
Fault Tolerant Neural Predictors for Compression of
Sensor Telemetry Data

Rajasvaran Logeswaran
(Multimedia University, Malaysia

loges@mmu.edu.my)

Abstract: When dealing with remote systems, it is desirable that these systems are capable of
operation within acceptable levels with minimal control and maintenance. In terms or
transmission of telemetry information, a prediction-based compression scheme has been
introduced. This paper studies the influence of some typical transmission and network errors on
the encoded residue stream produced by a number of predictors used in the scheme, with the
intention of identifying the more fault tolerant architecture that may be preferred as predictors.
Classical linear predictors such as FIR and lattice filters, as well as a variety of feedforward and
recurrent neural networks are studied. The residue streams produced by these predictors are
subjected to two types of commonly occurring transmission noise, namely gaussian and burst.
The noisy signal is decoded at the receiver and the magnitude of error, in terms or MSE and
MAE are compared. Hardware failures in the input receptor and multiplier are also simulated
and the performance of various predictors is compared. Overall, it is found that even small low-
complexity neural networks are more resilient to faults due to the characteristics of their
parallel architecture and distributed storage/processing characteristics.

Keywords: Data compression, error tolerance, neural networks, predictors
Categories: H.4.3, E.2, I.5.4

1 Introduction

In dealing with remote systems, sensor telemetry data is vital for monitoring the
performance of the systems, ranging from the operations of remote installation, to
micro-systems within. Data compression offers an effective way to reduce the size of
the transmitted information, through reduction / removal of data redundancy, with the
additional benefit of reduced storage space requirements. Predictive compression is
popular when dealing with real-time data that is highly correlated in commonly
known distribution patterns, as is the case with most telemetry data from remote
sensors, due to their high compression performance [1]-[3]. The difference between
most successive values in the telemetry data for a particular sensor is generally small,
thus, emphasis is therefore placed on lossless (rather than lossy) compression to
preserve accuracy.

In typical predictor-based lossless systems, it is the residues, i.e. difference
between the original input and predicted values, which are transmitted to the receiver.
Predictors decorrelate the input stream such that the distribution of the residues is
almost white gaussian [4]. A good predictor produces residues that are of significantly
lesser magnitude than the source samples, thus exacting feasible compression. At the
receiver, the original values are restored by adding the received residues to values
generated by an identical predictor at the receiver. To further improve the

Journal of Universal Computer Science, vol. 12, no. 10 (2006), 1439-1454
submitted: 19/6/06, accepted: 25/10/05, appeared: 28/10/06 © J.UCS

compression performance, an additional lossless encoder may be used to further
decorrelate the residue stream [3]-[6].

As residues are usually of small magnitude, they tend to be more susceptible to
transmission and network errors due to their low signal to noise ratio (SNR). This
paper is concerned with the choosing of error and fault tolerant predictors in order to
maintain a high level of accuracy even when the compression system is subjected to
common errors and disruptions, especially so when such problems are faced at remote
sites where maintenance is both difficult (if not impossible) and costly (in terms of
finance as well as in trusting the accuracy of the received values). The actual results
in a practical system is also dependent on the error correction coding used to protect
the transmission, but as there is a broad selection of them, such coding will not be
included in the scope of this paper. The aim is to minimize the effect of error even
before the application of such error correction coding.

A prediction-based scheme has been introduced for lossless compression of
satellite launch vehicle (SLV) telemetry data, and has been shown to produce good
compression performance in terms of speed and compression ability [1]. The scheme
utilizes classical predictors such as the finite impulse response (FIR) and recursive
lattice filters, which are popular choices for data compression [2], [5]. Neural
networks are known for their error tolerance and graceful performance degradation
properties in the presence of noise and network failures, and have also been
successfully used in many pattern recognition schemes in the past [3]. Lately, neural
networks have also been introduced as predictors for lossless compression in this
scheme [1].

This paper examines the performance of a number of different classical and
neural network architectures, with the purpose of comparing the error and fault
tolerance capabilities of the predictors when subjected to some typical transmission
conditions. A selected subset of tests are applied to the predictors, using a number of
telemetry data sets or varying sizes, distribution and sourced from different remote
sensors. The results and discussions in this paper is aimed in assisting in determining
the choice of predictors for use in compression and transmission of telemetry data, as
well as possibly in broader applications in other areas where low-cost low-complexity
fault tolerant predictive devices are beneficial.

