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Abstract: We propose a novel discipline for programming stream functions and for
the semantic description of stream manipulation languages based on the observation
that both general and causal stream functions can be characterized as coKleisli arrows
of comonads. This seems to be a promising application for the old, but very little
exploited idea that if monads abstract notions of computation of a value, comonads
ought to be useable as an abstraction of notions of value in a context. We also show
that causal partial-stream functions can be described in terms of a combination of a
comonad and a monad.
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1 Introduction

Following the seminal work of Moggi [1991] and Wadler [1992], it has become
standard in functional programming and semantics to analyze various notions of
computation of a value as monads. Recently, however, there has also been discus-
sion about the need for mathematical abstractions more permissive than monads
to get a better uniform grip on the diverse notions of impure function one can
encounter in programming. One particular variety of such notions of function are
the various classes of signal or flow functions that are central in functional reac-
tive programming, intensional languages and synchronous dataflow languages.
In this connection, Hughes [2000] has promoted arrows as an abstraction espe-
cially handy for programming with signals or flows. His idea has been taken up
in functional reactive programming [Nilsson et al. 2002] and there exists by now
not only an arrow library in Haskell but even specialized syntax [Paterson 2001].
The same concept has also emerged in semantics in the work by Power and
Robinson [1997] under the name of Freyd categories.

There exists however also a considerably more standard and elementary cat-
egorical concept of comonad which should be useable to capture notions of value
in a context. This fact has received some attention [Brookes and Geva 1992,
Kieburtz 1999, Lewis et al. 2000], but the examples put forward have typically
not been very interesting (e.g., the product comonad does not really give one
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more than the exponent monad) and in general comonads have not found exten-
sive use in semantics or programming. We claim that this is unfair and argue that
non-trivial comonads are quite relevant for signal or flow based programming and
for the semantics of corresponding specialized programming languages. In this
paper, which reports on the progress of an ongoing project, we study streams as
signals in discrete time and show that both general stream functions and those
that are causal in the sense that the present of the output signal can only depend
on the past and the present of the input signal are representable via comonads.
(Importantly, it is NOT the well-known streams comonad that can be used here.)
In addition, we also study partial streams (streams with undefined elements) as
a model of clocked signals and demonstrate that causal partial-stream functions
are representable via a distributive law of a comonad over a monad.

To our best knowledge, our comonadic approach to stream function pro-
gramming is new, which is surprising given how elementary it is. Workers in
functional reactive programming and synchronous dataflow languages have pro-
duced a number of papers exploiting the final coalgebraic structure of streams,
e.g., [Caspi and Pouzet 1998, Kieburtz 2000, Barbier 2002], and a number which
analyze various classes of stream functions as arrows, e.g., [Hughes 2000,
Paterson 2001, Paterson 2003, Nilsson et al. 2002], but apparently nothing
on stream functions and comonads. The same is true about works in universal
coalgebra [Rutten 2000, Rutten 2003]. Thus we hope that it will prove to be a
useful tool in both programming and semantics and especially in the study of se-
mantics of intensional languages like Lucid [Aschroft and Wadge 1985] and syn-
chronous dataflow languages like Lustre and Lucid Synchrone [Halbwachs 1991,
Caspi and Pouzet 1996, Pouzet 2001].

The paper is organized as follows. In Section 2, we recapitulate monads and
their use as an abstraction of notions of computation with an effect as well as
Hughes’s arrow type constructors, also known as Freyd categories. In Section 3,
we introduce comonads. Comonads for representing general and causal stream
functions are the topic of Section 4. In Section 5, we show that causal partial-
stream functions are elegantly described via a combination of a comonad and a
monad. We conclude in Section 6. To keep the presentation as readable as pos-
sible for a programmer, we give most definitions only in the functional language
Haskell, avoiding categorical notation.

Throughout the paper we will tacitly assume that pure functions are inter-
preted in a Cartesian closed base category such as Set or some model of para-
metric polymorphism. In the contexts where some coproducts, initial algebras
or final coalgebras are explicitly named, these are assumed to exist too.
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2 Monads and arrows

We begin with a brief recapitulation of the monad-based approach to represent-
ing effectful functions [Moggi 1991, Wadler 1992, Benton et al. 2002].

