
PEWS: A New Language for Building Web Service

Interfaces

Cheikh Ba
(Université François Rabelais - LI/Campus de Blois - France

cheikh.ba@etu.univ-tours.fr)

Marcos Aurélio Carrero
(Federal University of Paraná, Brazil

carrero@inf.ufpr.br)

Mı́rian Halfeld Ferrari
(Université François Rabelais - LI/Campus de Blois - France

mirian@univ-tours.fr)

Martin A. Musicante
(Federal University of Paraná, Brazil

mam@inf.ufpr.br)

Abstract: Recent proposals in the domain of interface description languages for web
services stress the importance of specifying the dynamic, behavioral aspects of the
services. The goal of this paper is to introduce a new interface description language,
called PEWS, that uses predicate path expressions to define web service behaviours.
Our proposal represents a simple but expressive way to describe order and conditional
constraints over web service operations. PEWS aims to be used not only to the speci-
fication of simple web services but also to be a tool for describing service composition.

In this paper, we use the Action Semantics framework to present the syntax and seman-
tics of the most significant parts of PEWS and we introduce XPEWS, the XML-based
version of PEWS used to publish service behaviours for future searches and composi-
tion. The definition of XPEWS is done by giving the XML Schema that defines the
syntax of XPEWS programs.

Key Words: Programming languages, web services, formal semantics.

Category: D.3.m, C.2.4, D.3.1

1 Introduction

Web1 services are software applications accessible via Internet. They are typically
designed to participate to composed applications where different web services
should interact. The composition of new web services from existing ones is a
1 This paper is an extended version of [Ba et al., 2005a]. Some details on the definition

of XPEWS (the XML-based version of PEWS) and its implementation given in this
work were not present in that paper.

Journal of Universal Computer Science, vol. 11, no. 7 (2005), 1215-1233
submitted: 28/4/05, accepted: 9/6/05, appeared: 28/7/05 © J.UCS

challenging problem since it is necessary to ensure the correct interaction of
independent, communicating software pieces.

Web service interfaces are usually specified by using XML-based languages.
Interface languages, such as WSDL, address only static interface specifications
and they do not describe the observable behaviour of the web service (i.e., they do
not specify the order between operations). WSDL interfaces do not inform how
interaction with the service can be built, they do not allow the verification of the
system dynamics and do not fulfill the recent requirements of W3C choreography
working group [Austin et al., 2004].

Indeed, in order to address the challenging issues of web service composition
(such as synchronization, coordination, composition maintenance and manipula-
tion), different formalisms [Berardi et al., 2003a, Hamadi and Benatallah, 2003,
Hull et al., 2003, Salaün et al., 2004] have already been proposed.

In this paper, we use predicate path expressions [Andler, 1979] to define
web service behaviour and we introduce a new language, called PEWS (Path
Expressions for Web Services), as a complement to other interface description
languages (such as WSDL). PEWS aims to be used not only in the specification
of simple or composite web services, but also as an implementation language for
them. A PEWS program acts as an upper layer for the program implementing
the actions involved in the data processing of the web service.

PEWS specifies the implementation of a web service interface. Indeed, PEWS
is used to specify a system and serves as a guide to the implementation of each
operation involved in this system. Then, given a set of operations (or methods)
already implemented, a web service can be implemented by following a behaviour
description presented by PEWS programs.

Our approach brings predicate path expressions to the context of web ser-
vices. Predicate path-expressions [Andler, 1979] were introduced as a tool to
express the synchronization of operations on data objects. Path expressions are
programming language constructs used to restrict the allowable sequences of op-
erations on an object. For instance, given the operations a, b and c, the path
expression a∗.(b || c) defines that the parallel execution of operations b and c

should be preceded by zero or more executions of a.
As noted in [Andler, 1979], the use of predicates in path expressions allow

a finer control of the access to the object being manipulated. For instance, the
predicate path expression a∗.([P]b + [not P]c) indicates that b or c would be
executed according to the truth-value of predicate P .

In [Berardi et al., 2003b], the authors stress the importance of taking the
notion of time into account when dealing with web services. Indeed, time is
needed to understand the dynamics of transactions and compositions. It also
plays a role when we want to impose some time-out constraints to the service.
In this paper, we extend the proposal in [Andler, 1979] by taking the notion of

1216 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

time into account.

The paper is structured as follows. In Section 2 we present a motivating ex-
ample of the use of predicate path expressions for web services. Section 3 provides
some background notions used in this paper. The syntax and semantics of PEWS
are given in Section 4 using the action semantics framework [Mosses, 1992]. Sec-
tion 5 describes XPEWS, the XML-based version of PEWS, and its project.
Finally, Section 6 discusses some related work and concludes our paper.