2 Predictors

Several architectures are chosen from the classical and neural network predictors for
testing. In order to provide comparisons at the approximately similar level of
complexity, and to minimize resource overheads and size of the implemented remote
system, small topologies are chosen based on past experience and ongoing research
[3], [6], [7]. The configuration and training information of the various predictors
examined is discussed below and summarized in Table 2. The last column of the table
provides the average estimated processing time for the predictors to compress the test
data files, as a measure of the performance of the predictors in terms of speed. Such
performance issues are discussed in the Conclusions section.

1440 Logeswaran R.: Fault Tolerant Neural Predictors ...

2.1 Classical Predictors

Two classical architectures in three different strategies are chosen from existing
popular implementations [2] for testing.

2.1.1 Finite Impulse Response (FIR) Filter

The architecture of the FIR filter is such that it uses delays on its inputs to enable
immediate past values to be used at each iteration. Taking advantage of this, it can be
set up as a predictor, with the order of the predictor corresponding to the number of
past values used to predict the present value.

Figure 1: pth-order Finite Impulse Response (FIR) predictor. The output is the

residue (e).

An example of the structure of a pth-order FIR predictor is given in Fig. 1 [2]. The
predicted value (X̂n) of the nth input (Xn), is the sum of the product of the past p input
values and their corresponding coefficients (ci), as given by (1). The residues (en) are
calculated using (2) and the FIR predictor is implemented as a fixed model using
fixed coefficients, given by (3), throughout the prediction process.

∑
=

−⋅=
p

i
inin XcX

1

ˆ (1)

nnn XXe ˆ−= (2)

54321 4774ˆ
−−−−− +−+−= nnnnnn XXXXXX (3)

FIR Filter

Z-1

Z-1

Z-1

Xn c1

Xn-1 *

c2

Xn-2 *

cp

Xn-p *

Σ
+

-

X̂ n Σ
en

Delays Weight
coefficients

Residue Current
input

Predicted
input

Past
inputs

1441Logeswaran R.: Fault Tolerant Neural Predictors ...

The second strategy for testing is to use a fully adaptive FIR implemented with
the normalised least mean squares (NLMS) algorithm [1], to adaptively adjust the
coefficients to the telemetry data input patterns.

2.1.2 Recursive Lattice Filter

Recursive lattice filters have been shown to produce very good compression
performance as predictors [3]-[6]. These filters have lattices (layers) that provide
forward and backward prediction, as shown in Fig. 2. The adaptive p-lattice structure
in Fig. 2 uses the recursive least squares lattice (RLSL) algorithm with a priori
estimation errors and error feedback for prediction. The main feature of this high
performance algorithm is that it handles adaptive forward prediction (ηp), adaptive
backward prediction (βp) as well as adaptive joint-process estimation (ξp). These
processes are implemented through direct order updating of the forward reflection
coefficients (κf,p), backward coefficients (κb,p) and joint-process regression
coefficients (κp), to produced the predicted values. Detailed description of the
algorithm and related algorithms, such as the Gradient Adaptive Lattice (GAL), can
found in [2] and will not be discussed here.

Figure 2: pth-order Recursive Least Squares Lattice (RLSL) with a-priori feedback

2.2 Neural Network Predictors

Certain properties of the artificial neural networks render them useful as predictors
[2]. These properties include: the ability to self-learn, flexible internal organization,
the ability to acquire knowledge even from noisy data through generalization, error
tolerance to data inconsistencies, and parallel distributed processing and information
storage that gives it speed as well as allows it to degrade gracefully when network
failure occurs.

Z-1 Σ

Σ

κ*
b,1(n-1)

Σ

Σ

Z-1

X(n)

η0(n)

β1(n)

η1(n)

βp-2(n) βp-1(n)

ηp-1(n)

κ*
f,1(n-1)

κ*
b,p(n-1)

κ*
f,p(n-1)

Σ
d(n)

+

−
Σ

+
−

κ0(n-1)

Σ
+

−

κ∗
1(n-1) κ∗

p-2(n-1)

Σ
+

−

κ∗
p-1(n-1)

ξ1(n) ξ2(n) ξp-1(n) ξp(n)

Stage 1 Stage p
ηp-2(n) Forward

prediction

Backward
prediction

Joint-process
estimation

Current
input

1442 Logeswaran R.: Fault Tolerant Neural Predictors ...

2.2.1 Training and Test Data

Block-adaptive training is implemented for the neural networks, as in [8]. The reason
for this is to allow the network to adapt to input patterns, and at the same time
minimize the likelihood of overfitting the predictor during training. This simple
scheme curbs the potential of the problem of network rigidity, which reduces the
network’s generalization capabilities and adversely affecting prediction performance,
without costly overheads involved in implementing more complex algorithms.

