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Abstract: In this work, we propose a compilation strategy for non-strict functional
languages targeting the Microsoft .NET Platform, a multilanguage platform which
provides a large number of services to aid current software development. This strategy
is based on the push/enter execution model, enables fast function calling mechanisms
whenever possible and males use of new features present in .NET Framework, such as
delegates and tail calls. Our case study was the compilation of the Haskell language, a
standardized and well known non-strict functional language. Our main contribution is
the construction of an environment for the testing of different compilation techniques
for functional languages targeting .NET.
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1 Introduction

The main motivation for the use of functional languages comes from features like
absence of side-effects, higher-order functions and non-strict evaluation, which
enable higher productivity and a more adequate framework for formal correctness
proofs. However, the absence of rich APIs and productive development platforms
makes difficult the adoption of these languages in large scale projects. On the
other hand, there is already a rich set of tools and APIs for object-oriented lan-
guages, including virtual machines coupled with complete development platforms
that offer portability and services to help developers better support applications’
infrastructure requirements.
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In this context, we have the opportunity to reuse such infrastructure for the
functional paradigm by means of compilation techniques capable of translating
programs written in functional languages to programs written for the platforms
supported by those OO environments. Another possibility is the use of “bridges”
to convert the calls between the two worlds, which has the disadvantage of
not fully exploiting the benefits of the platform (i.e.: versioning mechanisms,
code security and garbage collection – two execution environments require the
existence of two garbage collectors, which incurs a huge overhead). Bridges have
other disadvantages, such as the poor performance generated by the marshaling
of data and the use of reflection APIs. Finally, the OO environment would have
to access unmanaged code in order to communicate with the functional side.

In this work, we propose a compilation strategy for non-strict functional
languages targeting the Microsoft .NET Platform. The strategy is based on the
push/enter execution model [Marlow and Jones, 2004]. Our approach has two
advantages over other non-strict functional languages implementations for .NET:
it avoids the excessive generation of classes and enables a fast function calling
mechanism wherever possible. Our case study was the compilation of Haskell
[Haskell, 2002], which was chosen because it is purely functional, standardized
and widely used by the non-strict functional programming community.

This paper is organized as follows. Section 2 gives a brief introduction to the
.NET Platform. An overview of possible compilation strategies for compiling
functional languages to object-oriented virtual machines is given in Section 3.
In Section 4 we present the Haskell .NET compiler. The conclusions and future
works are discussed in Section 5 and we cite related works in Section 6. Appendix
A presents the compilation rules used in our solution.

2 Microsoft .NET Platform

Microsoft .NET Platform is a multilanguage development platform composed by
a large set of libraries – for database manipulation, XML processing, graphical
user interface components, web development, etc. – and an execution environ-
ment – the Common Language Runtime [Box and Sells, 2003], or CLR for short.

The Common Language Runtime may be defined as a stack-oriented virtual
machine responsible for translating code written in the Common Intermediate
Language [ECMA, 2002] – CIL – to processor-specific instructions. This transla-
tion is carried out on demand by means of Just In Time (JIT) compilation. So,
when we say “to compile language X for the .NET Platform”, we mean “to build
an X compiler which is capable of generating CIL code”. By stack-oriented we
mean that the instructions for the machine can push operands on an evaluation
stack, operate on the top of stack operands and pop operands off the stack and
store them in memory or in local variables.
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The CLR has several other functions such as code security, memory and
threads management, with no dependencies on any specific language.

Another example of virtual machine is the Java Virtual Machine (JVM)
[Lindholm and Frank, 1999], which has been already targeted by some functional
languages implementations. However, the JVM has the following disadvanta-
geous factors for the support of functional languages:

– it is intended mainly for supporting the Java language [Gosling et al., 2000],
therefore targeting and supporting essentially object-oriented languages;

– it does not support tail calls – a function-calling mechanism which does not
keep stack frames and is commonly used for the efficient implementation of
functional languages;

– it does not support any kind of function pointers or other low-level features
not essential but useful for the efficient compilation of functional languages.

In contrast, the .NET Platform was designed for supporting several program-
ming languages paradigms, supporting a larger set of primitive types, enumer-
ations, pointers, multidimensional arrays, arguments passing by reference, etc..
Besides this, it supports tail calls and type-safe function pointers through the
use of delegates. Finally, .NET offers many features not found in Java Plat-
form such as versioning mechanisms and seamless interoperability with other
languages. Therefore it appears to be a more promising platform for the imple-
mentation of functional languages than the JVM.

3 Design Space

In this section we describe the available design space to implement elements
commonly found in functional languages in object-oriented environments such
as the .NET Platform.