2 Overview of our Proposal

Interface description for web services is a crucial point, having consequences for
service discovery, compatibility, verification and composition [Hull et al., 2003].
Recent proposals in this domain stress the dynamic aspects of the service, de-
scribing the behaviour of web service interfaces over several interactions. Our
approach can be placed in this new context, proposing a simple but expressive
way to describe order and conditional constraints over web service operations.

To illustrate our approach, we adapt an example from [Hull et al., 2003]
where the interface of a web service for a warehouse is considered. The ware-
house service interacts with other services to perform the following operations:
receive an order, send a bill, receive a payment and send a receipt.

We suppose different kinds of warehouses2 (applying different procedures for
dealing with payments and receipts) and we consider their descriptions using
PEWS. Indeed, our proposal allows us to describe different web service behav-
iours, each one corresponding to a different kind of warehouse.

As a first behaviour, we consider the “cautious” warehouse
of [Hull et al., 2003]. In this case, the warehouse behaviour is described
by the following path expression that constraints a receipt to be sent only if a
payment has already been received.

(order.bill.payment.receipt)*

This path expression specifies how a warehouse deals with the orders it re-
ceives: one order is treated at a time and the operations are performed in a
sequence. A different situation can be described by the expression:

{order.bill.payment.receipt}
where each received order is treated sequentially, but an unbounded amount of
orders can be treated in parallel.

The “trusting” warehouse of [Hull et al., 2003] allows for two activities to
proceed in an interleaved fashion: the sending of a receipt and the sequence
2 In this way, one can choose which policy is more adequate for his own warehouse.

1217Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

of sending a bill and receiving a payment. This behaviour is described by the
following path expression

{order.(bill.payment || receipt)}

The precise syntax and semantics of PEWS is defined in Section 4. The
path expression model gives us the possibility to reason over web service proper-
ties (e.g., by adapting the verification techniques proposed in [Andler, 1979,
Musicante, 1999]). However, for storing service description for advertising,
searching, composing, etc. we need to translate PEWS into a concrete, standard-
compliant representation. To this end, we introduce XPEWS in Section 5.
XPEWS is an XML-based language that extends WSDL interface descriptions
by adding behavioural constraints.

3 Background

This section summarizes two topics that will be used in our work, namely the
Action Semantics formalism and WSDL. The first one is a formal description
framework used to specify the syntax and s semantics of PEWS. WSDL rep-
resents the traditional interface description languages that PEWS intends to
extend, i.e., those that focused on defining the messages that could be passed in
and out of a web service in a single interaction.

3.1 Action Semantics

Action semantics [Mosses, 1992, Watt, 1991] is a formal framework for
semantic specification, developed to provide “readable” descriptions of
real-life languages [Doh and Mosses, 2003, Menezes and Moura, 2001,
Duarte Jr. and Musicante, 1999]. Action semantic descriptions are compo-
sitional, i.e., they define semantic functions to map abstract syntax objects to
semantic entities. Semantic functions are defined inductively using equations.
The semantic entities are actions, ad-hoc entities which provide a natural way
to describe computations.

Action semantics uses a special notation to describe actions. This notation is
called action notation, and it is used in action semantic descriptions very much in
the same way as the λ-notation is used in denotational semantics. The symbols
used in action notation are intentionally verbose, so that English-like phrases
can be used—completely formally—to express most of the concepts present in
computing.

Action semantics has features that are similar to other semantic formalisms.
It is similar to denotational semantics which uses semantic functions to describe
the meaning of objects. However, actions have a more operational flavor than

1218 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

functions. In this sense, action semantics bridges the gap between denotational
and operational semantics [Winskel, 1993].

Actions are used to describe the meaning of computation. Actions can be per-
formed to process information, with various possible outcomes: normal termina-
tion (performance of the action completes), exceptional termination (it escapes),
unsuccessful termination (it fails) or non-termination (it diverges). Action nota-
tion provides some primitive actions, and various combinators for forming com-
plex actions, corresponding to the main fundamental concepts of programming
languages.

A data notation is used to describe the information processed by actions.
The standard data notation (included in action notation) provides a collection of
algebraically defined abstract data types, including numbers, characters, strings,
sets, tuples, maps, etc.; further data may be specified ad hoc.

There is also a third class of entities in action notation, called yielders. A
yielder represents unevaluated data, whose value depends on the current infor-
mation available to the primitive action in which it occurs. Yielders are evaluated
to yield data. An example of a standard yielder is the data bound to I , which
depends on the current bindings that are received by the enclosing primitive
action.