The block-adaptive method involves sequentially partitioning the input into
blocks of a fixed number of samples. The first 20% of samples in a block are used to
train the network, and the remainder would be predicted using the trained network.
Different block sizes (SB) are used in training to determine the most appropriate sizes
for each architecture. Targeted performance goals are set to determine sufficient
training (i.e. with accuracy of MSE=0.1 or until 10,000 epochs). As the networks are
targeted for real-time performance, prior knowledge of the telemetry data distribution
pattern is not used during training. The training set consists of only the first 20% of
values of the current block. The training size (i.e. 20%) was chosen as a compromise
to provide sufficient training to start the prediction by anticipating part of the input
pattern of the block, but not too large that it significantly reduces the compression
performance and increases processing time. Prediction is implemented by using the
past p values to predict the current value, and then calculating and transmitting the
residue.

Six test files are used in this paper, derived from the various sensors of a satellite
launch vehicle (SLV). The telemetry data obtained from the various sensors provide
varying types of telemetry readings, distributions, input patterns and file sizes,
allowing the proposed system to be tested in a more robust manner to mimic the
general capabilities expected by implementing the system for general telemetry
compression. Some of the characteristics of the test data used are given in Table 1.

Test
File

File
Size

(bytes)

Total
no.
of

symbols

Sampling
rate

(symbols
per sec.)

No. of
distinct
symbols

Max.
freq.
of a

symbol

Max.
value
of a

symbol

Source
Entropy
(bits per
symbol)

td1 252305 28324 520 157 7131 66.135 3.128
td2 139571 11631 65 12 7484 1070.249 1.017
td3 55365 6778 65 43 1438 76.105 4.644
td4 131841 16052 130 191 3985 50.894 5.387
td5 184774 17232 65 240 349 4960.000 7.614
td6 74915 8662 65 6 2840 124.250 2.121

Table 1: Characteristics of the test data

Three categories of neural networks with five different architectures are briefly
discussed below. All the networks possess only one output node as only one value is
predicted at each iteration. The basic layout of the architecture used, training scheme
and some transmission issues are detailed in [8]. The configurations specified in this
paper were found, experimentally, to be optimum for the small architectural

1443Logeswaran R.: Fault Tolerant Neural Predictors ...

requirements and test sets used, and may be used as a guide in determining the
optimum settings for application on other data.

2.2.2 Standard Feedforward Networks

Three well known artificial neural network architectures are implemented in this
category, namely the perceptron network (PN), the single-layer feedforward network
(SLFN) and the multi-layer feedforward network (MLFN). Fig. 3 shows the
architecture of the PN and the SLFN, both sharing a similar general architecture.
However, the PN uses the hardlimiter or step function activation threshold (or transfer
function, f(.)) in the output layer, whereas the SLFN was set up to use the linear
function (as it performed better for the test sets than the conventional sigmoid
function). Training (setting the weights and biases) of the PN is undertaken via the
Rosenblatt / Perceptron rule [9]. Training of the 4th-order SLFN is by means of the
least mean squares (LMS) algorithm [10]. Note that by convention, input nodes are
not counted as a layer as they are not processing elements (PE) and have no activation
functions. They do however determine the number of past values to be used during
the prediction. As such, the 4th-order SLFN actually has 4 input nodes and 2 layers if
the input layer is to be counted.

Figure 3: pth-order single-layer single-output Perceptron Network (PN) predictor.
Similar architecture used by Single Layer Feedforward Network (SLFN) predictor, by
replacing the step-function of f(.) with other activation functions

The architecture of the MLFN, also popularly known in some literature as the
multi-layer perceptron (MLP), is given in Fig. 4. Trained using the backpropagation
algorithm [10], the MLFN was set up to use the linear and sigmoid f(.) for the hidden
and output layers, respectively.

