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Abstract: The .NET Common Language Runtime (CLR) aims to provide interop-
erability among code written in several different languages, but porting scripting lan-
guages to it, so that scripts can run natively, has been hard. This paper presents our
approach for running scripts written in Lua, a scripting language, on the .NET CLR.

Previous approaches for running scripting languages on the CLR have focused on ex-
tending the CLR, statically generating CLR classes from user-defined types in the
source languages. They required either language extensions or restrictions on the lan-
guages’ dynamic features.

Our approach, on the other hand, focused on keeping the syntax and semantics of the
original language intact, while giving the ability to manipulate CLR objects. We imple-
mented a translator of Lua virtual machine bytecodes to CLR bytecodes. Benchmarks
show that the code our translator generates performs better than the code generated
by compilers that use the previous approaches.
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1 Introduction

The Microsoft .NET Framework provides interoperability among several different
languages, through a Common Language Runtime [Meijer and Gough, 2002].
The .NET CLR specification is an ISO and ECMA standard [Microsoft, 2002].
Microsoft has a commercial implementation of the CLR for its Windows plat-
form, and non-commercial implementations already exist for several other plat-
forms [Stutz, 2002, Ximian, 2005]. Some languages already have compilers for
the CLR, and compilers for other languages are in several stages of develop-
ment [Bock, 2005].

Lua [Ierusalimschy, 2003, Ierusalimschy et al., 1996] is a scripting language
that is easy to embed, small, fast, and flexible. It is interpreted and dynamically
typed, has a simple syntax, and has several reflexive facilities. Lua also has
1 Supported by CAPES.
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first-class functions, lexical scoping, and coroutines. It is widely used in the
development of computer games.

Scripting languages are often used for connecting components written in other
languages (“glue” code). They are also used for building prototypes, and as
languages for configuration files. The dynamic nature of these languages lets
them use components without previous type declarations and without the need
for a compilation phase. Although they lack static type checks, they perform
extensive type checking at runtime and provide detailed information in case of
errors. Ousterhout argues that the combination of these features can increase
developer productivity by a factor of two or more [Ousterhout, 1998].

This paper presents an approach for running Lua scripts natively on the
CLR, by translating bytecodes of the Lua Virtual Machine to bytecodes of the
Common Intermediate Language. The Common Intermediate Language, or CIL,
is the underlying language of the CLR. Our approach leaves the syntax and
semantics of the Lua scripts intact, while achieving adequate performance. The
bytecode translator is called Lua2IL.

Porting scripting languages to the CLR has been hard. ActiveState has
tried to build Perl and Python compilers, but abandoned both projects years
ago [ActiveState, 2000, Hammond, 2000]. Smallscript Inc. has been working on
a Smalltalk compiler for the CLR since 1999 [Smallscript Inc., 2000], but there
was no version of it available on February 2005.

A common trend among those projects is their emphasis on extending the
CLR. They map user-defined types in the source languages to new types in the
CLR, and then generate these types during compilation. The scripting languages
mentioned in the previous paragraph are object-oriented, and their compilers
attempt to map classes in those languages to CLR classes. The emphasis on
extending the CLR makes porting harder, as dynamic creation and modification
of types is a common feature of scripting languages, Lua included. To provide
a mapping from user-defined types in the source language to CLR types, the
compilers have to either restrict dynamic features of the source languages or
extend the syntax and semantics of the languages to allow the definition of user-
defined types that cannot be extended at runtime.

Our approach, on the other hand, emphasizes the full implementation of the
features of the original language, without impairing its ability as a consumer.
We create a runtime system for the scripting language (Lua, in our case) on
top of the CLR, adding the features of the language that the CLR does not
support. This isolates the language from the rest of the CLR, however, so we
also implement an interface layer (a bridge) that gives full access to CLR types
to the scripts. This layer has the capabilities of a full CLS consumer.

The Common Language Specification (CLS) is a subset of the CLR specifica-
tion that establishes a set of rules for language interoperability [Microsoft, 2002,
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CLI Partition I Section 7.2.2]. Compilers that generate code capable of using
CLS-compliant libraries are called CLS consumers. Compilers that can produce
new libraries or extend existing ones are called CLS extenders (any language
that can define new types is an extender, in essence). A full CLS consumer must
be able to call any CLS-compliant method or delegate, even methods with names
that are keywords of the language; to call distinct methods of a type with the
same signature but from different interfaces; to instantiate any CLS-compliant
type, including nested types; to read and write any CLS-compliant property;
and access any CLS-compliant event. All of these features are supported by the
interface layer of Lua2IL, and are available to Lua scripts.

