
Proving Properties for Behavioural Specifications with

Term Observation

Narjes Berregeb
Laboratoire d’Informatique de Productique et de Parallélisme.

Institut National des Sciences Appliquées et de Technologie, Tunisia
narjes.benrajeb@topnet.tn

Abstract: Behavioural specifications allow to focus only on the“observable” behaviour
of objects. These observations are made through “observable contexts” which are par-
ticular terms with a hole to be filled in with an object. We consider behavioural specifi-
cations based on the observation of a specified set of linear terms. The set of observable
contexts is often infinite; therefore, we give an algorithm for computing some special
contexts that we call “covering contexts”, and show that they are sufficient for proving
that two terms are behaviourally equal.

Key Words: behavioural specifications, term observation, observable contexts, cov-
ering contexts

Category: F.3.1, F.4.1

1 Introduction

Observability concepts play an important role in software specification and de-
velopment, since they allow to focus on the external (or observable) behaviour
of software system, and to abstract away non relevant details [Giarratana et al.
1976, Bidoit et al. 2002, Bidoit et al. 2004]. The work devoted to defining an ad-
equate observational (or behavioural) semantics can be classified into two main
approaches: the first is based on an observational equivalence relation between
algebras [Sanella and Tarlecki 1988, Hennicker 1989], while the second is based
on a relaxing of the classical satisfaction relation [Nivela and Orejas 1987, Re-
ichel 1995, Bernot and Bidoit 1991, Hennicker and Bidoit 1999]. In the latter
approach, observations are made through experiments called contexts. Hence,
two objects are considered equal if they are equal in all observable contexts. In
the framework of algebraic specifications, various techniques of observations were
defined: observations based on sorts [Nivela and Orejas 1987, Hennicker 1991],
operators [Bernot and Bidoit 1991], terms [Sanella and Tarlecki 1988, Hennicker
1989, Bernot et al. 1992], or formulae [Sanella and Tarlecki 1988, Knapick 1991].
Consider the specification List of figure 1. Two lists are considered equal (in a
classical sense) if they have the same elements in the same order. However, one
can relax this condition by considering the lists in some observable contexts, for
example w.r.t the operation in; it means that two lists are equal if they have the
same elements, regardless of their order.

Journal of Universal Computer Science, vol. 12, no. 10 (2006), 1413-1425
submitted: 8/11/05, accepted: 20/9/06, appeared: 28/10/06 © J.UCS

specification: spec List
sorts:list, element, boolean

operations:
∅ → list

add : element× list → list

in : element× list → boolean

axioms
in(x, ∅) = false

in(x, add(x, l)) = true

x �= y ⇒ in(x, add(y, l)) = in(x, l)

Figure 1: Specification List

It is shown in [Bernot et al. 1994], that considering observations based on
terms is finer than observations based on operators and sorts, in the sense that
it allows to observe more specific objets. There exist some approaches and proof
methods of behavioural properties based on sort observation [Bidoit and Hen-
nicker 1996, Berregeb et al. 1998, Goguen and Malcolm 2000, Goguen et al
2002, Goguen and Lin 2003, Berregeb et al. 2004], or on a combination of sorts
and operators [Hennicker and Bidoit 1999, Bidoit and Hennicker 2005]. How-
ever, there are no proof methods for behavioural properties with term obser-
vation. The aim of this paper is to propose such a proof technique. The main
problem we meet when dealing with behavioural proofs is that the number of
observable contexts is often infinite. Under some reasonable hypothesis, we give
an algorithm for constructing some special contexts called covering contexts and
we show that they are sufficient for proving that two objects are observationally
equal. Note that these covering contexts are constructed for specifications where
a set of terms defines the observations, which are finer than observations made
on sorts as in [Berregeb et al. 1998, Berregeb et al. 2004].

The structure of the paper is as follows: In section 2, we give some basic
definitions and notations. In section 3, we define the observational semantics we
use. In section 4, we present our construction of covering contexts and show that
they are sufficient for proving observational equality under some assumption on
the specification. In section 5, we conclude and discuss further possible work.