Xn-p

Xn-2

Xn-1 Z-1

Z-1

Z-1

Xn

 Σ f(•)
nX̂

w1

w2

wp

b

PE

Current
input Delays

Past
inputs Weights Bias Predicted

input

1444 Logeswaran R.: Fault Tolerant Neural Predictors ...

Figure 4: A 3rd-order 3-layer Multi Layer Feedforward Network (MLFN) predictor
with two middle layers of 4 and 6 processing elements (PE), respectively. The output
is the residue (e)

2.2.3 Radial Basis Network

The general architecture of a radial basis network is that of a feedforward network,
but using radial basis functions (such as the gaussian distribution) instead of the
standard activation functions (e.g. linear, sigmoid). To test this type of network, the
popular two-layer generalized regression neural network (GRNN) [7], [11],
commonly used as a function approximator, was set up with a gaussian and linear f(.)
in the hidden and output layers, respectively. This neural network predicts by
projecting the training window approximation function across SB. This
unconventional prediction method works well for data that is relatively stable or has
repetitive properties.

2.2.4 Recurrent Network

A recurrent network is one which feeds some or all of one or more layers’ output back
into itself or into one (or more) of the preceding layers. This allows the output of each
iteration to influence the outcome of consequent iterations. The two-layer Elman
network (EN) [12] implemented has a recurrent linear hidden layer and a sigmoidal
output layer, as shown in Fig. 5. This type of network is known to have the ability to
recognize spatial and temporal structures in the input [9].

Xn-2

Xn-1

Xn-3

Xn Z-1

Z-1

Z-1
Σ+

−

 en

represents
in Fig.3

W1
W2

nX̂

Current
input

Delays

Past
inputs

Hidden layers weights Predicted
input Residue

1445Logeswaran R.: Fault Tolerant Neural Predictors ...

Figure 5: A 3rd-order 2-layer Elman Network (EN) predictor with two feedback nodes
in the recurrent hidden layer. Outputs residue (e).

3 Influence Of Noise On Predictor Performance

External sources, as well as the medium used for transmission or storage, can cause
the influence of noise on the transmmitted residue. The two common types of noise
that affect transmission are random and burst noise. An example of random noise is
the motion of electrons in the material, which is also referred to as thermal noise. On
the other hand, high amplitude impulse interference caused by situations such as the
occurrence of large electromagnetic waves, e.g. a flash of lightning, is known as burst
noise.

3.1 Performance With Gaussian Noise

To test the predictors, are random white noise was generated to fit the gaussian
distribution G(0,1) and added to the transmitted residue stream. The average noise
applied was targeted at approximately 30% signal power, with signal-to-noise ratio
(SNR) approximately 15 dB, as given in Fig. 6. A low SNR may signify a noisy
transmission, and also small residues (i.e. good prediction).

The test is implemented as follows:
(a) the receiver is trained using clean samples,
(b) the trained receiver forced to predict using the noisy input,
(c) the error between the original source data and the restored data (i.e. predicted

value + noisy residue) is measured,
(d) the mean squared error (MSE) is calculated.

The process is repeated for each test file, using the different predictors. The
results obtained are given in Fig. 7. For relative comparison, the mean square value
(MSV) of the source data is plotted on the graph. The mean absolute error (MAE) and
its corresponding mean absolute value (MAV) of the source is plotted in Fig. 8 for
further comparison of the performance of the architectures on the different test files.

Xn-3

Xn-2

Xn-1 Z-1

Z-1

Z-1
en

Z-1

Z-1

+
−

represents
in Fig. 3 w1

w2

nX̂

Σ
nX̂

Xn

Past
inputs

Delays Current
input

Weights of the
recurrent layer Predicted input Residue

1446 Logeswaran R.: Fault Tolerant Neural Predictors ...

Figure 6: Signal-to-Noise-Ratio (SNR) achieved by residues with gaussian white
noise, for each test file.

Figure 7: Mean Squared Error (MSE) achieved by residues for gaussian noise
robustness test.

-50

0

50

100

150

200

 td1 td2 td3 td4 td5 td6

FIR NLMS
RLSL PN
SLFN MLFN
GRNN EN
(target)

SN
R

 (d
B

)

Test Files

1.E-02

1.E+01

1.E+04

1.E+07

1.E+10

1.E+13

1.E+16

1.E+19

td1 td2 td3 td4 td5 td6
Test Files

M
SE

FIR NLMS
RLSL PN
SLFN MLFN
GRNN EN
(MSV)

1447Logeswaran R.: Fault Tolerant Neural Predictors ...

