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Abstract: When dealing with remote systems, it is desirable that these systems are capable of 
operation within acceptable levels with minimal control and maintenance. In terms or 
transmission of telemetry information, a prediction-based compression scheme has been 
introduced. This paper studies the influence of some typical transmission and network errors on 
the encoded residue stream produced by a number of predictors used in the scheme, with the 
intention of identifying the more fault tolerant architecture that may be preferred as predictors. 
Classical linear predictors such as FIR and lattice filters, as well as a variety of feedforward and 
recurrent neural networks are studied. The residue streams produced by these predictors are 
subjected to two types of commonly occurring transmission noise, namely gaussian and burst. 
The noisy signal is decoded at the receiver and the magnitude of error, in terms or MSE and 
MAE are compared. Hardware failures in the input receptor and multiplier are also simulated 
and the performance of various predictors is compared. Overall, it is found that even small low-
complexity neural networks are more resilient to faults due to the characteristics of their 
parallel architecture and distributed storage/processing characteristics. 

Keywords: Data compression, error tolerance, neural networks, predictors 
Categories: H.4.3, E.2, I.5.4 

1 Introduction  

In dealing with remote systems, sensor telemetry data is vital for monitoring the 
performance of the systems, ranging from the operations of remote installation, to 
micro-systems within. Data compression offers an effective way to reduce the size of 
the transmitted information, through reduction / removal of data redundancy, with the 
additional benefit of reduced storage space requirements. Predictive compression is 
popular when dealing with real-time data that is highly correlated in commonly 
known distribution patterns, as is the case with most telemetry data from remote 
sensors, due to their high compression performance [1]-[3]. The difference between 
most successive values in the telemetry data for a particular sensor is generally small, 
thus, emphasis is therefore placed on lossless (rather than lossy) compression to 
preserve accuracy. 

In typical predictor-based lossless systems, it is the residues, i.e. difference 
between the original input and predicted values, which are transmitted to the receiver. 
Predictors decorrelate the input stream such that the distribution of the residues is 
almost white gaussian [4]. A good predictor produces residues that are of significantly 
lesser magnitude than the source samples, thus exacting feasible compression. At the 
receiver, the original values are restored by adding the received residues to values 
generated by an identical predictor at the receiver. To further improve the 
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compression performance, an additional lossless encoder may be used to further 
decorrelate the residue stream [3]-[6].  

As residues are usually of small magnitude, they tend to be more susceptible to 
transmission and network errors due to their low signal to noise ratio (SNR). This 
paper is concerned with the choosing of error and fault tolerant predictors in order to 
maintain a high level of accuracy even when the compression system is subjected to 
common errors and disruptions, especially so when such problems are faced at remote 
sites where maintenance is both difficult (if not impossible) and costly (in terms of 
finance as well as in trusting the accuracy of the received values). The actual results 
in a practical system is also dependent on the error correction coding used to protect 
the transmission, but as there is a broad selection of them, such coding will not be 
included in the scope of this paper. The aim is to minimize the effect of error even 
before the application of such error correction coding. 

A prediction-based scheme has been introduced for lossless compression of 
satellite launch vehicle (SLV) telemetry data, and has been shown to produce good 
compression performance in terms of speed and compression ability [1]. The scheme 
utilizes classical predictors such as the finite impulse response (FIR) and recursive 
lattice filters, which are popular choices for data compression [2], [5]. Neural 
networks are known for their error tolerance and graceful performance degradation 
properties in the presence of noise and network failures, and have also been 
successfully used in many pattern recognition schemes in the past [3]. Lately, neural 
networks have also been introduced as predictors for lossless compression in this 
scheme [1].  

This paper examines the performance of a number of different classical and 
neural network architectures, with the purpose of comparing the error and fault 
tolerance capabilities of the predictors when subjected to some typical transmission 
conditions. A selected subset of tests are applied to the predictors, using a number of 
telemetry data sets or varying sizes, distribution and sourced from different remote 
sensors. The results and discussions in this paper is aimed in assisting in determining 
the choice of predictors for use in compression and transmission of telemetry data, as 
well as possibly in broader applications in other areas where low-cost low-complexity 
fault tolerant predictive devices are beneficial. 

2 Predictors 

Several architectures are chosen from the classical and neural network predictors for 
testing. In order to provide comparisons at the approximately similar level of 
complexity, and to minimize resource overheads and size of the implemented remote 
system, small topologies are chosen based on past experience and ongoing research 
[3], [6], [7]. The configuration and training information of the various predictors 
examined is discussed below and summarized in Table 2. The last column of the table 
provides the average estimated processing time for the predictors to compress the test 
data files, as a measure of the performance of the predictors in terms of speed. Such 
performance issues are discussed in the Conclusions section. 
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2.1 Classical Predictors 

Two classical architectures in three different strategies are chosen from existing 
popular implementations [2] for testing. 