The rest of this paper is structured as follows: Section 2 describes the byte-
code translator and the interface layer. Section 3 presents some related work and
performance evaluations, and Section 4 presents some conclusions and future de-
velopments.

2 Translating Lua scripts to the CLR

Translating a Lua script to the Common Language Runtime involves several
issues, the actual translation of the bytecodes being just one of them. First there
should be a way to represent Lua types using the types in the CLR; we cover this
on Section 2.1. Then there is the implementation of the VM instructions (the
translation itself), covered in Section 2.2. Then there are the features of the Lua
language that the Lua runtime environment implements: coroutines and weak
tables. We cover coroutines in Section 2.3 and weak tables in Section 2.4. Finally,
Lua scripts need to manipulate other CLR objects (instantiate them, access their
fields, call their methods, and so on). Section 2.5 details the implementation of
Lua wrappers for other CLR objects.

2.1 Representing Lua types in the CLR

A naive approach to represent Lua types in the CLR would be to map Lua num-
bers2, strings, booleans and nil directly to their respective CLR types (double,
string, bool, and null). Two new CLR types would represent tables (associa-
tive arrays) and functions. The advantage is that CLR code written in other
languages would work with Lua types directly, and vice-versa.

There is a severe disadvantage, though: Lua is dynamically typed, so the
code that Lua2IL produces would have to use the lowest common denominator
among CLR types, the object type. Most operations would require a type check
(with the isinst instruction of the CLR) and a type cast. The code would have

2 Lua numbers are floating point numbers with double precision.
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to box and unbox all numbers and booleans operate on them, wasting memory
and worsening performance.

Lua2IL does not use this naive representation. Internally, the code that it
generates deals with instances of the LuaValue structure. This structure has
two fields, O, of type LuaReference, and N, of type double. LuaValue instances
with the O field set to null represent Lua numbers. Subclasses of LuaReference
represent all the other Lua types.

Instances of LuaString, which use a CLR string internally, represent Lua
strings. Instances of LuaTable represent tables, implementing a C# version of
the algorithm that the Lua interpreter uses. This algorithm breaks a table in an
array part and a hash part, to optimize the use of tables as arrays.

Each Lua function gets its own class, subclassed from a common ancestor,
the LuaClosure class. The classes have a Call virtual method that executes
the function (the translated bytecodes). Lua functions are first class values, so
the actual functions are instances of their respective classes. The main body
of the script is also a function, represented by a class named MainFunction.
Instantiating this class and then calling its Call method runs the script.

Booleans and nil are a special case. There is a singleton object for each
boolean value (the singleton instances of TrueClass and FalseClass). The same
happens with nil (the singleton instance of NilClass).

Userdata are a Lua type that represents data from a host application or a
library. The LuaWrapper class represents userdata, and instances of this class
are proxies to CLR objects. We cover this class in more detail in Section 2.5.

The representation we use does not need type casts, as there are common
denominators among all types (LuaValue and LuaReference). To check if a
value is a number, for example, the code just checks whether its O field is null.
If the O field is null, the number is stored in the N field. As another example,
the code to index a value just checks if its O field is not null, then calls the
get Item method of the O field. If the value does not support this operation, the
implementation of this operation in the value’s class throws an exception (the
Lua interpreter would flag an error in this case).

2.2 Translation of the bytecodes

When Lua2IL translates a Lua script (previously compiled to Lua Virtual Ma-
chine bytecodes), it first reads the script and builds an in-memory tree structure
of it. Each function the script defines is a node of this tree, and the body of
the script is the root. Lua2IL walks this tree, in preorder, compiling each node
to a subclass of LuaClosure. The end result is a library containing all those
subclasses. For example, take the following Lua script:

function foo()
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local nested = function()

...

end

...

end

function bar()

...

end

When read, this will generate a tree with the body as root, functions foo

and bar as its children, and function nested as child of function foo. Each of
the nodes of this tree will be compiled to a subclass of LuaClosure.