3.1 Code Generation

There are a few possibilities to be considered for the language in which the final
code will be generated for .NET. The simplest possibility is to target a language
which is already supported in .NET, such as C# [C#, 2004]. The compiler of
this language is then responsible for generating CIL code. This approach is used
by Mondrian [Meijer et al., 2001]. Despite its simplicity, generating high-level
code makes it impossible the use of some low level instructions which exist only
in CIL and help to improve performance (e.g.: instruction to generate tail calls).

F# [F#, 2005] adopts a distinct approach. Its compiler generates code in
ILX [Syme, 2001], an extension to CIL intended to support functional features.
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We considered at first the generation of ILX code, but it would make our project
dependent on the design decisions adopted by ILX’s implementors, leaving little
space for optimizations and further investigations on different implementations.
Thus generating CIL code directly is a more flexible and efficient solution, and
we have chosen this approach.

3.2 Closures Representation

Closures are dynamically allocated objects which point to a code and to a set
of free variables, or environment, which is accessed by this code. An example is
shown below:

f :: Int -> u -> (Int -> Int)

f x y = let g w = x + w in g

In the example, f is a function which receives 2 arguments (x and y, of
type Int and u, respectively) and returns an element of type (Int -> Int). g is a
closure which encapsulates a code which waits for 1 argument (w) and accesses
an argument received by f (x). Here, x is a free variable in g, because it is not
declared on g’s scope. f may also be considered a closure, without free variables.

In the non-strict evaluation mechanism, also called lazy evaluation, the ar-
guments received by a function are not evaluated before the call, as in most
imperative and object-oriented languages, which are strict. They will be evalu-
ated in the function’s body only when (and if) their values are needed. So, each
argument should be a closure pointing to the code responsible for evaluating it
when necessary. In the given example, x and y are closures and f and z might be
passed as parameters to any other functions.

There are several techniques to represent closures in object-oriented plat-
forms. Here we will introduce some of these techniques which can be used in the
.NET Platform.

3.2.1 One-class-per-closure

A commonly used strategy to represent closures in object-oriented platforms is
the generation of one class per closure. This strategy assumes the existence of
an interface or abstract class with one or more methods responsible for applying
the closure’s code to its arguments. Each closure is compiled to a subclass of
that abstract class, the closure’s compiled code is inserted into the suitable
application method and the free variables are compiled to fields. An example of
this technique is shown below. For a function defined as:

foo :: ...

foo <arguments> = /*foo’s code here*/
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and a pre-defined abstract class defined as:

abstract class Closure {
...

public abstract object Invoke(...);

}

the following class is generated:

class foo: Closure {
...

public object Invoke(...) {
/*foo’s compiled code here*/

}
This technique may be implemented in several ways: Invoke may receive

an array of objects that represent the function’s arguments or may receive no
arguments at all and obtain the function’s arguments from another place (eg.: a
stack). Another approach is to use several overloads of Invoke, each one receiving
a different number of arguments.

The disadvantage of this approach is the large number of classes which would
be created for an average-sized program written in a non-strict language. On
the .NET platform, each class has metadata which should be loaded and kept
in memory. Besides this, CLR runs verification routines which may increase the
general execution overhead.

This strategy is used by Mondrian (non-strict), F# (strict) and by the stan-
dard ILX implementation. F# avoids the generation of many closures by means
of inline techniques. Moreover, it is a strict language and in these languages
closures are less frequent.

Some implementations of functional languages for the Java Virtual Machine
[Choi et al., 2001], [Bothner, 1998], [Tullsen, 1996] also used this technique.

3.2.2 Pre-defined classes

In this approach, a set of pre-defined classes is added to the compiler’s runtime
system and each closure is represented as an instance of one of those classes.
There may be classes for closures which receive 0, 1, 2,...,n arguments. The
important point here is that a large set of objects share the same class and their
code could be compiled to static methods, for example, rather than to classes.
The extra costs of this approach come from additional indirections for accessing
the static methods and from the access to free variables, which may be stored
in arrays. However the indirections should not carry out very large costs in the
presence of tail calls.
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In the example shown in 3.2.1, these classes might be subclasses of Closure.
There are several variations of this technique. They differ in the way by which

the closure’s code is accessed. Here we considered three alternatives:

Nonverifiable code:

.NET allows the storage of a function pointer in the closure body. In CIL there
are instructions which allow the direct manipulation of function pointers, but at
a cost: the resulting code is not verifiable, which means it is not guaranteed to be
type-safe. According to [Box and Sells, 2003], “the ability to load nonverifiable
code is itself a permission that one must explicitly grant to code through policy.
The default policy that is installed with the CLR grants this permission only
to code that is installed on a local file system”. So downloaded code that is not
verified cannot be easily executed. Obviously this restriction is a disadvantage
of this strategy, and future versions of .NET Platform intend to impose even
higher restrictions to nonverifiable code. However this appears to offer good
performance and can be offered to the user as an optional feature.