2.1.1 Finite Impulse Response (FIR) Filter 

The architecture of the FIR filter is such that it uses delays on its inputs to enable 
immediate past values to be used at each iteration. Taking advantage of this, it can be 
set up as a predictor, with the order of the predictor corresponding to the number of 
past values used to predict the present value.  
 

 
Figure 1: pth-order Finite Impulse Response (FIR) predictor. The output is the 

residue (e). 
 

An example of the structure of a pth-order FIR predictor is given in Fig. 1 [2]. The 
predicted value ( X̂n) of the nth input (Xn), is the sum of the product of the past p input 
values and their corresponding coefficients (ci), as given by (1). The residues (en) are 
calculated using (2) and the FIR predictor is implemented as a fixed model using 
fixed coefficients, given by (3), throughout the prediction process.  
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The second strategy for testing is to use a fully adaptive FIR implemented with 
the normalised least mean squares (NLMS) algorithm [1], to adaptively adjust the 
coefficients to the telemetry data input patterns.  

2.1.2 Recursive Lattice Filter  

Recursive lattice filters have been shown to produce very good compression 
performance as predictors [3]-[6]. These filters have lattices (layers) that provide 
forward and backward prediction, as shown in Fig. 2. The adaptive p-lattice structure 
in Fig. 2 uses the recursive least squares lattice (RLSL) algorithm with a priori 
estimation errors and error feedback for prediction. The main feature of this high 
performance algorithm is that it handles adaptive forward prediction (ηp), adaptive 
backward prediction (βp) as well as adaptive joint-process estimation (ξp). These 
processes are implemented through direct order updating of the forward reflection 
coefficients (κf,p), backward coefficients (κb,p) and joint-process regression 
coefficients (κp), to produced the predicted values. Detailed description of the 
algorithm and related algorithms, such as the Gradient Adaptive Lattice (GAL), can 
found in [2] and will not be discussed here. 
 

Figure 2: pth-order Recursive Least Squares Lattice (RLSL) with a-priori feedback 

2.2 Neural Network Predictors 

Certain properties of the artificial neural networks render them useful as predictors 
[2]. These properties include: the ability to self-learn, flexible internal organization, 
the ability to acquire knowledge even from noisy data through generalization, error 
tolerance to  data inconsistencies, and parallel distributed processing and information 
storage that gives it speed as well as allows it to degrade gracefully when network 
failure occurs.  
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2.2.1 Training and Test Data 

Block-adaptive training is implemented for the neural networks, as in [8]. The reason 
for this is to allow the network to adapt to input patterns, and at the same time 
minimize the likelihood of overfitting the predictor during training. This simple 
scheme curbs the potential of the problem of network rigidity, which reduces the 
network’s generalization capabilities and adversely affecting prediction performance, 
without costly overheads involved in implementing more complex algorithms.  

The block-adaptive method involves sequentially partitioning the input into 
blocks of a fixed number of samples. The first 20% of samples in a block are used to 
train the network, and the remainder would be predicted using the trained network. 
Different block sizes (SB) are used in training to determine the most appropriate sizes 
for each architecture. Targeted performance goals are set to determine sufficient 
training (i.e. with accuracy of MSE=0.1 or until 10,000 epochs). As the networks are 
targeted for real-time performance, prior knowledge of the telemetry data distribution 
pattern is not used during training. The training set consists of only the first 20% of 
values of the current block. The training size (i.e. 20%) was chosen as a compromise 
to provide sufficient training to start the prediction by anticipating part of the input 
pattern of the block, but not too large that it significantly reduces the compression 
performance and increases processing time. Prediction is implemented by using the 
past p values to predict the current value, and then calculating and transmitting the 
residue.  

Six test files are used in this paper, derived from the various sensors of a satellite 
launch vehicle (SLV). The telemetry data obtained from the various sensors provide 
varying types of telemetry readings, distributions, input patterns and file sizes, 
allowing the proposed system to be tested in a more robust manner to mimic the 
general capabilities expected by implementing the system for general telemetry 
compression. Some of the characteristics of the test data used are given in Table 1. 

 
Test 
File 

File  
Size 

(bytes) 

Total  
no.  
of 

symbols 

Sampling 
rate 

(symbols 
per sec.)