Calls to Lua functions do not use the standard CLR parameter passing mech-
anism. When Lua2IL compiles a call to a Lua function, it has no way of knowing
how many parameters there are in the function being called, nor how many
values it will return (Lua functions can return multiple values). One possible
way to pass parameters to Lua functions would be using an array, with return
values collected using another array. The downside is that two arrays must be
instantiated and filled in every function call, so we used an alternative way.

This alternative way is to have a Lua stack, an auxiliary stack parallel to
the CLR execution stack. Lua2IL uses the Lua stack for parameter passing and
collecting return values (the CLR stack still keeps track of funcion calls and
returns). Each function receives the Lua stack when it is called, along with how
many arguments it is receiving, and returns how many return values it pushed
on the stack. For example, a function foo calling another function bar with
10 and 3 as arguments would push both arguments to the stack, then call bar
passing the stack and the number 2 (for two arguments). If bar wants to return
the values 3 and 1, it would push them into the stack and return the number 2
(for two return values).

Lua functions also use the Lua stack to store their local variables, instead
of using CLR locals. This is required by our implementation of lexical closures.
The code does not use strict stack discipline when operating on locals, however.
For example, an addition operation of two locals gets their values directly from
their stack positions, storing it in another stack position. There is no need to
push the values to the top of the stack before operating on them.

The LuaClosure class also defines a helper method that receives an array of
arguments, builds a new Lua stack, calls the function with this stack, pops the
return values, and then returns them in another array. Other CLR programs can
use this helper method as a more natural interface to Lua functions.

The Lua stack is implemented as an array of LuaValue instances. The stack
starts small and automatically grows as needed, doubling in size each time it
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is filled. The stack never shrinks, although object references are cleared as the
stack unwinds.

Using an auxiliary stack mimics the way that the Lua interpreter imple-
ments the Lua Virtual Machine, and this is part of our approach of imple-
menting a runtime system on top of the CLR. The Lua VM is register-based,
but its registers are actually virtual, mapped to positions in the Lua execution
stack [Ierusalimschy, 2002]. Parameter passing and return in the Lua interpreter
works just as described earlier in this section. The Lua stack also lets Lua2IL
reuse the interpreter’s implementation of lexical closures.

Due to the similarity between the execution models of the Lua interpreter and
of Lua2IL, we could do, for most of the Lua VM instructions, a straightforward
translation from the original ANSI C implementation of the Lua interpreter
to the Common Intermediate Language of the CLR. The translation of some
instructions is not as straightforward, though. The Lua interpreter implements
function calls, tail calls and function returns by creating and maintaining its own
activation records for each function call. Lua2IL uses the CLR stack to do this,
letting the CLR keep track of activation records for each Lua function call, as
each Lua function call is also a CLR method call.

The implementation of the function call instruction invokes the Call method
of the callee, passing the stack and number of arguments (pushed into the stack
by previous instructions). A preamble in the Call method adjusts the arguments
in the stack to the number of arguments that the function expects, then clears
the stack space that the function will use (possibly growing the stack). The
implementation of tail calls is slightly different: Lua2IL first copies the arguments
to the beginning of the stack of the caller, then invokes the Call method using
the tail call instruction of the CIL. The implementation of function return copies
the return values to the end of the caller’s stack space, then unwinds the Lua
stack and does a CIL method return.

The first prototype of Lua2IL translated each instruction as a call to a helper
method, like a threaded interpreter. The helper methods were implemented in
C#. This approach was slower, but easier to debug. After implementations of
all the VM instructions were done and debugged, we changed Lua2IL to directly
emit CIL code instead of just calling helper methods, effectively inlining those
methods. This inlining allowed a few more optimizations. Many of the Lua VM
instructions can operate on either literal values or registers. In the threaded
translator, the helper method that implemented the instruction did the tests to
see whether the operands were literals or registers. The inlined translator does
these tests at translation time, and the CIL code that it generates is specialized
to operate either on a literal or a register.

All instructions are inlined, but a few of them are partially implemented by
C# helper methods. In these cases, the inlined portion deals with the common
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case, and delegates other cases to a helper. For example, the inlined imple-
mentation of arithmetic instructions does the arithmetic operation itself when
both operands are numbers, delegating to a helper method when dealing with
operands of other types.