1414 Berregeb N.: Proving Properties for Behavioural Specifications ...

2 Basic notions

We assume that the reader is familiar with the basic concepts of algebraic specifi-
cations [Wirsing 1990], term rewriting and equational reasoning. A many sorted
signature Σ is a pair (S, F) where S is a set of sorts and F is a set of function
symbols f : s1, . . . sn → s. Let X be a family of sorted variables, and let T (Σ, X)
be the term algebra. Let var(t) denote the set of variables appearing in t. A term
is linear if all its variables occur only once. If var(t) is empty then t is a ground
term. A substitution η assigns terms of appropriate sorts to variables. The do-
main of η is denoted by dom(η). If t is a term, then tη denotes the application
of η to t. The identity substitution is denoted by Id.

Let N∗ be the set of finite sequences of positive integers. For any term t,
Pos(t) ⊆ N∗ denotes the set of positions of t, and the expression t/u denotes
the subterm of t at position u. The root position is denoted by ε. The depth of
a position u is the length of the corresponding sequence.

The depth of a term t, denoted by |t|, is defined as follows: |t| = 0 if t is a
constant or a variable, otherwise, |f(t1, . . . , tn)| = 1 + maxi|ti|. An equation is
a formula of the form l = r, where l and r are two terms of equal sort. Let E be
the set of equations of a specification. If t1 = t2 is an equation following from E,
we write E |= t1 = t2 or t1 =E t2 .

3 Observational Semantics

The notion of observations has been introduced as a means for describing what
is observed in a given algebra. Various techniques have been proposed: observa-
tions based on sorts, operators, terms or formulae (see [Bernot et al. 1994] for
a survey). The semantics we choose is based on a relaxing of the satisfaction
relation. The notion of context is fundamental in all approaches based on such
observational semantics. A behavioural property is obtained by taking into ac-
count only observable information. To show that it is valid, one has to show its
validity in all observable contexts.

Definition 1 (Context). Let T (Σ, X) be a term algebra and (S, F) be its sig-
nature.

– a context over F with argument sort s and result sort s′, is a non ground term
c ∈ T (Σ, X) of sort s′, with a single occurence of a distinguished variable of
sort s called the contextual variable of c. To indicate the contextual variable
zs occurring in c, we often write c[zs] instead of c, where s is the sort of zs.

– a contextual variable zs of sort s is called an empty context with argument
sort s and result sort s.

1415Berregeb N.: Proving Properties for Behavioural Specifications ...

specification: spec EX
sorts: s, s1

operations:
a : s1

b : s1

f : s1 → s1

g : s1 → s

observations:
g(x)
axioms:
g(a) = g(b)
f(a) = f(b)

Figure 2: Observational specification EX

– the application of a context c[zs] to a term t ∈ T (Σ, X) of sort s, denoted by
c[t], is defined by the substitution of zs by t in c[zs]. In this case, the context
c is said to be applicable to t.

– by assumption, varc(c) will denote the set of variables occurring in c except
the contextual variable of c. A context c is ground if varc(c) = ∅. We denote
by |c| the depth of c, and by d(c) the depth of the position of the contextual
variable of c.

– a subcontext (resp. strict subcontext) of c, is a context which is a subterm
(resp. strict subterm) of c, having the same contextual variable as c.

Example 1. Let g be a function symbol. Suppose g : s × s → s. Let c[zs] be the
context g(x, g(zs, g(a, x))). We have: |c| = 3, d(c) = 2, g(zs, g(a, x)) and zs are
strict subcontexts of c, c[g(a, a)] = g(x, g(g(a, a), g(a, x)))

Definition 2 (Specification, Observable specification). A specification (or
equational specification) SP is a triple (S, F, E) where (S, F) is a signature and
E is a finite set of equations. An observational specification SPobs is a couple
(SP, W) such that SP = (S, F, E) is a specification and W ⊆ T (Σ, X) is a finite
set of observable terms.

In the following we denote by SPobs = (SP, W) an observational specification,
where SP = (S, F, E).

1416 Berregeb N.: Proving Properties for Behavioural Specifications ...

Example 2. The specification of figure 2 is an observational specification with
W = {g(x)}.

The example of figure 2 is simple and not meaningful. However, we will use
it just to illustrate the main notions and ideas.

Definition 3 (Observable context). Let W ⊆ T (Σ, X) be a set of observable
terms. We say that a context c is an observable context for a term t ∈ T (Σ, X)
if there exists w ∈ W and a substitution θ such that c[t] = wθ.

Example 3. Consider the specification of figure 2. Let t = a. Among the observ-
able contexts for t, we have: g(zs1), g(f(zs1)), g(f(. . . f(zs1) . . .)),

We have the same observable contexts for b.