A monad (in extension form) on a category C is given by a mapping T : |C| →
|C| together with a |C|-indexed family η of maps ηA : A → TA of C (unit), and
an operation −� taking every map k : A → TB in C to a map k� : TA → TB of
C (extension operation) such that

1. for any k : A → TB, k� ◦ ηA = k,

2. ηA
� = idTA,

3. for any k : A → TB, � : B → TC, (�� ◦ k)� = �� ◦ k�.

Monads are a construction with many remarkable properties, but the cen-
tral one for programming and semantics is that any monad (T, η,−�) defines
a category CT where |CT | = |C| and CT (A, B) = C(A, TB), (idT )A = ηA,
� ◦T k = �� ◦ k (Kleisli category) and an identity on objects functor J : C → CT

where Jf = ηB ◦ f for f : A → B.
In the monadic approach to effectful functions, the underlying object map-

ping T of a monad is seen as an abstraction of the kind of effect considered and
assigns to any type A a corresponding type TA of “computations of values” or
“values with an effect”. An effectful function from A to B is identified with a
map A → B in the Kleisli category, i.e., a map A → TB in the base category.
The unit of the monad makes it possible to view any pure function as an effect-
ful one while the extension operation provides composition of effect-producing
functions. Of course monads capture the structure that is common to all notions
of effectful function. Operations specific to a particular type of effect are not
part of the corresponding monad structure.

There are many standard examples of monads in semantics. Here is a brief
list of examples. In each case, the object mapping T is a monad.

– TA = Maybe A + 1, error (undefinedness), TA = A + E, exceptions,

– TA = E ⇒ A, readable environment,

– TA = List A = µX.1 + A × X , non-determinism,

– TA = S ⇒ A × S, state,

– TA = (A ⇒ R) ⇒ R, continuations,

– TA = µX.A + (U ⇒ X), interactive input,

– TA = µX.A + V × X ∼= A × ListV , interactive output,
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– TA = µX.A + FX , the free monad over F ,

– TA = νX.A + FX , the free completely iterative monad over F [Aczel et al.
2003].

(By µ and ν we denote the least and greatest fixpoints of functors.)
In Haskell, monads are implemented as a type constructor class with two

member functions (in the Prelude):

class Monad t where
return :: a -> t a
(>>=) :: t a -> (a -> t b) -> t b

mmap :: Monad t => (a -> b) -> t a -> t b
mmap f c = c >>= (return . f)

Here, return is the Haskell name for the unit and >>= (pronounced ’bind’) is
the extension operation of the monad. Haskell also supports a special syntax for
defining Kleisli arrows, but in this paper we will avoid it.

In Haskell, every monad is strong in the sense that carries an additional op-
eration, known as strength, with additional coherence properties. This happens
because the extension operations of Haskell monads are necessarily internal.

mstrength :: Monad t => t a -> b -> t (a, b)
mstrength c b = c >>= \ a -> return (a, b)

The maybe monad is Haskell-implemented as follows.

data Maybe a = Just a | Nothing

instance Monad Maybe where
return a = Just a
Just a >>= k = k a
Nothing >>= k = Nothing

The exponent monad is implemented as follows.

newtype Exp e a = Exp (e -> a)

instance Monad (Exp e) where
return a = Exp (\ _ -> a)
Env f >>= k = Exp (\ e -> case k (f e) of

Exp f’ -> f’ e)

In the case of these two monads the operations characteristic to the particular
effects are raising and handling an error and consulting and local modification
of the environment.
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raise :: Maybe a
raise = Nothing

handle :: Maybe a -> Maybe a -> Maybe a
Just a ‘handle‘ _ = Just a
Nothing ‘handle‘ c = c

askE :: Exp e e
askE = Exp id

localE :: (e -> e) -> Exp e a -> Exp e a
localE g (Exp f) = Exp (f . g)

Despite their generality, monads do not cater for every possible notion of
impure function. In particular, monads do not cater for stream functions, which
are the central concept in dataflow programming. In functional programming,
Hughes [2000] has been promoting what he calls arrow types to overcome this
deficiency. In semantics, the same concept was invented for the same reason by
Power and Robinson [1997] under the name of a Freyd category.

