Sola(C ∪ Sε).

�
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Proof. (Property (5) of Theorem 10 on page 17. Approximate correctness or
control on the precision result) Suppose that R ∈ Pα1 . Then R is consistent and
there exists a path q of length m ≥ 0 such that Sf

q = R and Sf
q was pushed on

the stack because the test in Line 3 holds but, for all proper prefixes of q, it does
not hold. Thus either Sf

q is non-divisible or

pq < ��I and pq − precision(Sf
q ) ≤ (α1, 0).

In addition, for all proper prefixes q1 of q, Sf
q1

is divisible and, either

pq1 = ��I or pq1 − precision(Sf
q1

) > (α1, 0).

Since α1 ≤ α2, we also have

pq < ��I and pq − precision(Sf
q ) ≤ (α2, 0).

Let q′ be the smallest prefix of q such that

pq′ < ��I and pq′ − precision(Sf
q′ ) ≤ (α2, 0).

Then Sf
q′ is in Pα2 . By repetitive application of Lemmas 8(a) and 9(a) it is

straightforward to prove that Sf
q �s Sf

q1
for all proper prefix q1 of q. Thus,

Sf
q �s Sf

q′ . Therefore, as the choice of R ∈ Pα1 was arbitrary, by Definition 5,
Pα1 �p Pα2 .

�

In the following we prove independently each property claimed in Theo-
rem 12 (observe that the search tree for branchα+(C, S, p) is the same as for
branchα(C, S, p)).

Proof. (Theorem 12 on page 19. Property (1). Termination) This proof is as that
of Theorem 10(1).

�

Proof. (Theorem 12 on page 19. Property (2)) Observe that if fcost(S) = δ

for all S ∈ SSX , then test in Line 4* of the extended schema always holds.
It is straightforward to prove, in this case, that the schemas branchα/3 and
branchα+/3 are equivalent so that all properties of the schema branchα/3 hold
in the schema branchα+/3.

�

Proof. (Theorem 12 on page 19. Property (3). Soundness on optimization) We
prove the case when � and δ are, respectively, > and ⊥L< . The respective case
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is proved analogously. As shown in proof of Theorem 10(2), for α = 0.0, if
R ∈ Sola(C ∪S) then there exists in the search tree some path q of length j ≥ 0,
such that R = Sf

q and the tests in Lines 2-3 hold by Definition 4. Thus, Line 4*
is reached for all R ∈ Sola(C ∪S), and as consequence, the top of P will contain
the first authentic solution found that maximizes fcost/1.

�

Proof. (Theorem 13 on page 19: Approximate soundness) We prove the case
when � is <. The respective case (i.e., � is >) is proved analogously. We show
that during the execution of branchα1+(C, S, p), Line 4* is reached for some
Sf

q′ �s top(Pα2) (where q′ is a path of length m1 ≥ 0) and thus fcost(Sf
q′) �L<

fcost(top(Pα2 )). It follows that either Sf
q′ = top(Pα1) or Sf

q′ �= top(Pα1) because
there is another store Sf

q′′ = top(Pα1 ) such that fcost(top(Pα1)) �L< fcost(Sf
q′ ).

In both cases it follows that effectively fcost(top(Pα1 )) �L< fcost(top(Pα2)).
Observe that top(Pα2) is in Pα2 because there exists a path q of length m ≥ 0

such that Sf
q = top(Pα2) and Sf

q was pushed on the stack because Line 4* is
reached and the tests in Lines 2 and 3 holds but, for all proper prefixes of q, it
does not hold. Thus Sf

q is consistent and either non-divisible or

pq < ��I and pq − precision(Sf
q ) ≤ (α2, 0).

In addition, for all proper prefixes q1 of q, Sf
q1

is divisible and, either

pq1 = ��I or pq1 − precision(Sf
q1

) > (α2, 0).

Since α1 ≤ α2, we also have that, for all proper prefixes q1 of q, either

pq1 = ��I or pq1 − precision(Sf
q1

) > (α1, 0).

Thus, the node with path q is in the search tree for branchα1+(C, S, p). Now, we
have two cases: (1) Sq

f is consistent and non-divisible. As consequence, Sq
f has no

children and Line 4* is reached in the execution of branchα1+(C, S, p). (2) Sq
f is

consistent and divisible. By hypothesis Sq
f is an authentic solution R or covers an

authentic solution R for C∪S. Then, reasoning as in proof of Theorem 10(3) and
by (7), there must exists some path q′, containing the path q, with no children
such that Sf

q′ is consistent and either R = Sf
q′ or

pq′ < ��I and pq′ − precision(Sf
q′ ) ≤ (α1, 0).

In both cases, Line 4* is reached. Moreover, by repetitive application of Lem-
mas 8(a) and 9(a) it is straightforward to prove that Sf

q′ �s Sf
q .

�

1499Fernandez A.J., Hill P.M.: An Interval Constraint Branching Scheme ...