Figure 8: Mean Absolute Error (MAE) achieved by residues in gaussian noise
robustness test, for each file.

Analysing the results from the three graphs, the following observations may be
made. Even with large SNR, the traditional FIR and NLMS performed badly in the
white noise test. The best MSE result was achieved by the PN, but its high SNR
signifies poor compression ability and insensitivity to the input patterns. The GRNN
and RLSL had similar performance, with the GRNN being slightly better in terms of
its MAE values. Overall, among the tested predictors, the best white noise tolerance
was achieved by the MLFN. The MLFN residues were of lower magnitude than the
noise. Note that since negative SNR values could not be plotted on the logarithmic y-
axes, these MLFN points are ‘missing’ from the figures. In general, the test concluded
that the artificial neural networks were able to achieve better fault tolerance
capabilities than the FIR and NLMS. From the MAE values in Fig. 8, there is
evidence to suggest that the artificial neural networks are more adaptive and tolerant
to transmission white noise.

3.2 Performance With Burst Noise

A similar process of testing was conducted to evaluate the performance of the
predictors on residue stream influenced by burst noise. The gaussian distribution was
replaced by short bursts (across five sample values) of signal with an amplitude
approximately as large those of the residue stream. These burst were added to the
residue stream at two instances, a quarter and three-quarters way through each file.

The results achieved by the predictors were plotted in Fig. 9 and 10. In this test,
the NLMS performed significantly better than the EN and SLFN as the linear f(.) in
the SLFN was unable to cope with the high amplitude errors, whereas the recurrent
EN propagated past values from the bursts into succeeding iterations of the algorithm,
adversely affecting its performance. The lowest MSE was achieved by the PN (the
‘missing’ points were when its MSE was 0).

1.E-02
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09

td1 td2 td3 td4 td5 td6

FIR NLMS
RLSL PN
SLFN MLFN
GRNN EN
(MAV)

Test Files

M
A

E

1448 Logeswaran R.: Fault Tolerant Neural Predictors ...

Figure 9: MSE achieved by residues in burst noise robustness test.

1 .E -04

1 .E -02

1 .E + 00

1 .E + 02

1 .E + 04

1 .E + 06

td 1 td 2 td 3 td 4 td 5 td 6

T est F ile s

M
A

E

F IR N LM S
R LS L P N
S L F N M LF N
G R N N E N
(M A V)

Figure 10: MAE achieved by residues in burst noise robustness test.

From both the test cases for noise, it can be concluded that the performance
achieved by the predictors were comparable. In cases where the results obtained is
above MSV (e.g. FIR and NLMS for file td5), the inaccuracy of the received
transmission would be unacceptable.

4 Hardware Failure
When evaluating systems, especially those afixed at remote sites, fault tolerance to
hardware errors is vital. The predictors were tested for two types of hardware failures,
as described below.

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

 td1 td2 td3 td4 td5 td6
Test Files

M
SE

 FIR NLMS RLSL
PN SLFN MLFN
GRNN EN (MSV)

1449Logeswaran R.: Fault Tolerant Neural Predictors ...

4.1 Input Receptor Failure

A test was simulated to mimic the case where an input receptor is spoilt and none of
the values sent to the node contribute to the prediction process. In this test, the first
input node was forced to fail by setting all values propagated from the first node to
the next stage (affects all PE in the next layer the of the neural network predictors) to
zero.

From the results in Fig. 11, the plots for RLSL and SLFN overlap the MSV. This
means that the error was similar to the difference between the original residue values,
thus the accuracy of the restored stream is doubtful. The best performance was by the
MLFN, followed by the NLMS. The FIR performed badly, while the PN and GRNN
achieved MSE and MAE values of zero.

Figure 11: MSE achieved by residues in hardware input failure robustness test.