Informally, a Freyd category is a symmetric premonoidal category together
with an inclusion from a base category. A symmetric premonoidal category is
the same as a symmetric monoidal category except that the tensor need not
be bifunctorial, only functorial in each of its two arguments separately. The
exact definition is a bit more complicated: A binoidal category is a category
K with a binary operation ⊗ on objects of K that is functorial in each of its
two arguments. A map f : A → B of such a category is called central if the two
composites A⊗C → B⊗D agree and the two composites C⊗A → D⊗B agree for
every map g : C → D. A natural transformation is central if its components are
central. A symmetric premonoidal category is a binoidal category (K,⊗) together
with an object I and central natural transformations ρ, α, σ with components
A → A ⊗ I, (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), A ⊗ B → B ⊗ A, subject to a
number of coherence conditions. A Freyd category over a Cartesian category C
is a symmetric premonoidal category K together with an identity on objects
functor J : C → K that preserves the symmetric premonoidal structure of C on
the nose and also preserves centrality.

The basic example of a Freyd category is the Kleisli category of a strong
monad. But probably the best known and most useful example is that of stream
functions. For a base category C, the maps A → B of this category are the maps
StrA → StrB of C where StrA = νX.A × X is the type of streams over the type
A.

In Haskell, arrow type constructors are implemented by the following type
constructor class (appearing in Control.Arrow).

class Arrow r where
pure :: (a -> b) -> r a b
(>>>) :: r a b -> r b c -> r a c
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first :: r a b -> r (a, c) (b, c)

returnA :: Arrow r => r a a
returnA = pure id

second :: Arrow r => r c d -> r (a, c) (a, d)
second f = pure swap >>> first f >>> pure swap

pure says that every function is an arrow (so in particular identity arrows arise
from identity functions). (>>>) provides composition of arrows and first pro-
vides functoriality in the first argument of the tensor of the arrow category.

In Haskell, Kleisli arrows are shown to be an instance of arrows as follows
(recall that all Haskell monads are strong).

newtype Kleisli t a b = Kleisli (a -> t b)

instance Monad t => Arrow (Kleisli t) where
pure f = Kleisli (return . f)
Kleisli k >>> Kleisli l = Kleisli ((>>= l) . k)
first (Kleisli k) = Kleisli (\ (a, c) -> mstrength (k a) c)

Stream functions are declared to be arrows in the following fashion. (For
reasons of readability, we introduce our own list and stream types with our own
names for their nil and cons constructors. Also, although Haskell does not distin-
guish between inductive and coinductive types, we want to make the distinction.)

data Stream a = a :< Stream a -- coinductive

mapS :: (a -> b) -> Stream a -> Stream b
mapS f (a :< as) = f a :< mapS f as

zipS :: Stream a -> Stream b -> Stream (a, b)
zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs

unzipS :: Stream (a, b) -> (Stream a, Stream b)
unzipS abs = (mapS fst abs, mapS snd abs)

newtype SF a b = SF (Stream a -> Stream b)

instance Arrow SF where
pure f = SF (mapS f)
SF k >>> SF l = SF (l . k)
first (SF k) = SF (uncurry zipS . (\ (as, ds) -> (k as, ds)) . unzipS)

Similarly to monads, every useful arrow type constructor has some operation
specific to it. The main such operation for stream functions are the initialized
unit delay operation ‘followed by’ of intensional and synchronous dataflow lan-
guages and the unit anticipation operation ‘next’ that only exists in intensional
languages. These are really the cons and tail operations of streams.
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fbySF :: a -> SF a a
fbySF a0 = SF (\ as -> a0 :< as)

nextSF :: SF a a
nextSF = SF (\ (a : as) -> as)

3 Comonads

While Freyd categories or arrow types are certainly general and cover signifi-
cantly more notions of impure functions than monads, some non-monadic impu-
rities should be explainable in more basic terms, namely via comonads, which are
the dual of monads. This has been suggested [Brookes and Geva 1992, Kieburtz
1999, Lewis et al. 2000], but there have been few useful examples. The goal
of this paper is to show that stream functions and causal stream functions are
excellent new such examples.