Actions can represent pure control, or can process different types of informa-
tion. The so-called ‘facets’ of an action represent the behaviour of the action.
Each facet deals with one aspect of the information processed by the action.
There exists five facets of each action:
Basic: This facet deals with pure control flow, without reference to information
processing issues.
Functional: This facet deals with transient data, which is given to or by an
action. For example, when the primitive action give the successor of the given

natural is given a natural number n as transient data, it completes, giving n + 1
as a transient. The compound action A1 then A2 performs the action A1 first;
all transient data given by A1 is passed on to A2, which is performed after A1

completes. The primitive action choose D, where D is a sort of data, makes a
non-deterministic choice of an individual of sort D, giving the chosen datum as
a transient.
Declarative: This facet deals with the manipulation of scoped information,
represented by associations of tokens to bindable data. For example, performance
of the primitive action bind “max-length” to 256 completes, producing a binding
of the token “max-length” to the natural number 256.
Imperative: This facet is concerned with storage handling. A storage in action
notation is simply a mapping from memory cells to storable data. For example,
consider the action allocate a cell then store 26 in the given cell, which combines
features of the functional and imperative facets.

1219Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

Communicative: This facet provides a system of agents , which can each be
‘contracted’ to perform particular actions. Initially only a special ‘user’ agent
is active. Agents can communicate using asynchronous message passing. Each
agent has its own communication buffer , in which all the messages sent to the
agent are placed. Arbitrary data can be contained in messages.

3.2 WSDL

WSDL (Web Service Description Language) [Curbera et al., 2002,
Christensen et al., 2001] is an XML-based language developed by IBM
and Microsoft to describe Web service interfaces. The goal of a WSDL service
description is twofold: (i) to provide an application-level service description,
i.e., to indicate which operations (or methods) the service exposes and (ii) to
give protocol-dependent details necessary to access the service. In this section
we just consider how WSDL specifies an abstract interface (i.e., just the first
goal is discussed).

A WSDL abstract description specifies the messages taking part in a service
interaction. External type systems (e.g., the one of XML Schema) are used to
provide data type definitions for the information exchange. Messages provide an
abstract, typed data definition sent to and from the services. Operations are lists
of messages, defining the interactions the Web service supports. An operation
combines messages labeled as input, output, or fault to indicate what part a
particular message plays in the interaction.

A portType is a collection of operations that are collectively supported by
an end point. In this way, it describes a set of messages that a service sends
and/or receives. A portType element can be compared to a function library (or
a module, or a class) in a traditional programming language.

The following example shows an WSDL abstract description.

Example 3.1 The WSDL fragment given in figure 1 shows data type defin-
itions (with types integer, string, etc from XML Schema) and the portType
element that groups four different operations, namely, order, bill, payment

and receipt.
The order operation is a request-response operation since it expects the
productOrderIn as input and returns a productOrderOut as the response.
On the other hand, the bill operation is a solicit-response operation having
sendBill as a request and ackBill as a response. The payment operation is a
one-way operation which takes message getPayment as input while the receipt

operation is a notification operation which just sends an output message. �

From Example 3.1 we understand that WSDL defines four types of opera-
tions. In a request-response operation, a client makes a request, and the web

1220 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

<message name="productOrderIn">
<part name= "prodCode"

type="xsd:string"/>
<part name= "quantity"

type="xsd:integer"/>
</message>
<message name="productOrderOut">

<part name= "price"
type="xsd:real"/> ...

</message>
<message name="sendReceiptClient">

<part name= "prodCode"
type="xsd:string"/>

<part name= "datePay"
type="xsd:date"/> ...

</message>
<message name="sendBill">

<part name= "prodCode"
type="xsd:string"/>

<part name= "total"
type="xsd:real"/>

...
</message>
<message name="ackBill">

<part name= "prodCode"
type="xsd:string"/>

...
</message>
...

...
<portType name="WarehousePortType">

<operation name="order">
<input message="productOrderIn"/>
<output message="productOrderOut"/>

</operation>

<operation name="bill">
<output message="sendBill"/>
<input message="ackBill"/>

</operation>

<operation name="payment">
<input message="getPayment"/>

</operation>

<operation name="receipt">
<output message="sendReceiptClient"/>

</operation>
</portType>

Figure 1: Operations defined in WSDL.

service responds to it while in a solicit-response operation, the web service sends
a message to the client (output before input) and the client responds. One-way
operations indicates that a client sends a message to the web service but expects
no response. Finally, in a notification operations a web service sends a message
to the client but expects no response.

4 The PEWS Language

In this paper we use Predicate Path Expressions (PPE) [Andler, 1979] to de-
scribe the behaviour of web service interfaces.