Figure 12: MAE achieved by the hardware input failure robustness test.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

td1 td2 td3 td4 td5 td6

FIR NLMS RLSL
PN SLFN MLFN
GRNN EN (MAV)

M
A

E

Test Files

1.E+03

1.E+05

1.E+07

1.E+09

1.E+11

td1 td2 td3 td4 td5 td6
Test Files

M
SE

FIR NLMS RLSL
PN SLFN MLFN
GRNN EN (MSV)

1450 Logeswaran R.: Fault Tolerant Neural Predictors ...

4.2 Multiplier Failure

As the artificial neural network architecture relies heavily on employing multipliers to
integrate the weight coeffieints of the connections between the layers in its decision
making process, this test was devised to simulate a multiplier error. This was
undertaken by setting a weight coefficient from the first input node to the first node in
the next layer is set to zero. Unlike the test for the input node failure, this test only
affects one of the weighted inputs to the first PE of the layer immediately following
the input layer, i.e. the first hidden layer for multi-layer architectures, or the output
layer for single-layer architectures. The results achieved are given in Fig. 13 and 14.

 Figure 13: MSE achieved by residues for hardware multiplier failure robustness test

Figure 14: MAE achieved by residues for hardware multiplier failure robustness test

 td2 td3 td4 td5 td6

Test Files

M
A

E

FIR NLMS RLSL
PN SLFN MLFN
GRNN EN (MAV)

1.E-02
1.E-01

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06

td1

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

td1 td2 td3 td4 td5 td6
Test Files

M
SE

FIR NLMS RLS L
P N SLFN MLFN
G RNN EN (M S V)

1451Logeswaran R.: Fault Tolerant Neural Predictors ...

From the plots, the MLFN produced acceptable results, the GRNN was better
with an average MSE of below 1.E+02, and the PN achieved MSE=0. The accuracy
of the RLSL and SLFN under this test is unacceptable as their plots are very close to
(or overlapping) the source MSV, and the remaining predictors performed even more
poorly with higher MSE values.

From both the hardware tests, it was found that the errors recorded by the linear
predictors were close to or higher than the MSV and MAV, making them very
susceptible to hardware failures. On the other hand, good tolerance was exhibited by
three of the neural network architectures (i.e. PN, GRNN and MLFN), while the
SLFN and EN performed poorly.

5 Conclusion
This paper has evaluated the fault tolerance of several neural networks and linear
architectures that were implemented as predictors in a lossless compression system
for telemetry data from small remote sensors. Tests were undertaken two types of
transmission noise and two types of hardware failures. Results of the comparisons, in
terms of MSE and MAE, show that in most cases, the neural networks, such as the
PN, GRNN and MLFN, were more fault tolerant than the linear predictors, with
exception to the RLSL that performed well.

In the interest of robust testing, telemetry test files of different sizes and
distribution, were used to evaluate the predictors. The compression ability of the
predictors have to be taken into account in advocating a suitable predictor for the
lossless compression system. The performance of the predictors, in terms of the
compression ratio (CR) achieved for each of the test files is given in Fig. 15.

Figure 15: Compression ratio (CR) performance achieved by predictors for each test
file, using the different predictors.

From the results, it is observed that the RLSL provides the best compression,
followed by SLFN, MLFN and GRNN. The PN, which displayed the best fault
tolerance results in the earlier experiments, achieved very low CR, as with the FIR.
The hardlimiter activation in the PN is capable of producing only binary output, thus

0

2

4

6

8

10

12

14

td1 td2 td3 td4 td5 td6
Test Files

C
R

FIR NLMS RLSL PN

SLFN MLFN EN G RNN

1452 Logeswaran R.: Fault Tolerant Neural Predictors ...

it was insensitivity to small variations in the data stream, making it both fault tolerant
but also a poor predictor. Another factor vital to the lossless system under study
would be for real-time application. The average processing time taken by each
predictor, as well as a summary of the predictor configurations, is given in Table 2
below. From the table, it is found that the GRNN has the best processing speed, albeit
having to be trained more often as its optimum SB is small (but its training time for
each block is a fraction of the other neural networks).