A comonad on a category C is given by a mapping D : |C| → |C| together
with a |C|-indexed family ε of maps εA : DA → A (counit), and an operation
−† taking every map k : DA → B in C to a map k† : DA → DB (coextension
operation) such that

1. for any k : DA → B, εB ◦ k† = k,

2. εA
† = idDA,

3. for any k : DA → B, � : DB → C, (� ◦ k†)† = �† ◦ k†.

Analogously to Kleisli categories, any comonad (D, ε,−†) defines a category CD

where |CD| = |C| and CD(A, B) = C(DA, B), (idD)A = εA, � ◦D k = � ◦ k†

(coKleisli category) and an identity on objects functor J : C → CD where Jf =
f ◦ εA for f : A → B.

Comonads should be fit to capture notions of “value in a context”; DA would
be the type of contextually situated values of A. A context-relying function from
A to B would then be a map A → B in the coKleisli category, i.e., a map
DA → B in the base category. The function εA : DA → A discards the context
of its input whereas the coextension k† : DA → DB of a function k : DA → B

essentially duplicates it (to feed it to k and still have a copy left).
Some examples of comonads are the following. Each object mapping D below

is a comonad:

– DA = A × E, the product comonad,

– DA = StrA = νX.A × X , the streams comonad,

– DA = νX.A × FX , the cofree comonad over F ,
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– DA = µX.A×FX , the cofree recursive comonad over F [Uustalu and Vene
2002].

Accidentally, the pragmatics of the product comonad is the same as that of
the exponent monad: The Kleisli arrows of the exponent monad are the maps
A → (E ⇒ B) of the base category, which are of course in a natural bijection with
the maps A×E → B that are the coKleisli arrows of the product comonad. But
in general, monads and comonads capture different notions of impure function.
We defer the discussion of the pragmatics of the streams comonad until the next
section.

In Haskell, comonads are implemented as follows.

class Comonad d where
counit :: d a -> a
cobind :: (d a -> b) -> d a -> d b

cmap :: Comonad d => (a -> b) -> d a -> d b
cmap f = cobind (f . counit)

CoKleisli arrows are shown to be an instance of arrows as follows.

newtype CoKleisli d a b = CoKleisli (d a -> b)

instance Comonad d => Arrow (CoKleisli d) where
pure f = CoKleisli (f . counit)
CoKleisli k >>> CoKleisli l = CoKleisli (l . cobind k)
first (CoKleisli k) = CoKleisli (pair (k . cmap fst) (snd . counit))

The product comonad is implemented as follows.

data Prod e a = a :& e

instance Comonad (Prod e) where
counit (a :& _) = a
cobind k d@(_ :& e) = k d :& e

askP :: Prod e a -> e
askP (_ :& e) = e

localP :: (e -> e) -> Prod e a -> Prod e a
localP g (a :& e) = (a :& g e)

The streams comonad is implemented as follows.

data Stream a = a :< Stream a -- coinductive

instance Comonad Stream where
counit (a :< _) = a
cobind k d@(_ :< as) = k d :< cobind k as

nextS :: Stream a -> a
nextS (_ :< (a’ :< _)) = a’
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4 Comonads for general and causal stream functions

All necessary preparations made, we are now ready to discuss the representation
of general and causal stream functions via comonads.

Streams (discrete time signals) are naturally isomorphic to functions from
natural numbers: StrA = νX. A×X ∼= (µX. 1+X) ⇒ A = Nat ⇒ A. In Haskell,
this isomorphism is implemented as follows:

data Stream a = a :< Stream a -- coinductive

str2fun :: Stream a -> Int -> a
str2fun (a :< as) 0 = a
str2fun (a :< as) (i + 1) = str2fun as i

fun2str :: (Int -> a) -> Stream a
fun2str f = fun2str’ f 0

fun2str’ f i = f i :< fun2str’ f (i + 1)