2.3 Coroutines

Lua supports full asymmetric coroutines [Moura et al., 2004]. A Lua coroutine is
a first-class value. During its execution, the coroutine can yield control back to its
caller at any time, including deep inside nested function calls. When a coroutine
yields, its execution is suspended. It can be later resumed from any point in
the script, even inside other coroutines. Returning from the main function of
a coroutine also yields control back to the caller, but the coroutine is marked
as dead and can no longer be resumed. If an error occurs during the execution
of a coroutine, this error is captured and returned to the caller, and then the
coroutine is marked as dead.

Lua2IL implements coroutines on top of CLR threads, using semaphores for
synchronization. Each coroutine has its own Lua stack, plus a CLR thread and
two binary semaphores. The semaphores are called resume and yield, and are
initially closed. When the script creates a coroutine, the thread of the coroutine
is started. The first action of this thread is to try to decrement its resume
semaphore, making CLR suspend it.

When another thread resumes a coroutine, it increments the resume sema-
phore of the coroutine, restarting the execution of the coroutine’s thread. Then
the caller thread decrements the yield semaphore of the coroutine, suspending
itself.

When a coroutine yields back to its caller, it increments its yield semaphore,
restarting the execution of the caller thread. Then the coroutine decrements
its resume semaphore, suspending itself. When the coroutine returns (finishes
executing), it increments its yield semaphore, again restarting the caller thread,
then the coroutine is flagged as terminated. Any exception occurring during
execution of a coroutine is trapped and terminates the coroutine.

The downside of this implementation is the overhead caused by context
switches and synchronization, as each CLR thread is an OS thread, and swap-
ping among them involves a full context switch. This overhead is not present
in the coroutine implementation of the Lua interpreter. However, this is the
only way of implementing coroutines on the CLR using managed code (that
is, in a portable way). A native code implementation exists that uses Windows
fibers (cooperative threads), but it is not portable, it has problems interacting
with the CLR garbage collector and exception handling subsystems, and it uses
undocumented API calls [Shankar, 2003].
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2.4 Weak Tables

The Lua VM supports weak references through weak tables. A weak table may
have weak keys, weak values, or both. If a weak key or value is collected then
its pair is removed from the table. The garbage collector of the Lua interpreter
puts weak tables in a list during the mark phase; in the end of this phase the
collector traverses the tables, removes all pairs with unmarked weak references,
and then proceeds with the sweep phase of garbage collection.

The Lua2IL runtime implements weak tables by storing a CLR weak reference
to the key (or value) instead of the key itself. A CLR weak reference is an instance
of System.WeakReference; the Lua2IL runtime wraps weak keys and values with
instances of this type.

This implementation introduces overhead in every table access, unlike the
implementation the Lua interpreter uses. Besides this added overhead, the cur-
rent implementation does not remove a weak reference from the table after the
object it references is collected. The only event the CLR associates with garbage
collection is object finalization, through a Finalize method. This method adds
overhead to garbage collection (objects with this method are collected differ-
ently). Implementing a notification system on top of Finalize is possible: each
object can keep a list of the tables that have weak references to them, and the
Finalize method of each object can go through this list, removing the pairs that
contain the object. Besides the lack of elegance of this solution, it also implies
a performance hit over the whole Lua2IL runtime, as every Lua object would
have a Finalize method, even if the object is never put inside a weak table.

A better way would be if the CLR notified the weak reference when it became
invalid, or if it let applications register methods that would be executed after each
garbage collection cycle. Another possible mechanism would be the one present
in the Java Virtual Machine: associate a queue with each weak reference, and
when the reference becomes invalid it is added to this queue.

2.5 Working with CLR objects

Our approach manages to keep the syntax and semantics of the Lua language
intact. This comes with a price, though, as the scripts are isolated from the rest
of the CLR; they have no direct notion of external CLR types. But we can give
them access to these types through a layer that sits between the Lua environment
and the rest of the CLR, automatically translating Lua types to CLR types and
vice-versa, all at runtime.

This integration layer is a full CLS consumer. It lets Lua scripts manipulate
CLR objects. The scripts can get references to CLR types and use these ref-
erences to instantiate objects, then access fields of those objects and call their
methods. The scripts do all these operations with the standard Lua syntax. They
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can even pass Lua functions to methods that expect delegates, to handle events
with Lua code, for example.