Path expressions are programming language constructs used to restrict the
allowable sequences of operations on an object. They were introduced as a tech-
nique for specifying process synchronization [Campbell and Habermann, 1974,
Campbell, 1977]. They propose a static description of the order in which op-
erations are performed, allowing the operation’s code to be written with-
out any explicit reference to synchronization primitives. Many versions of
path expressions, defining different kinds of operation combinations, have
been proposed [Campbell and Habermann, 1974, Flon and Habermann, 1976,
Habermann, 1975, Bruegge and Hibbard, 1983, Andler, 1979]. Most proposals
include sequential, parallel and non deterministic choice for defining the combi-
nation of operations.

1221Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

Predicate Path Expressions [Andler, 1979] extend basic path expressions by
adding predicates. Predicate path expressions preserve the advantages of original
path expressions, but are more powerful since they may contain history variables
and predicates.

In this paper we introduce predicate path-expression for web services
(PEWS), a language that allows to specify the order in which the operations
of a given web service can be performed. In our proposal we use a notation
based on that of [Andler, 1979].

In PEWS, a path expression combines web service operation names using the
operators sequencing (.), exclusive choice (+), parallel (||), sequential repetition
(*), parallel repetition ({. . .}) and predicate prefixing ([. . .] . . .) as defined below.

PEWS Syntax:

grammar:

(1) interface = [[portType def* path]]

(2) path = [[opname]] [[path “.” path]] [[path “+” path]]
[[path “||” path]] [[path “*”]] [[“{” path “}”]]
[[“[” pred “]” path]]

(3) pred = [[“true”]] [[“false”]] [[“not” pred]]
[[pred boolOp pred]] [[arith-expr relOp arith-expr]]

(4) def = [[“def” var “=” arith-expr]]

(5) portType = [[operation+]]

(6) operation = [[opname “(”opArg “)”]]

(7) opArg = [[“in:” msgName]] [[“out:” msgName]]
[[“in-out:” msgName “, ” msgName]]
[[“out-in:” msgName “, ” msgName]]

(8) msgName = �

(9) opname = �

(10) arith-expr = [[var]] [[arith-expr arithOp arith-expr]] [[“now()”]]
[[“act(” opname “).val”]] [[“act(” opname “).time”]]
[[“term(” opname “).val”]] [[“term(” opname “).time”]]

(11) boolOp = �

(12) relOp = �

1222 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

(13) arithOp = �

(14) var = �

In the grammar above, the notation � means that the right-hand side of the
rule is not defined here (all the cases above are straightforwardly specified.

An interface is defined as sequence of definitions (def) followed by a path ex-
pression. Each definition declares integer variables to be used in predicates. The
value of variables is obtained by the evaluation of an arithmetic expression which
involves predefined counters and library functions. Each counter is assumed to
be a pair of integers (val, time). The val component represents the counter itself
while the time component indicates the moment the counter was last modified.
We suppose the existence of three counters for each web service operation O:

req(f): The val component describes the number of times a caller has attempted
to perform the operation f . The time component indicates the moment of
the last request.

act(O): The val component describes the number of times a caller has started
to perform the operation O. The time component indicates the moment of
the last activation of the service.

term(O): The val component describes the number of times a caller has ter-
minated to perform the operation O. The time component indicates the
moment of the last conclusion of the service.

Example 4.1 In our warehouse example, suppose that a payment should be
done within 48 hours after the bill has been sent. If the deadline is not respected
the whole process is aborted. A path expression modeling this situation is:

def tpay = now() - term(bill).time

(order.bill.([tpay ≤ 48h] payment.receipt + [tpay > 48h] abortOperation))*

The value of the variable tpay is computed by evaluating the expression now() -

term(bill).time which involves function now() (that computes the current time).
The predicates appearing in the above expression represent guards, giving to the
expression the semantics of a conditional construct. Guards are evaluated until
one of them is true. Notice that the value of the variable tpay changes at each
evaluation, since it depends on the current time. �

1223Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

PEWS Semantics:

• execute : interface → Action

(1) execute [[T : portType D : def* P : path]] =
elaborate [[T]]
before elaborate [[D]]
before execute [[P]]

We define the semantic function execute over an interface. This function is re-
sponsible for the definitions of bindings for the service operations and for the
integer variables to be used inside predicates. Moreover, execute also performs
the actions established by the path expression of the interface.

• execute : path → Action

(1) execute [[O :opname]] =
indivisibly

give the natural stored in the cell bound to act(O).val
then store successor of it in the cell bound to act(O).val
and store current-time in the cell bound to act(O).time

and then
enact the service bound to O
and then
indivisibly

give the natural stored in the cell bound to term(O).val
then store successor of it in the cell bound to term(O).val
and store current-time in the cell bound to term(O).time

The execution of the service operation is preceded by the update of the counter
act, and it is followed by the update of the counter term. These updates consist
on the increment of the component val and on the use of the yielder current-time
for setting the component time of each counter. The yielder current-time is not
part of the standard action semantics framework. We suppose that it maintains
the actual, absolute, global time of the system. This yielder represents a call to
a system function in a real-life implementation.