Stream functions StrA → StrB are thus in natural bijection with maps
Nat ⇒ A → Nat ⇒ B, which, in turn, are in natural bijection with maps
(Nat ⇒ A) × Nat → B, i.e., FunArgA → B where FunArgA = (Nat ⇒ A) × Nat.
Hence, for general stream functions, a value from A in context is a stream (sig-
nal) over A together with a natural number identifying a distinguished stream
position (the present time). Not surprisingly, the object mapping FunArg is a
comonad (in fact, it is an instance of the “state-in-context” comonad considered
by Kieburtz [2000]) and, what is of crucial importance, the coKleisli identities
and composition as well as the coKleisli lifting of this comonad agree with the
identities and composition of stream functions (which are really just function
identities and composition) and with the lifting of functions to stream functions.
In Haskell, the comonad structure and the interpretation of coKleisli arrows as
stream functions are implemented as follows:

data FunArg a = (Int -> a) :@ Int

instance Comonad FunArg where
counit (f :@ i) = f i
cobind k (f :@ i) = (\ i’ -> k (f :@ i’)) :@ i

runFA :: (FunArg a -> b) -> Stream a -> Stream b
runFA k as = runFA’ k (str2fun as :@ 0)

runFA’ k d@(f :@ i) = k d :< runFA’ k (f :@ (i + 1))

The comonad FunArg can also be presented without resorting to natural num-
bers to deal with positions. The idea for this equivalent alternative presentation
is simple: given a stream and a distinguished stream position, the position splits
the stream up into a list, a value of the base type and a stream (corresponding
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to the past, present and future of the signal). Put mathematically, there is a
natural isomorphism (Nat ⇒ A)×Nat ∼= StrA×Nat ∼= (ListA×A)×StrA where
ListA = µX. 1 + (A × X) is the type of lists over the type A. This gives us
an equivalent comonad LVS (LVS for ‘list-value-stream’) for representing stream
functions with the following structure (we use snoc-lists instead of cons-lists to
reflect the fact that the analysis order of the past of a signal will be the reverse
direction of time):

data List a = Nil | List a :> a -- inductive

data LV a = List a := a

data LVS a = LV a :| Stream a

instance Comonad LVS where
counit (az := a :| as) = a
cobind k d = cobindL d := k d :| cobindS d

where cobindL (Nil := a :| as) = Nil
cobindL (az’ :> a’ := a :| as) = cobindL d’ :> k d’

where d’ = az’ := a’ :| (a :< as)
cobindS (az := a :| (a’ :< as’)) = k d’ :< cobindS d’

where d’ = az :> a := a’ :| as’

runLVS :: (LVS a -> b) -> Stream a -> Stream b
runLVS k (a’ :< as’) = runLVS’ k (Nil := a’ :| as’)

runLVS’ k d@(az := a :| (a’ :< as’))
= k d :< runLVS’ k (az :> a := a’ :| as’)

The conversions between the two comonads are obvious and Haskell imple-
mented as follows:

fa2lvs :: FunArg a -> LVS a
fa2lvs (f :@ 0) = Nil := a’ :| as’

where (a’ :< as’) = fun2str f
fa2lvs (f :@ (i + 1)) = az :> a := a’ :| as’

where (az := a :| (a’ :< as’)) = fa2lvs (f :@ i)

lvs2fa :: LVS a -> FunArg a
lvs2fa (Nil := a :| as) = str2fun (a :< as) :@ 0
lvs2fa (az’ :> a’ := a :| as) = f :@ (i + 1)

where (f :@ i) = lvs2fa (az’ := a’ :| (a :< as))

We can now program various stream functions as coKleisli arrows of FunArg

or LVS. For example, delay, summation and differencing can be programmed as
follows:

fbyFA :: a -> FunArg a -> a
fbyFA a (f :@ 0) = a
fbyFA _ (f :@ (i + 1)) = f i

sumFA :: Num a => FunArg a -> a

1319Uustalu T., Vene V.: Signals and Comonads



sumFA (f :@ 0) = f 0
sumFA (f :@ (i + 1)) = f (i + 1) + sumFA (f :@ i)

diffFA :: Num a => FunArg a -> a
diffFA (f :@ 0) = f 0
diffFA (f :@ (i + 1)) = f (i + 1) - f i