Lua2IL represents types and objects from the CLR with the LuaWrapper

class, which has two other subclasses; one of them represents types, and is
responsible for object instantiation and access to static members, while the
other represents instances, and is responsible for access to instance members.
The LuaWrapper class and its subclasses have methods that implement indexing
(both to read and write values) and function invocation.

For example, an expression like obj:foo(arg1, arg2) is translated by the
Lua parser to the equivalent expression obj["foo"](obj, arg1, arg2). The
obj["foo"] subexpression emits a bytecode for an indexing operation, and
Lua2IL translates this bytecode to a call to an indexing method on obj. If
obj is a Lua table, this method returns the value stored in the table under the
"foo" key. If obj is an instance of LuaWrapper, its indexing method searches for
a method foo in the CLR object represented by obj, using the CLR reflection
API. If the search finds the method then the indexing method returns a proxy
to it, otherwise it returns nil.

Continuing the previous example, the compilation of the call to the value
returned by obj["foo"] emits a call (or tail call) bytecode, which Lua2IL trans-
lates as a call to the method Call of the proxy. The proxy’s Call method pops
the arguments from the Lua stack, converts them to the types that the CLR
method requires, and then calls it. If the method is overloaded, the proxy tries
to call each of the methods, in the order they are defined, and throws an excep-
tion if all the calls fail because of incompatible arguments.

The cost of searching for a method with the reflection API is high, so the
instances of LuaWrapper cache proxies. This cache is shared by all instances of a
same type. Proxies to overloaded methods cache the last successful method that
was called; on the next call the proxy tries this method first.

Going back to the obj["foo"] example, if foo is a field, the indexing method
of obj finds foo, using reflection, and returns the value of foo in the CLR object
represented by obj. The proxy caches the field (not its value), so the next access
does not need a new reflexive search. Properties are treated in a similar manner.
Writing to a field, like in obj.foo = bar, emits an indexing bytecode that sets
the value at the index. This is translated by Lua2IL to a call to an indexing
method that sets the value. This method finds the foo field, using reflection,
converts bar to its type, and assigns to the field. The proxy caches the foo field,
as mentioned in the previous paragraph. Writing to properties is again treated
in a similar manner.

The Lua2IL runtime automatically converts Lua functions to delegates, if a
method expects a delegate as a parameter. A script can use this to register Lua
functions as event handlers, for example. The runtime dynamically generates a
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new class that implements a method with the delegate’s signature. This method
dispatches to a Lua function. The runtime instantiates this class with the func-
tion being converted, and creates a delegate from this instance. The dynamic
classes are generated with the Reflection.Emit API and kept in a temporary,
memory-only library.

3 Related Work

During the years 1999 and 2000, Microsoft sponsored the development of a
Python compiler for the CLR, called Python for .NET [Hammond, 2000]. Python
for .NET traverses the abstract syntax tree generated by the CPython inter-
preter, emitting CIL code through the Reflection.Emit API. The implemen-
tation has some similarities to the implementation of Lua2IL: Python for .NET
defines a PyObject structure for its values, and a IPyType interface that define
what operations can be done on those values (the Lua2IL equivalents are the
LuaValue structure and LuaReference class, respectively).

Python for .NET is different from Lua2IL in the sense that it generates
CLR classes from Python classes, aided by special annotations (comments) in
the source code. Primitive types of the Python language are mapped to primi-
tive CLR types. Around 95% of the Python core is implemented, according the
author. Missing features are primitive types without a direct mapping to CLR
primitive types (arbitrary size integers, complex numbers and ellipses), and built-
in methods of Python classes, used for dynamic extension of classes and objects.
The language syntax was not modified. The development of this compiler halted
about three years ago. The last available prototype is dated April 2002, with
parts of it dated April 2000.

Perl for .NET is a Perl compiler for the CLR, and was developed by Ac-
tiveState between 1999 and 2000 [ActiveState, 2000]. The compiler works as a
back-end to the Perl interpreter, generating C# code (not CIL) that calls a Perl
runtime for its operations. The compiler also generates CLR classes from Perl
classes, but there is no information about how much of the Perl language is
covered by the compiler, and the source code for it is not available. The last
available prototype is dated June 2000, and does not work with release versions
of the CLR, only with betas.