(2) execute [[P1:path “.” P2:path]] = execute [[P1]] and then execute [[P2]]

(3) execute [[P1:path “+” P2:path]] = execute [[P1]] or execute [[P2]]

(4) execute [[P1:path “||” P2:path]] = execute [[P1]] and execute [[P2]]

The equations above define different composition operations over path expres-
sions; namely, sequential composition, non deterministic choice and parallel com-
position.

(5) execute [[P1:path “*”]] =
unfolding
complete
or
execute [[P1]] and then unfold

1224 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

(6) execute [[“{” P1:path “}”]] =
unfolding
execute [[P1]] and unfold

The star operator defines the unbounded, sequential, repetitive execution of a
path expression P1. The { } operator specifies the unbounded parallel execution
of a path expression P1.

(7) execute [[“[” B :pred “]” P1:path]] =
unfolding
evaluate [[B]] and enabled [[P1]]
then

check (the given tuple is 〈 true, true 〉)
and then commit and then execute [[P1]]
or
check not (the given tuple is 〈 true, true 〉)
and then unfold

The above definition considers the case where the execution of a path expression
P1 depends on the result of evaluating a given predicate B. In order to execute P1,
the action waits until the following two conditions are simultaneously verified: (i)
the evaluation of B yields true and (ii) P1 is ready to be executed. This second
condition, specified by enabled , consists in verifying whether input messages
are available to be read by P1 (if P1 starts with a response-request or a one-way
operation).

• elaborate : portType → Action

(1) elaborate [[Q1:operation+ Q2:operation+]] =
elaborate [[Q1]] and elaborate [[Q2]]

(2) elaborate [[O :opname “(” A:opArg “)”]] =
allocate a cell then
store 0 in it and bind it to act(O).val

and
allocate a cell then bind it to act(O).time
and
allocate a cell then
store 0 in it and bind it to term(O).val

and
allocate a cell then
store never in it and bind it to term(O).time

and
bind kindOf [[A]] to kind(O)
and
GetAbstractionForService(O) then bind it to O

The elaboration of the portType definitions creates the counters for
each operation (each counter is formed by a pair of cells). The ac-
tionGetAbstractionForService represents the identification of an (external) ab-

1225Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

straction, to be associated to the service operation. In a real-life implementation,
this function is performed by the HTTP server.

• elaborate : def* → Action

(1) elaborate [[]] = complete

(2) elaborate [[G1: def* G2: def*]] = elaborate [[G1]] and elaborate [[G2]]

(3) elaborate [[“def” I :var “=” E :arith-expr]] =
bind I to closure abstraction of evaluate [[E]]

Variable declarations in PEWS are a simple form of function definition. The
expression that defines a variable will be evaluated each time the variable is
needed during the execution of a path expression.

• evaluate : arith-expr → Action[giving an (integer time)]

• evaluate : pred → Action[giving a truth-value]

• enabled : path Action[giving a truth-value]

(1) enabled [[O :opname]] =
indivisibly
check (the datum bound to kind(O) is a (out out-in)) and then give true
or
check (the datum bound to kind(O) is a (in in-out))
and then
choose a message[containing 〈O , data 〉]

[in set of items of the current buffer]
then
check (it is a message) and then give true
or
check (it is nothing) and then give false

(2) enabled [[P1:path “.” P2:path]] = enabled [[P1]]

(3) enabled [[P1:path “*” “.” P2:path]] = enabled [[P1]] or enabled [[P2]]

(4) enabled [[P1:path “+” P2:path]] = enabled [[P1]] or enabled [[P2]]

(5) enabled [[P1:path “||” P2:path]] = enabled [[P1]] or enabled [[P2]]

(6) enabled [[P1:path “*”]] = enabled [[P1]]

(7) enabled [[“{” P1:path “}”]] = enabled [[P1]]

1226 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

(8) enabled [[“[” B :pred “]” P1:path]] = enabled [[P1]]

The semantic function enabled returns a truth-value, being true iff the
leading operation in the expression is enabled to be executed, i.e., if it is an
output or output/input operation or if there is a message waiting for it in the
communications buffer.

The semantic equations given in this section present the most significant
part of the action semantics definition of PEWS. The complete set of equations
can be found in [Ba et al., 2005b]. Notice that although we consider that a web
service can have different behaviours (as illustrated in Section 2), in this section,
we have just presented how to define a service with just one behaviour. This
extension is straightforward.