The notion of observational validity is based on the idea that two objects are
equal if they cannot be distinguished by observable contexts.

Definition 4 (Observational validity). Let t1, t2 be two terms of the same
sort. We say that t1 = t2 is observationally valid, and denote it by E |=obs t1 = t2
or t1 =obs t2, iff for all observable context c for t1 and t2, E |= c[t1] = c[t2].

Note that if E |= t1 = t2 then E |=obs t1 = t2, but the converse may not be
true. Observational theories generalize first-order theories: if W = T (Σ, X) then
the satisfaction relation |=obs is equal to |=.

Example 4. Consider the specification of figure 2. The equality a = b is not
valid in the classical sense since E �|= a = b. However, a =obs b, since for
all observable context c for a and b, E |= c[a] = c[b]: g(a) = g(b), g(f(a)) =
g(f(b)), g(f(f(a))) = g(f(f(b))), · · ·.

4 Proving an observational equality

The main problem of proving observational properties is that the number of
observable contexts is often infinite, as shown in example 3. It is necessary to find
a way to schematise these observable contexts finitely if we want to automatise
the proofs of observational equalities.

We introduce in this section the notion of covering contexts which allow to
describe finitely the possibly infinite set of observable ground contexts.

Definition 5 (set of covering contexts). Let SP be an observational speci-
fication equipped with a set of observable terms W . Let t be a term. A set of
covering contexts for t, denoted by CC(t, W), is a set of contexts such that:
For each observable context cobs for t, there exists c ∈ CC(t, W), a context c′

and a substitution θ such that cobs = c′[c]θ

1417Berregeb N.: Proving Properties for Behavioural Specifications ...

Let us illustrate the idea of the computation of covering contexts on the
specification of figure 2 but equipped with the set of observable terms W =
{f(x)}. Let t = f(f(a)) be of sort s1. Let us try to enumerate the observable
contexts for t. We have:

i/ zs1 is an observable context for t since zs1 [f(f(a))] = f(f(a)) = f(x)θ, where
xθ = f(a). In this case the variable x captures a subterm of t.

ii/ f(zs1) is an observable context since f(zs1)[f(f(a))] = f(f(f(a))) = f(x)θ,
where xθ = f(f(a)). In this case the variable x captures exactly the term t.

iii/ f(f(zs1)) is an observable context since f(f(zs1))[f(f(a))] = f(f(f(f(a)))) =
f(x)θ, where xθ = f(f(f(a))). In this case the variable x captures more than
the term t, and we can continue this process infinitely.

The idea of our method is to construct at first, all the observable contexts
corresponding to points i/ and ii/, i.e, those observable contexts such that if x is
a variable occuring in an observable term w, then x captures a subterm of t. In
other words, these observable contexts are such that there exists a subterm in w

having t as instance. We call them contexts of type 1. For the other remaining
observable contexts, corresponding to point iii/ in the example, we construct
some particular contexts, called contexts of type 2, that can be embedded in
a context to form an observable term, and allowing to “cover” the remaining
observable contexts.

Definition 6 (context of type 1). A context c is a context of type 1 for t if
there exists a substitution θ, an observable term w ∈ W , a subterm u in w such
that c is applicable to t, c[t] = wθ and uθ = t.

Definition 7 (context of type 2). A context c is a context of type 2 for t if

– c is applicable to t

– there exists a context c′ with result sort s, and a variable of sort s occurring
in w ∈ W such that c′ is applicable to c[t]

Definition 8 (most general context). A context c with result sort s is a most
general context if:

– either c is a contextual variable zs

– or c is of the form f(x1, . . . , c
′, . . . , xn) where x1 . . .xn are variables not in

var(c′), f : s1, . . . , sn → s is a function symbol and c′ is a most general
context.

1418 Berregeb N.: Proving Properties for Behavioural Specifications ...

input:
t /* a term*/
d /* a depth*/
W /* a set of observable terms*/

/*construction of contexts of type 1*/
C1 := ∅
For all terms w in W do
For all subterms u in w such that there exist c, θ, verifying
uθ = t and c[t] = wθ do

C1 := C1 ∪ {c}
endfor

endfor

/* construction of contexts of type 2 of depth d at most*/
Let SW = {s| s is a sort of a variable appearing in w ∈ W}
Let st be the sort of t

C2 := {zst}
For all c ∈ C2 such that |c| < d and c has a result sort s not in SW do
Construct the set C′ of all the contexts c′ of the form
f(x1, . . . , xi−1, c, xi+1, . . . , xn) such that:

- the contextual variable of c′ is zst

- x1, . . . , xi−1, xi+1, . . . xn are fresh variables
resp. of sort s1, . . . , si−1, si+1, . . . , sn

- f is a function symbol such that f : s1, . . . , si−1, s, si+1, . . . , sn → s′

- c′ can be subcontext of some context with result sort in SW .
C2 := (C2 \ {c}) ∪ C′

endfor

CC(t, W) := C1 ∪ C2

output: CC(t, W)

Figure 3: Computation of a set of covering contexts

1419Berregeb N.: Proving Properties for Behavioural Specifications ...

The idea of the construction of contexts of type 2 is as follows: We construct
all most general contexts c′ applicable to t having (at most) a chosen depth d

such that c′ can be subcontext of some observable context. Testing this condition
comes to test whether c′ can be a subcontext of some context with a result sort
corresponding to a sort of a variable appearing in w ∈ W .
Now, to test whether a context c′ can be a subcontext of a context with result
sort s, one can rely on the specification signature. Moreover, the signature can
be seen as a graph where the nodes are the sorts. If f : s1, . . . , sn → sn+1 is
a function symbol, then each si(i ∈ {1, . . . , n}) is connected to the node sn+1.
The problem comes then to find a path from the result sort of c′ to s.

The algorithm computes contexts of type 2 of any given depth d (for example,
one can consider a depth d = 1). The computation of a set of covering contexts
is given in figure 3.

Lemma9. The computation of a set of covering contexts given in figure 3 ter-
minates.

Proof. – Construction of contexts of type 1 terminates since the number of
subterms u in an observable term w is finite and the number of observable
terms in W is finite.

– Construction of contexts of type 2 terminates since the depth of these con-
texts is smaller or equal than d.

In the following, we denote by CC(t, W), the set of covering contexts for a
term t computed according algorithm of figure 3.

Lemma10. Let SP be an observational specification equipped with a set of ob-
servable terms W . We suppose that all the terms in W are linear. Let t be a
term. The set CC(t, W) computed according to the algorithm of figure 3 is a set
of covering contexts for t.

Proof. Let cobs be an observable context for t.

case 1: cobs is an instance of a context c of type 1 for t. Let θ be the sub-
stitution such that cobs = cθ, in this case c′ = z (empty context).

case 2: cobs is not an instance of a context of type 1 for t. Then, there ex-
ists an observable term w and a variable x occurring in w such that cobs[t] = wθ

and t is a strict subterm of xθ.

Let xθ = c1[t]. Since w is linear, we can denote by w[x] the context with x

as its contextual variable.

1420 Berregeb N.: Proving Properties for Behavioural Specifications ...

– If |c1| ≤ d then there exists a context c ∈ CC(t, W) of type 2 for t such that
c1 is an instance of c since c is most general. Let θ′ be the substitution such
that cθ′ = c1. Thus, cobs = w[c]θθ′.

– if |c1| > d, then let c1 = c′′c′ where |c′| = d. Then, there exists a context
c ∈ CC(t, W) of type 2 for t such that c′ is an instance of c since c is most
general.
Let θ′ be the substitution such that cθ′ = c′ . Thus, cobs = w[c′′[c]]θθ′

The next theorem shows that the covering contexts obtained by applying the
algorithm of figure 3 are sufficient for proving an observational equality.

Theorem 11. Let SP be an observational specification equipped with a set of
observable terms W . We suppose that all the terms in W are linear. Let t1, t2
two terms.

∀c ∈ (CC(t1, W) ∩ CC(t2, W)),

E |= c[t1] = c[t2] ⇒ t1 =obs t2

Proof. Let cobs be an observable context for t1 and t2. We have to show that E |=
cobs[t1] = cobs[t2]. Since cobs is an observable context for t1, then by lemma 10,
there exists c ∈ CC(t1, W), a context c′ and a substitution θ such that cobs =
c′[c]θ. By hypothesis, E |= c[t1] = c[t2], then E |= (c′[c]θ)[t1] = (c′[c]θ)[t2].Thus
E |= cobs[t1] = cobs[t2].

Example 5. Let us consider the specification of streams of natural numbers in
figure 4, inspired by [Goguen and Lin 2003].