JScript.NET is an extension of the JScript language (or EcmaScript) with a
compiler for the CLR, and is part of the Microsoft .NET Software Development
Kit. The language was extended with classes and optional type declarations. The
dynamic features of JScript are still available, although interoperation with other
CLR code is compromised if type declarations are not used: delegates must be
declared with the correct signature (including type declarations), and declared
inside a class. The code generated by the compiler uses CLR types natively,
requiring type checking and casts in every operation with dynamic typing.
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Script Description
ack Ackermann function, arguments 3 and 8
fibo Fibonacci numbers, the 30th number

random Random number generation, generate 1,000,000 numbers between
0 and 100

sieve Sieve of Eratosthenes, from 2 to 8,192, 100 runs
matrix 30 × 30 matrix multiplication, 100 runs

heapsort Heap sort on an array of 100,000 random numbers

Table 1: Scripts for the first compiler performance test

S# is a dialect of Smalltalk developed by SmallScript Corporation, and
S#.NET is a S# compiler for the CLR. According to its author, the compiler
and the language runtime are ready, but still need to be integrated with the Vi-
sual Studio.NET development environment before being released to the public.
The compiler has been under development since 1999.

IronPython is a new Python compiler for the CLR, and is being developed
by Jim Hugunin [Hugunin, 2004]. IronPython is the most similar to Lua2IL in
its approach: although it uses its own parser, written in C#, it maintains the
Python syntax, supports all of the Python core, including all of its dynamic
features, and does not generate CLR classes from Python classes. IronPython
does some aggressive optimizations on its generated code, specially if some of the
more dynamic features of Python are not used. Like the JScript.NET compiler,
it uses native CLR types whenever possible, but does not use type annotations,
and any Python function can be a delegate.

3.1 Performance Evaluation

Our first performance test is the execution of six scripts from The Great Win32
Computer Language Shootout [Bagley, 2005], mainly involving arithmetic oper-
ations, recursion, and array accesses. The goal is to evaluate the performance of
the code generated by the compilers when running the primitive operations of the
languages. A description of each test script and the arguments of its execution
is on Table 1.

We tested the Lua2IL, JScript.NET, Python for .NET and IronPython 0.6
compilers. The same scripts compiled by Lua2IL were also executed by the Lua
5.0.2 interpreter, and the same scripts compiled by Python for .NET and Iron-
Python were executed by the CPython 2.4.1 interpreter. We did not test the
Perl for .NET compiler, as it did not work with the version of the CLR we used.

The results are shown on Figure 1. The times are in seconds, and all the
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Figure 1: Results for the first performance test

scripts were run on the same machine, under the same conditions3. The CPython
interpreter is the binary distribution, available from www.python.org.

Python for .NET did not compile the matrix and heapsort scripts, even
though these scripts were syntactically correct. IronPython successfully compiled
the ack script, but it ran out of stack space during execution and crashed.
CPython also ran out of stack space during execution of this script.

The Python for .NET compiler lags behind the others, as its authors halted
the development of the compiler before writing an optimizer. Next comes the
JScript.NET compiler, penalized by the inefficient code it generates for numerical
operations. Binary operations, except addition, are computed by a generic eval-
uator object that receives a numeric code for the operation and both operands.
These evaluator objects are created in the heap, at each execution of the function,
so heavily recursive numerical code is memory-intensive and very demanding on
the garbage-collector.
3 Pentium 2.8GHz HT, with 512Mb memory, running Windows XP Professional with

version 1.1 of the .NET Common Language Runtime. The Lua interpreter was com-
piled by the Microsoft 32-bit C/C++ optimizing compiler, version 13.10.3077 for
80x86, with the /O2 switch.
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Both Lua2IL and IronPython show close results, with an advantage for
Lua2IL in numerical code, probably due to the type checks present in the code
IronPython generates. IronPython is at a slight advantage in code that uses
arrays. Arrays are an optimization of tables in Lua2IL, and the Lua2IL run-
time must check, at each array access, if the index is an integer and if it is in
the bounds of the array part of the table, defaulting to use the hash part if
each of these tests fail. Both Lua2IL and IronPython are ahead of the CPython
interpreter, but the Lua interpreter is the fastest overall.