5 XPEWS

So far in this paper we used a user-friendly syntax for PEWS programs. This
section presents XPEWS the XML, machine-readable version of the language.
XPEWS programs can be generated from PEWS in an intuitive way. For in-
stance, the PEWS program

def tpay = now() - term(bill).time

(order.bill.([tpay ≤ 48h] payment.receipt + [tpay > 48h] abortOperation))*

is written in XPEWS as shown in Figure 2.
The root element of a XPEWS document is the <envelope>. It can contain

the definition of the possible behaviours of the web service. For instance, when
defining the access to a certain piece of data, we can specify different orders
in which the instances of these data can be accessed. Figure 2 shows just one
behaviour for our warehouse service. It takes into account a 48 hour timeout
condition between the placement of an order and the payment reception.

The <behaviour> construct specifies the way in which the client can interact
with the web service. This is done by a predicate path expression involving the
operations of the service whose interface is being defined. Notice that element
<behaviour> has two attributes. The name attribute identifies the element. The
target attribute refers to the portType (in an WSDL file) whose operations are
involved in the behaviour being defined (see Section 3.2).

The PEWS implementation is in its early stage of developement. The system
is formed by a front-end and a back-end.

The front-end is a WSDL-aware, syntax-directed editor for PEWS pro-
grams, which is being implemented as a plugin extension for the the Eclipse

1227Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

<envelope xmlns="http://aquarius.inf.ufpr.br"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://aquarius.inf.ufpr.br pews.xsd">

<behaviour name="timeOutEx"
xmlns:ns1="http://www.aquarius.inf.ufpr.br/warehouse">

<operations>
<operation name="bill"

portType="WarehousePortType"
refersTo="ns1:bill"/>

<operation name="order"
portType="WarehousePortType"
refersTo="ns1:order"/>

<operation name="payement"
portType="WarehousePortType"
refersTo="ns1:payement"/>

<operation name="receipt"
portType="WarehousePortType"
refersTo="ns1:receipt"/>

</operations>
<varDef>

<minus>
<libFunction name="now"

unit="hours"/>
<pewsCounter opname="bill"

name="term"
component="time"
unit="hours"/>

</minus>
</varDef>
<pathExp>

<star>
<seq>

<operation name="order"/>
<operation name="bill"/>
<choice>
<seq>

<pred>
<leq>

<var name="tpay"/>
<const value="48"/>

</leq>
<operation name="payement"/>

</pred>
<operation name="receipt"/>

</seq>
<pred>

<gt>
<var name="tpay"/>
<const value="48"/>

</gt>
<operation name="abortOperation"/>

</pred>
</choice>

</seq>
</star>

</pathExp>
</behaviour>
</envelope>

Figure 2: Translation of the warehouse service into XPEWS.

1228 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

Figure 3: XPEWS back-end tool.

Platform [ecl, 2005]. The font-end tool includes a type checker and a genera-
tor of XPEWS programs. The translation from PEWS to XPEWS follows the
XMLSchema definition of XPEWS, as given in Figure 2.

The back-end tool generates java classes from XPEWS programs. This tool
is schematized in figure 3. The static part of the tool is formed by a composer,
which reads an interface description and generates a java class skeleton for the
service. The interface description is formed by WSDL and XPEWS documents.

The class skeleton generated by the composer uses the JSCP li-
brary [jsc, 2004] to implement the synchronization part of the service (i.e., the
path expressions). The generated skeleton is the basis for the implementation
of the service. The java program (composition) in figure 3 represents the user
extension of this eskeleton to implement the service.

The dynamic part of the back-end is the runtime system of the language.
The program is registered as a service at the http server, and communicates
with clients (and other services) using SOAP.

6 Related Work and Concluding Remarks

In order to correctly place our work in the domain of service description lan-
guages, we adopt the general framework proposed in [Salaün et al., 2004] which
allows to classify service languages into three layers, namely:

1. The abstract layer, used to reasoning. On this level we can put together
different formal proposals such as process algebra, finite state automata,
etc.

1229Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

2. The public level or interface layer, containing XML-based languages that
allow the description of the service behaviour.

3. The private or implementation level, containing the languages used to im-
plement services.

In this context, we place PEWS at the most abstract level while XPEWS
can be placed at the public (interface) level.

In the abstract level, several works propose formal tools to reason over web
services and to ensure some properties. The main reason is that the use of a
formal model allows the verification of properties and the detection of inconsis-
tencies and deadlocks, both within and between services. Their goal is usually
to define service descriptions formally. Thus, we cannot expect for web services
specifications to succeed based on implementation languages only.

Several models have appeared trying to formalize synchroniza-
tion of concurrent processes (such as in services composition). In
[Hamadi and Benatallah, 2003] the authors propose Petri Nets for mod-
eling composition. In [Meredith and Bjorg, 2003] services are modeled
as mobile processes and their composition is verified using π-calculus.
In [Salaün et al., 2004] the authors advocate the use of process algebra to de-
scribe and compose web services at an abstract level while [Berardi et al., 2003b]
use finite state automata as a conceptual model.