The observable term odd(x) indicates that we do not distinguish natural numbers
that behave similarly under contexts of the form odd(x). Moreover, we distin-
guish only natural numbers that do not have the same parity. For example, we
have 1 =obs 3 but not 1 =obs 2 (for short we use the notation 1 for s(0), 2 for
s(s(0)) and so on).

Let us consider the equality 1 = 3. Computing covering contexts of depth d = 1
for 1 and 3 gives the set C = {odd(z), s(z), cons(z, s)}. Note that we do not
consider the context null(z) in C, since it is with result sort bool and cannot be
a subcontext of an observable context.

To prove 1 = 3 is an observational equality, we have to apply all covering contexts
of C on 1 and 3, we obtain:

1421Berregeb N.: Proving Properties for Behavioural Specifications ...

specification: spec Stream
sorts: stream, nat, bool

operations:
hd : stream → nat

tl : stream → stream

cons : nat stream → stream

0 : nat

s : nat → nat

false :→ bool

true :→ bool

odd : nat → bool

null : nat → bool

observations:
hd(x), tl(x), odd(x)

axioms
hd(cons(x, s)) = x

tl(cons(x, s)) = s

odd(0) = false

odd(s(0)) = true

odd(s(s(x))) = odd(x)
null(0) = true

null(s(x)) = false

Figure 4: Specification stream

odd(1) = odd(3) (1)

s(1) = s(3) (2)

cons(1, s) = cons(3, s) (3)

Equation 1 is easily simplified using the specification axioms to false=false.
Equation 2 holds because if two natural numbers have the same parity then their
successors also have the same parity. To show that equation 2 is an observational
property, one still has to use a context induction reasoning (thus apply covering
contexts and use the induction hypothesis 1 = 3).
Equation 3 holds too. Computing covering contexts of depth d = 1 for cons(1, s)

1422 Berregeb N.: Proving Properties for Behavioural Specifications ...

and cons(3, s) gives the set C = {hd(z), tl(z), cons(x, z)}. Applying these cover-
ing contexts to equation (3), we get:

hd(cons(1, s)) = hd(cons(3, s)) (4)

tl(cons(1, s)) = tl(cons(3, s)) (5)

cons(x, (cons(1, s)) = cons(x, cons(3, s)) (6)

Equation 5 is simplified, using the axioms, to s = s. Equations 4 and 6 hold
and require the use of the induction hypothesis 1 = 3.

Now, let us prove some property on streams. According to the specification
observations, two streams are observationally equal if their elements have the
same parity. Consider stream one defined as an operator

one : → stream

with the axioms

hd(one) = 1

tl(one) = one

In the same manner, consider stream three defined as an operator

three : → stream

with the axioms

hd(three) = 3

tl(three) = three

To prove that one = three is an observational property, we compute covering
contexts of depth d = 1 for cons(1, s) and cons(3, s) gives: C = {hd(z), tl(z),
cons(x, z)}. Applying these covering contexts to equation 3, we get:

hd(one) = hd(three) (7)

tl(one) = tl(three) (8)

cons(x, one) = cons(x, three) (9)

Equation 7 is simplified to 1 = 3 which has already been proved. Equation
8 and 9 still require an induction reasoning on contexts and can be proved by
applying covering contexts and using induction hypothesis one = three.

1423Berregeb N.: Proving Properties for Behavioural Specifications ...

5 Conclusion

In this paper, we presented first an observational semantics based on the notion
of context for algebraic specifications with linear term observation. The prob-
lem met when one tries to automatise behavioural proofs is that the number of
observable contexts is often infinite. We proposed an algorithm for constructing
special contexts called “covering contexts” and showed that they are sufficient
to prove behavioural equalities. A possible improvement of this work is to con-
sider a behavioural semantics based on multicontexts, which are contexts with
multiple occurences of the contextual variable, as defined in [Bernot et al. 1992].
Further work is to extend our techniques to non linear observable terms and to
reduce the number of covering contexts for a term. Finally, it is interesting to
build a theorem prover on top of this approach.

Acknowledgment

I would like to thank the anonymous referees for their valuable comments.

References

[Bernot and Bidoit 1991] Bernot, G., Bidoit, M.: “Proving the correctness of alge-

braically specified software: Modularity and observability issues”; 2nd International
Conference on Albegraic Methodology on Software technology, Lect. Notes Comp.
Sci. 1991, Springer, 216-239.