All these stream functions are causal, in that the present of the output signal
only depends on the past and present of the input signal. It is also possible to
program non-causal stream functions such as anticipation or the compressing
function which needs the first 2 ∗ n elements of the input stream to produce the
first n elements of the output stream.

nextFA :: FunArg a -> a
nextFA (f :@ i) = f (i + 1)

compressFA :: FunArg a -> (a, a)
compressFA (f :@ i) = (f (2 * i), f (2 * i + 1))

Could we ban non-causal functions? Yes, the comonad LVS is easy to modify
so that exactly those stream functions can be represented that are causal. All
that needs to be done is to remove from the comonad the factor of the future. We
are left with the object mapping LV (LV for ‘list-value’) where LVA = ListA×A =
(µX. 1 + A×X)×A ∼= µX. A× (1 + X), i.e., a non-empty list type constructor.
This is a comonad as well and again the counit and the coextension operation
are just correct in the sense that they deliver the desirable coKleisli identities,
composition and lifting. In fact, the comonad LV is the cofree recursive comonad
of the functor Maybe (we refrain from giving the definition of a recursive comonad
here, but one can be found in Uustalu and Vene [2002]). It may be useful to notice
that the type constructor LV carries a monad structure too, but the Kleisli arrows
of that monad have nothing to do with causal stream functions!

In Haskell, the non-empty list comonad is defined as follows:

instance Comonad LV where
counit (_ := a) = a
cobind k d@(az := _) = cobindL k az := k d

where cobindL k Nil = Nil
cobindL k (az :> a) = cobindL k az :> k (az := a)

runLV :: (LV a -> b) -> Stream a -> Stream b
runLV k (a’ :< as’) = runLV’ k (Nil := a’ :| as’)

runLV’ k (d@(az := a) :| (a’ :< as’))
= k d :< runLV’ k (az :> a := a’ :| as’)

Relying on this comonad, we can easily program pointwise application, delay,
summation and differencing essentially as before.

1320 Uustalu T., Vene V.: Signals and Comonads



fbyLV :: a -> (LV a -> a)
fbyLV a0 (Nil := _) = a0
fbyLV _ ((_ :> a’) := _) = a’

sumLV :: Num a => (LV a -> a)
sumLV (Nil := a) = a
sumLV ((az’ :> a’) := a) = a + sumLV (az’ := a’)

diffLV :: Num a => (LV a -> a)
diffLV (Nil := a) = a
diffLV (_ :> a’) := a) = a - a’

It is easy to notice that the above definition of summation is very inefficient:
if the corresponding stream function is applied to some stream of numbers, the
same partial sums will be computed over and over again. Luckily, a remedy is
available. The recursiveness of the comonad LV means that it is acceptable to
define the n-th element of the output stream (the present of the output signal) in
terms of the elements at positions 0..n (the past and present of the input signal)
of the input stream plus the elements at positions 0..(n−1) of the output stream
(the past of the output signal). I.e., one can manufacture a map LVA → B from
a map List(A×B)×A → B. (This is almost to say that it suffices to have a map
LV(A × B) → B, i.e., List(A × B) × (A × B) → B, but not quite: such map is
only fine if it discards the B portion of the source, that is, factors in the obvious
fashion through List(A×B)×A.) In terms of circuits, a recursive specification is a
feedback loop with a mandatory delay. In Haskell, the corresponding combinator
may be defined as follows.

rec :: (List (a, b) -> a -> b) -> (LV a -> b)
rec k d = k abz a

where (abz := (a, _)) = cobind (pair counit (rec k)) d

This definition is not structurally recursive, so it is not a priori wellformed.
But it can be shown to be equivalent to the following structurally recursive
definition [Uustalu and Vene 2002].

rec k d = b where (_ := (_, b)) = rec’ k d

rec’ :: (List (a, b) -> a -> b) -> (LV a -> LV (a, b))
rec’ k (Nil := a) = Nil := (a, k Nil a)
rec’ k (az’ :> a’ := a) = abz := (a, k abz a)

where (abz’ := ab’) = rec’ k (az’ := a’)
abz = abz’ :> ab’