No. of 
distinct 
symbols 

Max. 
freq.
of a 

symbol

Max.  
value  
of a  

symbol 

Source 
Entropy 
(bits per 
symbol) 

td1 252305 28324 520 157 7131 66.135 3.128 
td2 139571 11631 65 12 7484 1070.249 1.017 
td3 55365 6778 65 43 1438 76.105 4.644 
td4 131841 16052 130 191 3985 50.894 5.387 
td5 184774 17232 65 240 349 4960.000 7.614 
td6 74915 8662 65 6 2840 124.250 2.121 

Table 1: Characteristics of the test data 

Three categories of neural networks with five different architectures are briefly 
discussed below. All the networks possess only one output node as only one value is 
predicted at each iteration. The basic layout of the architecture used, training scheme 
and some transmission issues are detailed in [8]. The configurations specified in this 
paper were found, experimentally, to be optimum for the small architectural 
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requirements and test sets used, and may be used as a guide in determining the 
optimum settings for application on other data. 

2.2.2 Standard Feedforward Networks 

Three well known artificial neural network architectures are implemented in this 
category, namely the perceptron network (PN), the single-layer feedforward network 
(SLFN) and the multi-layer feedforward network (MLFN). Fig. 3 shows the 
architecture of the PN and the SLFN, both sharing a similar general architecture. 
However, the PN uses the hardlimiter or step function activation threshold (or transfer 
function, f(.)) in the output layer, whereas the SLFN was set up to use the linear 
function (as it performed better for the test sets than the conventional sigmoid 
function). Training (setting the weights and biases) of the PN is undertaken via the 
Rosenblatt / Perceptron rule [9]. Training of the 4th-order SLFN is by means of the 
least mean squares (LMS) algorithm [10]. Note that by convention, input nodes are 
not counted as a layer as they are not processing elements (PE) and have no activation 
functions. They do however determine the number of past values to be used during 
the prediction. As such, the 4th-order SLFN actually has 4 input nodes and 2 layers if 
the input layer is to be counted. 
 

Figure 3: pth-order single-layer single-output Perceptron Network (PN) predictor. 
Similar architecture used by Single Layer Feedforward Network (SLFN) predictor, by 
replacing the step-function of f(.) with other activation functions 

The architecture of the MLFN, also popularly known in some literature as the 
multi-layer perceptron (MLP), is given in Fig. 4. Trained using the backpropagation 
algorithm [10], the MLFN was set up to use the linear and sigmoid f(.) for the hidden 
and output layers, respectively.  
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Figure 4: A 3rd-order 3-layer Multi Layer Feedforward Network (MLFN) predictor 
with two middle layers of 4 and 6 processing elements (PE), respectively. The output 
is the residue (e) 

2.2.3 Radial Basis Network 

The general architecture of a radial basis network is that of a feedforward network, 
but using radial basis functions (such as the gaussian distribution) instead of the 
standard activation functions (e.g. linear, sigmoid). To test this type of network, the 
popular two-layer generalized regression neural network (GRNN) [7], [11], 
commonly used as a function approximator, was set up with a gaussian and linear f(.) 
in the hidden and output layers, respectively. This neural network predicts by 
projecting the training window approximation function across SB. This 
unconventional prediction method works well for data that is relatively stable or has 
repetitive properties. 

2.2.4 Recurrent Network 

A recurrent network is one which feeds some or all of one or more layers’ output back 
into itself or into one (or more) of the preceding layers. This allows the output of each 
iteration to influence the outcome of consequent iterations. The two-layer Elman 
network (EN) [12] implemented has a recurrent linear hidden layer and a sigmoidal 
output layer, as shown in Fig. 5. This type of network is known to have the ability to 
recognize spatial and temporal structures in the input [9]. 
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Figure 5: A 3rd-order 2-layer Elman Network (EN) predictor with two feedback nodes 
in the recurrent hidden layer. Outputs residue (e). 

3 Influence Of Noise On Predictor Performance 

External sources, as well as the medium used for transmission or storage, can cause 
the influence of  noise on the transmmitted residue. The two common types of noise 
that affect transmission are random and burst noise. An example of random noise is 
the motion of electrons in the material, which is also referred to as thermal noise. On 
the other hand, high amplitude impulse interference caused by situations such as the 
occurrence of large electromagnetic waves, e.g. a flash of lightning, is known as burst 
noise.  

3.1 Performance With Gaussian Noise 

To test the predictors, are random white noise was generated to fit the gaussian 
distribution G(0,1) and added to the transmitted residue stream. The average noise 
applied was targeted at approximately 30% signal power, with signal-to-noise ratio 
(SNR) approximately 15 dB, as given in Fig. 6. A low SNR may signify a noisy 
transmission, and also small residues (i.e. good prediction).  