Network size

& (activation function)
Training

parameters

Predictor

input hidden output SB rule

Avg.
Time

(s)
FIR 5 - 1 - Fixed

 coefficients
0.24

NLMS 5 - 1 1 adaptive
NLMS

0.33

RLSL 2 2 (lattice) 1 1 adaptive
RLSL

0.36

PN 2 - 1 (step) 50 Perceptron / Rosenblatt
Rule

0.22

SLFN 4 1 (linear) 1500 LMS 0.22
MLFN 2 1 (linear) 1 (sigmoid) 1000 backpropagation 0.24
GRNN 5 5 1 50 function approximation 0.21
EN 5 2 (sigmoid) 1 (linear) 50 backpropagation 0.43

Table 2: Configuration, Training and Processing Time achieved by the chosen
predictors

Consolidating the results of the fault tolerance tests for noise and hardware
failures, the compression performance achieved, average processing time and network
configuration, it would appear that among the test architectures, the best choice of a
predictor for lossless data compression would be the GRNN. Other good performers
include the neural MLFN and classical adaptive RLSL, although the RLSL has a
relatively lower processing speed and may not be as suitable for real-time
applications. It is also noteworthy that it has been shown that in certain cases, multi-
level / multi-stage compression techniques can, not only dramatically increase
compression performance, but may also significantly increase processing speed [13],
[14].

When implementing neural predictors, it is worthy to note that neural networks
are generally capable of better pattern recognition and data compression than linear
networks. To realize the extent of this potential, however, a sufficient number of PEs
would be required. The neural architectures chosen in this paper are very small, in
order to minimize complexity and overheads, in order to simulate very small circuitry
for remote sensors. Processing time of a larger network on parallel neural hardware
would not be significantly greater, but training and simulation time would be affected.
This option is not explored here, as the aim of this paper was to provide relative
comparisons with the linear predictors using networks of approximately similar low
complexity, with the benefit of minimal cost and size of architecture for use in small

1453Logeswaran R.: Fault Tolerant Neural Predictors ...

supplementary systems, such as an add-on module to the transmitter. In the interest of
extending this work, experiments with neural and non-neural hybrid networks,
optimized so as to produce efficient processing and lower overheads, may be
attempted to realize further compression of telemetry data.

Acknowledgements

The author would like to thank M. U. Siddiqi and C. Eswaran for their valuable
contributions towards this research work.

References

[1] Logeswaran, R. and Eswaran, C. (1999) Neural network based lossless coding schemes
for telemetry data. Proc. IEEE Intl. Geosci. and Remote Sens. Symp., 4, 2057-2059.

[2] Haykin, S. (1996). Adaptive Filter Theory, 3rd. edition, Prentice Hall, New Jersey.

[3] Dony, R.D. (1995) Neural network approaches to image compression. Proc. of the IEEE,
83(2), 288-303.

[4] Stearns, S.D. (1995) Arithmetic coding in lossless waveform compression. IEEE Trans.
on Sig. Process., 43(8), 1874-1879.

[5] McCoy, J.W., Magotra, N. and Stearns, S. (1994) Lossless predictive coding.. IEEE
Midwest Symp. on Circuits and Sys., 927-930.

[6] Logeswaran, R. and Eswaran, C. (1999) Effect of encoders on the performance of lossless
two-stage data compression schemes. IEE Electron. Lett., 35(18), 1515-1516.

[7] Logeswaran, R. (2000) Application of Generalised Regression Neural Networks in
lossless data compression. Systems and Control : Theory and Applications. WSES Press,
Greece, 269-274.

[8] Logeswaran, R. (2001) Transmission issues of artificial neural networks in a prediction-
based lossless data compression scheme. IEEE Intl. Conf. on Telecomm., 1, 578-583.

[9] Demuth, H. and Beale, M. (1996). Neural Network Toolbox (for use with MATLAB).
MathWorks, Massachusetts.

[10] Widrow, B. and Lehr, M.A. (1990) 30 Years of adaptive neural networks : Perceptron,
Madaline and Backpropagation. Proc. of IEEE, 78(9), 1415-1442.

[11] Wasserman, P. D. (1993). Advanced Methods in Neural Computing. Van Nostrand
Reinhold, New York , 155-161.

[12] Elman, J. L. (1990) Finding structure in time. Cognitive Sc., 14, 179-211.

[13] Logeswaran, R. (2002) Enhancement of Lempel-Ziv coding using a predictive pre-
processor scheme for data compression. Advances in Info. Sci. and Soft Computing.
WSEAS Press, Greece, 238-243.

[14] Logeswaran, R. and Eswaran, C. (2001) Performance survey of several lossless
compression algorithms for telemetry application. Intl. J. of Comp. and Appl., 22(1), 1-9.

1454 Logeswaran R.: Fault Tolerant Neural Predictors ...