With the help of the recursion combinator, summation can redefined as fol-
lows.

sumLV = rec sumbase

sumbase :: Num a => List (a, a) -> a -> a
sumbase Nil a = a
sumbase (_ :> (_, s)) a = a + s
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Efficient implementations of recursive specifications are obtained by their
direct interpretation as stream functions. This accomplished by the following
definition.

runRec :: (List (a, b) -> a -> b) -> Stream a -> Stream b

{-
runRec k = run (rec k)
-}

runRec k (a’ :< as’) = runRec’ k Nil a’ as’

runRec’ k abz a (a’ :< as’)
= b :< runRec’ k (abz :> (a, b)) a’ as’

where b = k abz a

A remarkable feature of recursive specifications is that they can also be com-
posed directly, as witnessed by the following code.

compbase :: (List (a, b) -> a -> b)
-> (List ((a, b), c) -> (a, b) -> c)

-> List (a, (b, c)) -> a -> (b, c)
compbase k l abcz a = (b, c)

where b = k (mapL (\ (a, (b, c)) -> (a, b)) abcz) a
c = l (mapL (\ (a, (b, c)) -> ((a, b), c)) abcz) (a, b)

We finish this section by pointing out that analogously to causal stream
functions, one might consider anticausal stream functions, i.e., stream functions
where the n-th element of the output stream (the present of the output signal)
can only depend on the elements at positions n.. of the given input stream
(the present and future of the input signal). The comonad for anticausal stream
functions is the streams comonad Str which we discussed as an example of a
comonad in the previous section and which is very canonical by being the cofree
comonad over the identity functor. But in real life we are more interested in
causal than anticausal stream functions!

5 A distributive law for causal partial-stream functions

We shall now show that the comonadic approach works also for causal functions
transforming partial streams (used in synchronous dataflow languages to model
clocked signals). A partial stream is a stream that may have empty positions to
indicate the pace of the clock of the signal wrt. the base clock. Causal partial-
stream functions turn out to be describable in terms of a distributive combination
of a comonad and a monad considered, e.g., in Brookes and Geva [1992], Power
and Watanabe [2002].

Given a comonad (D, ε,−†) and a monad (T, η,−�) on a category C, a dis-
tributive law of the former over the latter is a natural transformation λ with com-
ponents DTA → TDA subject to four coherence conditions. A distributive law of
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D over T defines a category CD,T where |CD,T | = |C|, CD,T (A, B) = C(DA, TB),
(idD,T )A = ηA ◦ εA, � ◦D,T k = l� ◦λB ◦ k† for k : DA → TB, � : DB → TC (call
it the biKleisli category), with inclusions to it from both the coKleisli category
of D and Kleisli category of T .

In Haskell, the distributive combination is implemented as follows.

class (Comonad d, Monad t) => Dist d t where
dist :: d (t a) -> t (d a)

newtype BiKleisli d t a b = BiKleisli (d a -> t b)

instance Dist d t => Arrow (BiKleisli d t) where
pure f = BiKleisli (return . f . counit)
BiKleisli k >>> BiKleisli l = BiKleisli ((>>= l) . dist . cobind k)
first (BiKleisli k) = BiKleisli (\ d ->

mstrength (k (cmap fst d)) (snd (counit d))

For partial-stream functions, it is appropriate to combine the causal stream
functions comonad LV with the error monad Maybe given by MaybeA = 1 + A.
There is a distributive law which takes a partial list and and a partial value (the
past and present of the signal according to the base clock) and, depending on
whether the partial value is undefined or defined, gives back the undefined list-
value pair (the present time does not exist according to the signal’s own clock)
or a defined list-value pair, where the list is obtained from the partial list by
leaving out its undefined elements (the past and present of the signal according
to its own clock). In Haskell, this distributive law is encoded as follows.

filterL :: List (Maybe a) -> List a
filterL Nil = Nil
filterL (az :> Nothing) = filterL az
filterL (az :> Just a) = filterL az :> a

instance Dist LV Maybe where
dist (az := Nothing) = Nothing
dist (az := Just a) = Just (filterL az := a)