The test is implemented as follows:  
(a) the receiver is trained using clean samples,  
(b) the trained receiver forced to predict using the noisy input, 
(c) the error between the original source data and the restored data (i.e. predicted 

value + noisy residue) is measured, 
(d) the mean squared error (MSE) is calculated.  

The process is repeated for each test file, using the different predictors. The 
results obtained are given in Fig. 7. For relative comparison, the mean square value 
(MSV) of the source data is plotted on the graph. The mean absolute error (MAE) and 
its corresponding mean absolute value (MAV) of the source is plotted in Fig. 8 for 
further comparison of the performance of the architectures on the different test files. 
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Figure 6: Signal-to-Noise-Ratio (SNR) achieved by residues with gaussian white 
noise, for each test file. 

 

Figure 7: Mean Squared Error (MSE) achieved by residues for gaussian noise 
robustness test. 
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Figure 8: Mean Absolute Error (MAE) achieved by residues in gaussian noise 
robustness test, for each file. 

 

Analysing the results from the three graphs, the following observations may be 
made. Even with large SNR, the traditional FIR and NLMS performed badly in the 
white noise test. The best MSE result was achieved by the PN, but its high SNR 
signifies poor compression ability and insensitivity to the input patterns. The GRNN 
and RLSL had similar performance, with the GRNN being slightly better in terms of 
its MAE values. Overall, among the tested predictors, the best white noise tolerance 
was achieved by the MLFN. The MLFN residues were of lower magnitude than the 
noise. Note that since negative SNR values could not be plotted on the logarithmic y-
axes, these MLFN points are ‘missing’ from the figures. In general, the test concluded 
that the artificial neural networks were able to achieve better fault tolerance 
capabilities than the FIR and NLMS. From the MAE values in Fig. 8, there is 
evidence to suggest that the artificial neural networks are more adaptive and tolerant 
to transmission white noise. 

3.2 Performance With Burst Noise 

A similar process of testing was conducted to evaluate the performance of the 
predictors on residue stream influenced by burst noise. The gaussian distribution was 
replaced by short bursts (across five sample values) of signal with an amplitude 
approximately as large those of the residue stream. These burst were added to the 
residue stream at two instances, a quarter and three-quarters way through each file.  

The results achieved by the predictors were plotted in Fig. 9 and 10. In this test, 
the NLMS performed significantly better than the EN and SLFN as the linear f(.) in 
the SLFN was unable to cope with the high amplitude errors, whereas the recurrent 
EN propagated past values from the bursts into succeeding iterations of the algorithm, 
adversely affecting its performance. The lowest MSE was achieved by the PN (the 
‘missing’ points were when its MSE was 0). 
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Figure 9: MSE achieved by residues in burst noise robustness test. 
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Figure 10: MAE achieved by residues in burst noise robustness test. 
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achieved by the predictors were comparable. In cases where the results obtained is 
above MSV (e.g. FIR and NLMS for file td5), the inaccuracy of the received 
transmission would be unacceptable. 

4 Hardware Failure 
When evaluating systems, especially those afixed at remote sites, fault tolerance to 
hardware errors is vital. The predictors were tested for two types of hardware failures, 
as described below. 
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4.1 Input Receptor Failure 

A test was simulated to mimic the case where an input receptor is spoilt and none of 
the values sent to the node contribute to the prediction process. In this test, the first 
input node was forced to fail by setting all values propagated from the first node to 
the next stage (affects all PE in the next layer the of the neural network predictors) to 
zero.  

From the results in Fig. 11, the plots for RLSL and SLFN overlap the MSV. This 
means that the error was similar to the difference between the original residue values, 
thus the accuracy of the restored stream is doubtful. The best performance was by the 
MLFN, followed by the NLMS. The FIR performed badly, while the PN and GRNN 
achieved MSE and MAE values of zero.  
 
 

Figure 11: MSE achieved by residues in hardware input failure robustness test. 

 
 

Figure 12: MAE achieved by the hardware input failure robustness test. 
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4.2 Multiplier Failure 

As the artificial neural network architecture relies heavily on employing multipliers to 
integrate the weight coeffieints of the connections between the layers in its decision 
making process, this test was devised to simulate a multiplier error. This was 
undertaken by setting a weight coefficient from the first input node to the first node in 
the next layer is set to zero. Unlike the test for the input node failure, this test only 
affects one of the weighted inputs to the first PE of the layer immediately following  
the input layer, i.e. the first hidden layer for multi-layer architectures, or the output 
layer for single-layer architectures. The results achieved are given in Fig. 13 and 14.  
 