[Bernot et al. 1992] Bernot, G.,Bidoit, M.,Knapik, T.: “Toward an adequate notion of
observation”; European Symposium on Programming; Lect. Notes Comp. Sci. 589,
1992, Springer, 39-55.

[Bernot et al. 1994] Bernot, G.,Bidoit, M.,Knapik, T.: “Behavioural approaches to al-
gebraic specifications: a comparative study”; Acta Informatica, 31, 7, 1994, 651-671.

[Berregeb et al. 1998] Berregeb, N., Bouhoula, A., Rusinowitch, M.: “Observational
proofs with critical contexts”; Fundamental approaches in Software, Lect. Notes
Comp. Sci., 1389, 1998, Springer.

[Bidoit and Hennicker 1996] Bidoit, M., Hennicker, R.: “Behavioural theories and the
proof of behavioural properties”; Theoretical Computer Science, 165, 1, 1996, 3-55.

[Bidoit and Hennicker 2005] Bidoit, M., Hennicker, R.: “Constructor-Based Observa-
tional Logic”: Journal of Logic and Algebraic Programming, 2005.

[Bidoit et al. 2002] Bidoit, M., Sannella, D., Tarlecki, A.: “Global Development via

Local Observational Construction Steps”: Proc. 27th Intl. Symp. on Mathematical
Foundations of Computer Science, 2420, 2002, Springer, 1-24.

[Bidoit et al. 2004] Bidoit, M., Sannella, D., Tarlecki, A.: “Toward component-oriented

formal software development: An algebraic approach”. Proc. 9th Monterey Software
Engineering Workshop on Radical Innovations of Software and Systems Engineering
in the Future, Lecture Notes in Computer Science, 2941, 2004, 75-90.

[Berregeb et al. 2004] Berregeb, N., Robbana, A., Tiwari, A.: “Towards automated
proofs of observational properties”; Discrete Mathematics in Theoretical Computer
Science, 6, 1, 2004, 143-162.

1424 Berregeb N.: Proving Properties for Behavioural Specifications ...

[Giarratana et al. 1976] Giarratana, V., Gimona, F., Montanari, U.: ”Observability
Concepts in Abstract Data Type Specifications”; MFCS, Lect. Notes Comp. Sci.,
1976, Springer, 576-587.

[Goguen and Lin 2003] Goguen, J., Lin, K.: “Behavioural verification of distributed
concurrent systems with BOBJ”; Conference on Quality Softawre, IEEE Press, 165,
1, 2003, 216-235.

[Goguen et al 2002] Goguen, J., Lin, K., Rosu, G., ”Conditional Circular Coinductive
Rewriting with Case Analysis.”, 16th International Workshop WADT, Lect. Notes
Comp. Sci., 2002, Springer, 216-232.

[Goguen and Malcolm2000] Goguen, J., Malcolm, G.: “A hidden agenda”; Theoret-
ical Computer Science, 245, 1, 2000, 55-101.

[Hennicker and Bidoit 1999] Hennicker, R., Bidoit, M. : “Observational logic”; Alge-
braic Methodology of Softawre Technology, Lect. Notes Comp. Sci., 1548, 1999,
Springer, 263-277.

[Hennicker 1989] Hennicker, R.: “Implementation of parametrized observational spec-
ifications”; TAPSOFT’89, Lect. Notes Comp. Sci., 1989, Springer, 290-305.

[Hennicker 1991] Hennicker, R.: “Context induction: a proof principle for behavioural
abstractions and algebraic implementations”; Formal Aspects of Computing, 3, 4,
1991, 3-55.

[Knapick 1991] Knapik, T.: “Specifications with observable formulae and observable
satisfaction relation”;Recent Trends in Data Type Specifications, 1991.

[Nivela and Orejas 1987] Nivela, P., Orejas, F.: “Initial behavioural semantics for alge-
braic specifications”; Recent Trends in Data Type Specifications, 332, 1987, 184-207.

[Reichel 1995] Reichel, H.: “An approach to object semantics based on terminal co-
algebras”;Mathematical structures in Computer Science, 5, 1995, 129-152.

[Sanella and Tarlecki 1988] Sanella, D., Tarlecki, A.: “Toward formal development of
programs from algebraic specifications reviseted”; Acta Informatica, 25, 1988, 233-
281.

[Wirsing 1990] Wirsing, M.: “Algebraic specifications”, MIT Press, 1990, Chapter 13.

1425Berregeb N.: Proving Properties for Behavioural Specifications ...