The biKleisli arrows of the distributive law are interpreted as partial-stream
functions as follows.

runLVM :: (LV a -> Maybe b) -> Stream (Maybe a) -> Stream (Maybe b)
runLVM k (a’ :< as’) = runLVM’ k Nil a’ as’

runLVM’ k az Nothing (a’ :< as’)
= Nothing :< runLVM’ k az a’ as’

runLVM’ k az (Just a) (a’ :< as’)
= k (az := a) :< runLVM’ k (az :> a) a’ as’

The ’when’ operation, used in synchronous dataflow languages to put a sig-
nal on a slower clock (by omitting its value on certain ticks of its clock), is
implemented as follows.
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whenLVM :: LV (a, Bool) -> Maybe a
whenLVM (_ := (a, False)) = Nothing
whenLVM (_ := (a, True)) = Just a

A nice demonstration of the combination of LV and Maybe at work is the
example of the sieve of Eratosthenes. This function is the composite of the
function taking a partial stream over the unit type 1 to the enumeration of
natural numbers ≥ 2 of the same definedness pattern and of the function sieving a
given partial stream wrt. divisibility by its elements. The output of an important
auxiliary partial-stream function is equal at all its positions to the first seen
defined element of the input.

In terms of the operations of the LV comonad, Maybe monad and the dis-
tributive law between them, the relevant biKleisli arrows are programmed as
follows:

ini :: LV a -> Maybe a
ini (Nil := a) = return a
ini ((az’ :> a) := _) = ini (az’ := a)

sieve :: LV Int -> Maybe Int
sieve (Nil := a) = return a
sieve d@((_ :> _) := _) = dist (cobind k d) >>= sieve

where k d = let a = counit d in
ini d >>= \ a0 ->
if a ‘mod‘ a0 /= 0 then return a else Nothing

nats2 :: LV () -> Maybe Int
nats2 (Nil := _) = return 2
nats2 ((az’ :> a) := _) = nats2 (az’ := a) >>= \ i -> return (i + 1)

eratosthenes :: LV () -> Maybe Int
eratosthenes d = dist (cobind nats2 d) >>= sieve

With a bit of rearrangement, the above definitions can be written without
resorting to the definitions of the type constructors LV and Maybe and instead
using the operations ’raise’ and ’followed-by’:

ini :: LV a -> Maybe a
ini d = return (counit d) ‘fbyLV‘ cobind ini d

atini :: LV a -> Maybe Bool
atini d = return True ‘fbyLV‘ cobind (const (return False)) d

sieve :: LV Int -> Maybe Int
sieve d = atini d >>= \ b ->

if b then return (counit d) else dist (cobind k d) >>= sieve
where k d = let a = counit d in

ini d >>= \ a0 ->
if a ‘mod‘ a0 /= 0 then return a else raise

nats2 :: LV () -> Maybe Int
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nats2 d = return 2 ‘fbyLV‘ cobind k d
where k d = nats2 d >>= \ i -> return (i + 1)

eratosthenes :: LV () -> Maybe Int
eratosthenes d = dist (cobind nats2 d) >>= sieve

This style is of course hard to write manually, but could be generated by a
distributive-law-based interpreter of a synchronous dataflow language.

6 Conclusion and future work

We have shown that both general and causal stream functions are characterized
as coKleisli arrows of comonads in a way which is intuitive and reflects the essence
of the respective programming paradigms. Moreover, functions on causal partial
streams, used in synchronous dataflow languages to model clocked signals, are
describable in terms of a distributive combination of a comonad and a monad.

We are confident that the approach of this paper extends to timed sig-
nals, but would like to work out the details. Another line to pursue will be
to develop a complete semantic description of a (non-causal) intensional lan-
guage along the lines of Lucid [Aschroft and Wadge 1985] or a (causal) syn-
chronous dataflow language such as Lustre [Halbwachs 1991] or Lucid Synchrone
[Caspi and Pouzet 1996, Pouzet 2001] to assess the benefits of our approach.
Here we have already obtained some very promising concrete results which will
be reported in a separate paper.
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