In this paper, we propose the use of predicate path expressions to restrict
the allowable sequences of operations on a web service. To this end, we define
an interface description language called PEWS. We use the Action Semantics
framework to define the semantics of PEWS. Similarly to other abstract models,
the path expression model gives us the possibility to reason over web service
properties.

When we consider the interface layer, we notice that, besides WSDL, some
web service description languages have already been proposed. For instance,
WSCL (Web Services Conversation Language) [Banerji et al., 2002] is an XML-
based language which models the conversation supported by a service; WSCI
(Web Service Choreography Interface) [Arkin et al., 2002] is an evolution of
WSCL. It is an XML-based interface description language that describes the
flow of messages exchanged by a web Service participating in choreographed in-
teractions with other services. To the best of our knowledge, the semantics for
these languages are not defined formally.

Our proposal allows an automatic translation between the user-friendly syn-
tax of PEWS to its XML-based version XPEWS. Moreover, given an XPEWS
service description and the implementation of its individual operations, our pro-
posal includes the possibility of an automatic implementation of the service.
We are currently working on sound mappings between the abstract layer, the
interface layer and the concrete layer for our proposal.

1230 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

In this paper, we present PEWS as a language for describing web ser-
vice behaviour, but we are currently considering its generalization in order
to specify web service composition. In fact, since the development of web ser-
vice composition languages have been mainly driven by software vendors, too
many standards have been proposed, usually having overlapping functional-
ity [van der Aalst, 2003]. These propositions include XLANG [Thatte, 2001],
from Microsoft, which specifies message exchange behaviour among the partici-
pating web services for automation and composition of new business processes;
WSFL (Web Services Flow Language) [Leyman, 2001], from IBM, an XML
language for the description of Web Services compositions; BPML (Business
Process Modeling Language) [Intalio and BPMI.org., 2002] which is a meta-
language for modeling and an abstracted execution model for collaborative
and transactional business process based on the concept of transactional finite-
state machine; BPEL4WS (Business Process Execution Language for Web Ser-
vices) [Andrews et al., 2003] combines the graph oriented process representation
of WSFL and the structural construct based processes of XLANG into a unified
standard for web services composition and ebXML [ebXML Team, 2001], a spec-
ification that enables enterprises to conduct business over the Internet using an
open XML-based infrastructure. It is also important to notice the work on a web
service markup language called DAML-S [Coalition, 2004] aiming at providing
service providers with a core set of markup language constructs for describ-
ing the properties and capabilities of their services in unambiguous, computer-
interpretable (machine-understandable) form.

References

[jsc, 2004] (2004). Communicating sequential processes for java.
http://www.cs.kent.ac.uk/projects/ofa/jcsp/.

[ecl, 2005] (2005). The eclipse project. http://www.eclipse.org.
[Andler, 1979] Andler, S. (1979). Predicate path expressions. In Sixth Annual ACM

Symposium on Principles of Programming Languages (6th POPL’79).
[Andrews et al., 2003] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,

Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weeran-
warana, S. (2003). Bussiness process execution language for web services. Available
at http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

[Arkin et al., 2002] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K.,
Orchard, D., Pogliani, S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic,
I., and Zimek, S. (2002). Web service choreography interface. Available at
http://www.w3.org/TR/wsci/.

[Austin et al., 2004] Austin, D., Barbir, A., Peters, E., and Ross-Talbot,
S. (2004). Web services choreography requirements. Available at
http://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311/. W3C Working Draft.

[Ba et al., 2005a] Ba, C., Ferrari, M. H., and Musicante, M. (2005a). Building web
services interfaces using predicate path expressions. In Proceedings of SBLP 2005.

1231Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

IX Brazilian Symposium on Programming Languages, pages 147–160, Recife - Brazil.
Brasilian Computer Science Society, University of Pernambuco.

[Ba et al., 2005b] Ba, C., Halfeld Ferrari Alves, M., and Musicante, M. A. (2005b).
PEWS: Predicate path expressions for web services. Technical Report LI (to appear),
Université François Rabelais de Tours.

[Banerji et al., 2002] Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govin-
darajan, K., Karp, A., Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., and
Williams, S. (2002). Web services conversation language (wscl) 1.0. Available at
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/.

[Berardi et al., 2003a] Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., and
Mecella, M. (2003a). Automatic composition of e-services. Technical Report 22-2003,
Dipartimento di Informatica e Sistemistica, Universita di Roma La Sapienza, Roma,
Italy.

[Berardi et al., 2003b] Berardi, D., de Rosa, F., de Santis, L., and Mecella, M. (2003b).
Finite state automata as conceptual model for e-services. In Integrated Design and
Process Technology (IDPT).