 Figure 13: MSE achieved by residues for hardware multiplier failure robustness test  

 
 

Figure 14: MAE achieved by residues for hardware multiplier failure robustness test 
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From the plots, the MLFN produced acceptable results, the GRNN was better 
with an average MSE of below 1.E+02, and the PN achieved MSE=0. The accuracy 
of the RLSL and SLFN under this test is unacceptable as their plots are very close to 
(or overlapping) the source MSV, and the remaining predictors performed even more 
poorly with higher MSE values.  

From both the hardware tests, it was found that the errors recorded by the linear 
predictors were close to or higher than the MSV and MAV, making them very 
susceptible to hardware failures. On the other hand, good tolerance was exhibited by 
three of the neural network architectures (i.e. PN, GRNN and MLFN), while the 
SLFN and EN performed poorly. 

5 Conclusion 
This paper has evaluated the fault tolerance of several neural networks and linear 
architectures that were implemented as predictors in a lossless compression system 
for telemetry data from small remote sensors. Tests were undertaken two types of 
transmission noise and two types of hardware failures. Results of the comparisons, in 
terms of MSE and MAE, show that in most cases, the neural networks, such as the 
PN, GRNN and MLFN, were more fault tolerant than the linear predictors, with 
exception to the RLSL that performed well.  

In the interest of robust testing, telemetry test files of different sizes and 
distribution, were used to evaluate the predictors. The compression ability of the 
predictors have to be taken into account in advocating a suitable predictor for the 
lossless compression system. The performance of the predictors, in terms of the 
compression ratio (CR) achieved for each of the test files is given in Fig. 15.  

Figure 15: Compression ratio (CR) performance achieved by predictors for each test 
file, using the different predictors. 

From the results, it is observed that the RLSL provides the best compression, 
followed by SLFN, MLFN and GRNN. The PN, which displayed the best fault 
tolerance results in the earlier experiments, achieved very low CR, as with the FIR. 
The hardlimiter activation in the PN is capable of producing only binary output, thus 
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it was insensitivity to small variations in the data stream, making it both fault tolerant 
but also a poor predictor. Another factor vital to the lossless system under study 
would be for real-time application. The average processing time taken by each 
predictor, as well as a summary of the predictor configurations, is given in Table 2 
below. From the table, it is found that the GRNN has the best processing speed, albeit 
having to be trained more often as its optimum SB is small (but its training time for 
each block is a fraction of the other neural networks).  

 
Network size  

& (activation function) 
Training 

parameters 
 
Predictor 

input hidden output SB rule 

Avg.  
Time  

(s) 
FIR 5 - 1 - Fixed 

 coefficients 
0.24 

NLMS 5 - 1 1 adaptive  
NLMS 

0.33 

RLSL 2 2 (lattice) 1 1 adaptive  
RLSL 

0.36 

PN 2 - 1 (step) 50 Perceptron / Rosenblatt 
Rule 

0.22 

SLFN 4  1 (linear) 1500 LMS 0.22 
MLFN 2 1 (linear) 1 (sigmoid) 1000 backpropagation 0.24 
GRNN 5 5 1 50 function approximation 0.21 
EN 5 2 (sigmoid) 1 (linear) 50 backpropagation 0.43 

Table 2: Configuration, Training and Processing Time achieved by the chosen 
predictors 

Consolidating the results of the fault tolerance tests for noise and hardware 
failures, the compression performance achieved, average processing time and network 
configuration, it would appear that among the test architectures, the best choice of a 
predictor for lossless data compression would be the GRNN.  Other good performers 
include the neural MLFN and classical adaptive RLSL, although the RLSL has a 
relatively lower processing speed and may not be as suitable for real-time 
applications. It is also noteworthy that it has been shown that in certain cases, multi-
level / multi-stage compression techniques can, not only dramatically increase 
compression performance, but may also significantly increase processing speed [13], 
[14].  

When implementing neural predictors, it is worthy to note that neural networks 
are generally capable of better pattern recognition and data compression than linear 
networks. To realize the extent of this potential, however, a sufficient number of PEs 
would be required. The neural architectures chosen in this paper are very small, in 
order to minimize complexity and overheads, in order to simulate very small circuitry 
for remote sensors. Processing time of a larger network on parallel neural hardware 
would not be significantly greater, but training and simulation time would be affected. 
This option is not explored here, as the aim of this paper was to provide relative 
comparisons with the linear predictors using networks of approximately similar low 
complexity, with the benefit of minimal cost and size of architecture for use in small 
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supplementary systems, such as an add-on module to the transmitter. In the interest of 
extending this work, experiments with neural and non-neural hybrid networks, 
optimized so as to produce efficient processing and lower overheads, may be 
attempted to realize further compression of telemetry data. 
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