The Lua, Python, and JScript languages have similar semantics for the scope
of these tests, so it is fair to assume that differences in performance are due to
how the compilers and interpreters were implemented, and not due to intrinsic
differences among the languages.

The second performance test is a measuring of the time it takes to complete
a method call to a CLR object. The test was done with code generated by
the Lua2IL, JScript.NET (using late binding, with no type declarations), and
IronPython compilers. The Python for .NET compiler could not instantiate the
types in the assembly used in this test. We evaluated times for calls to six distinct
methods. They vary by the number and types of their parameters. Three of the
methods have all parameter and return values of type Int32, and are called with
zero, one, and two parameters. The other three methods have parameters and
return values of type object.

The results of the test are show on Figure 2, and are in microseconds. They
were collected on the same machine and under the same conditions of the first
performance test. The Lua columns show the times for calls from the Lua in-
terpreter, using the LuaInterface [Mascarenhas and Ierusalimschy, 2004] library,
a Lua to CLR bridge. The other columns show the times for calls from code
generated by the respective compilers.

For this test, the code generated by JScript.NET and Lua2IL are very close,
within 10% of each other. This shows that any overhead introduced by the
peculiarities of the code generated by each compiler is dwarfed by the time for
the actual reflexive invocation of the method. IronPython, on the other hand,
clearly does not optimize method calls as well as it optimizes the execution of
Python code.

The higher times for the calls from the Lua interpreter are a result of the
overhead involved in passing values from the environment of the Lua interpreter
to the managed environment of the CLR. This shows the performance advantage
of code running directly under the CLR, which needs much less scaffolding.

4 Conclusions

This paper presented an approach for running scripts from Lua, a dynamically
typed language, on the Common Language Runtime. The approach works by
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Figure 2: Times for method calls

translating the bytecodes of the Lua virtual machine to bytecodes of the CLR.
The goal was to keep the syntax and semantics of the language unchanged; any
script that the Lua interpreter executes, as long as it does not use library code,
should be translatable to CIL code that with the same behavior. There is also
an integration layer that lets scripts freely manipulate CLR types.

Previous attempts at creating CLR compilers for scripting languages have
focused on static generation of classes, either by extending the language, in the
case of JScript, or by restricting dynamic features, in the case of the Python
for .NET compiler. Our approach focuses on reproducing the semantics of the
language, even if it requires extensive runtime support, while offering access to
CLR objects. We think the role of a consumer, instead of a creator, of CLR types
is more suited to scripting languages. A recent Python compiler for the CLR,
IronPython, uses a similar approach to ours, and matches some of our results.

The goal of keeping the semantics of the language was almost fulfilled, with
only weak tables having a different semantic, due to the absence of any mecha-
nism in the CLR that notifies when a weak reference becomes invalid.
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Lua2IL does some optimizations in the generated code, like generating spe-
cialized implementations of Lua bytecodes. The integration layer also optimizes
calls to methods of CLR objects, caching the methods that are discovered through
reflection. We compared the performance of the code generated by Lua2IL with
code generated by three other compilers for dynamically typed languages: a com-
mercial compiler of the JScript language (developed by Microsoft), and two open
source prototype implementations of Python compilers. We also compared the
performance with that of the same code executed by the latest release of the
Lua and Python interpreters. The results are mixed, with the code generated
by Lua2IL performing better than the others in tests that are not dominated by
array accesses. Lua2IL, like the Lua interpreter, implements arrays as an opti-
mization of tables, not as a dedicated array type. Lua2IL performs well even in
tests dominated by array accesses, though, coming close to the fastest compiler,
IronPython, an ahead of the rest.

Performance evaluation of the time taken by calls to the methods of other
CLR objects shows that the code generated by Lua2IL performs similarly to
code generated by JScript.NET, and better than the code generated both by
IronPython and by a Lua to CLR bridge. The overall time is dominated by
reflexive invocation, on code generated by both Lua2IL and JScript.NET.

For the future, we are working on adding an implementation of coroutines
on the CLR that does not depend on threads. This will enable a more efficient
implementation of Lua coroutines. We also plan on making the CLR garbage
collector more flexible, so it can better adapt to languages with finalization se-
mantics different from the one used by C#, such as the weak tables of the Lua
language. Another plan is to investigate how to enable faster execution of script-
ing languages by the CLR, to bring the performance nearer to the performance
of statically-typed languages.
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