[Bruegge and Hibbard, 1983] Bruegge, B. and Hibbard, P. (1983). Generalized path
expressions: A high-level debugging mechanism. Journal of Systems and Software.

[Campbell, 1977] Campbell, R. H. (1977). Path expressions: A technique for specify-
ing process synchronization. Report UIUCDCS-R-77-863, Dept. Comp. Sci., Univ.
Illinois at Urbana-Champaign.

[Campbell and Habermann, 1974] Campbell, R. N. and Habermann, A. N. (1974).
The specification of process synchronization by path expressions. Lecture Notes in
Computer Science, 16.

[Christensen et al., 2001] Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. (2001). Web services description language (WSDL) 1.1. Availabre at
http://www.w3.org/TR/wsdl.

[Coalition, 2004] Coalition, D. S. (2004). Daml-s: Semantic markup for web services.
Available at http://www.daml.org/services/.

[Curbera et al., 2002] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and
Weerawarana, S. (2002). Unraveling the web services web: An introduction to SOAP,
WSDL, and UDDI. IEEE Internet Computing.

[Doh and Mosses, 2003] Doh, K.-G. and Mosses, P. D. (2003). Composing program-
ming languages by combining action-semantics modules. Science of Computer Pro-
gramming, 47(1):3–36. Elsevier Science Publishers.

[Duarte Jr. and Musicante, 1999] Duarte Jr., E. P. and Musicante, M. A. (1999). For-
mal specification of SNMP mib’s using action semantics: The routing proxy case
study. In Publishing, I., editor, Proc. of the Sixth IFIP/IEEE Int’l Symp. on Inte-
grated Network Management, Boston, USA.

[ebXML Team, 2001] ebXML Team (2001). ebxml requirements specification, version
1.06. Available at http://www.ebxml.org/specs/ebREQ.pdf.

[Flon and Habermann, 1976] Flon, L. and Habermann, A. N. (1976). Toward the con-
struction of verifiable software systems. Sigplan Notices.

[Habermann, 1975] Habermann, A. N. (1975). Path expressions. Dept. of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA.

[Hamadi and Benatallah, 2003] Hamadi, R. and Benatallah, B. (2003). A petri net-
based model for web service composition. In Schewe, K.-D. and Zhou, X., editors,
Fourteenth Australasian Database Conference (ADC2003), volume 17 of CRPIT,
pages 191–200, Adelaide, Australia. ACS.

1232 Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

[Hull et al., 2003] Hull, R., Benedikt, M., Christophides, V., and Su, J. (2003). E-
services: a look behind the curtain. In ACM, editor, Proceedings of the Twenty-Second
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems:
PODS 2003: San Diego, Calif., June 9–11, 2003.

[Intalio and BPMI.org., 2002] Intalio and BPMI.org. (2002). Bussiness process mod-
eling language. Available at http://www.bpmi.org/bpmi-downloads/BPML-SPEC-
1.0.zip.

[Leyman, 2001] Leyman, F. (2001). Web services flow language (wsfl) 1.0. Availabre
at http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf/.

[Menezes and Moura, 2001] Menezes, L. C. and Moura, H. (2001). Component-based
action semantics: A new approach for programming language specifications. In SBLP
2001 - V Brazilian Symposium on Programming Languages, pages 152–163, Curitiba,
Brazil. Universidade Federal do ParanÃ¡.

[Meredith and Bjorg, 2003] Meredith, L. and Bjorg, S. (2003). Contracts and types.
Communications of the ACM, 46(10).

[Mosses, 1992] Mosses, P. D. (1992). Action Semantics. Number 26 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press.

[Musicante, 1999] Musicante, M. A. (1999). Formal semantics of interleaving. In SBLP
99 - Proceedings of the III Brazilian Symposium on Programming Languages.

[Salaün et al., 2004] Salaün, G., Bordeaux, L., and Schaerf, M. (2004). Describing and
reasoning on web services using process algebra. In Proceeding of the 2nd Interna-
tional Conference on Web Services, IEEE.

[Thatte, 2001] Thatte, S. (2001). XLANG: Web services for business process design.
Available at http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

[van der Aalst, 2003] van der Aalst, W. M. P. (2003). Don’t go with the flow: Web
services compositions standards exposed. Issue of IEEE Inteligent System.

[Watt, 1991] Watt, D. A. (1991). Programming Language Syntax and Semantics. Pren-
tice Hall International Series in Computer Science. Prentice Hall.

[Winskel, 1993] Winskel, G. (1993). The Formal Semantics of Programming Lan-
guages: An Introduction. Foundations of Computing Series. MIT Press.

1233Ba C., Carrero M.A., Halfeld Ferrari M., Musicante M.A.: PEWS: A New Language ...