The use of nonverifiable code was originally adopted by ILX but it was soon
abandoned. At the current implementation, ILX uses the one-class-per-closure
technique described above.

Delegates:

Delegates, a new feature introduced with the .NET Platform, are the type-safe
version of function pointers. They are objects which encapsulate a pointer to a
method to be invoked and its target object. By using this .NET feature, each
closure could be a delegate.

We have not found any implementation using delegates for the representation
of closures due to the performance problems found in their implementation on the
first versions of .NET. However we executed some experiments that showed that
delegates’ performance has been improved significantly on .NET 2.0. Therefore
we decided to use them for closures representation in Haskell .NET.

“Indexed code”:

This approach is adopted by Bigloo for Scheme, a strict language, and is de-
scribed in [Bres et al., 2004]. It is also used by some implementations that target
the JVM, such as [Serpette and Serrano, 2002] and [Wakeling, 1999]. The use of
the indexed code technique consists of storing an integer index in each closure
and, when it is invoked, a test on the value stored in the index is carried out and
the suitable function is invoked. Each function is mapped to a different index
and the closure pointing to the function stores the value of this index.
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Performance tests carried out by Bigloo’s implementors showed superior per-
formance through this strategy rather than through the use of delegates. How-
ever the tests were based on the first versions of .NET Framework. Nonetheless,
we intend to compare the performance of this technique with the performance
achieved by delegates in .NET 2.0 in the future.

3.3 Applications

The implementation of function applications in functional languages is not so
trivial as in imperative and object-oriented paradigm. In functional languages
functions are first-class values that can be passed as parameters, returned from
other functions and stored in data structures. It means that a statically unknown
function may be applied to any number of arguments, even to a number of
arguments different from its original arity.

There are two execution models which deal with function application: push/
enter and eval/apply. In the eval/apply execution model, the code which calls
the function is responsible for inspecting its arity and applying the function to
the correct number of arguments. If a function f is called with less arguments
than necessary, a partial application is constructed and returned. On the other
hand, if it is called with more arguments than necessary, we call it assuming that
the function returned by f will consume the remaining arguments. The standard
function call mechanism – that uses the CLR’s stack for passing parameters –
can be used even for functions which are not known statically. This model is
used in F#, ILX and Bigloo for Scheme.

In the push/enter execution model, the called function’s code is responsible
for identifying its arity and for applying it to the correct number of arguments.
When an unknown function or a function applied to an insufficient number of
arguments is called, the arguments are pushed onto a stack and its code is
“entered”. However, if the function is known statically and is applied to enough
arguments, the standard function call mechanism can be used. The push/enter
model is used by Mondrian and [Choi et al., 2001].

Simon Marlow and Simon Peyton Jones [Marlow and Jones, 2004] gave a for-
mal definition for the two mechanisms and compared their implementations when
generating C code and using the Glasgow Haskell Compiler [Jones et al., 93]. The
final conclusion is that both models present similar performance in that context.

We cannot say which one is better in the .NET. To answer this question,
both models need to be implemented and compared. In eval/apply unnecessary
partial applications may be instantiated and extra tests on the function arity
need to be performed. In push/enter, a stack must be built and managed.

We have adopted push/enter for the first version of Haskell .NET. We intend
to implement eval/apply in future versions in order to evaluate which execution
model performs better in the .NET Platform.
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3.4 Parametric Polymorphism

A common feature in functional languages is the ability to define functions which
can receive arguments of any type.

In strongly typed platforms such as .NET and JVM, a traditional approach
to solve this problem is the use of a common superclass to represent the poly-
morphic argument’s type. In .NET, this type can be System.Object, or even a
more specific type defined by the compiler’s runtime system (e.g: Closure). The
use of a common superclass is adopted by Mondrian.

Another possible approach is the use of Generics [Kennedy and Syme, 2001],
a new feature incorporated into .NET 2.0 and Java 1.5. It aims to correct
some limitations of the above technique by avoiding some runtime errors and
unnecessary casts. Generics is currently used by F#.

Since our implementation uses non-strict evaluation, the polymorphic argu-
ments are always typed as closures. Therefore the use of Generics would not give
us any significant performance benefits.

3.5 Discriminated Unions

In functional languages we often define data types such as:

data List t = Nil | Cons t (List t)

We call these definitions discriminated unions. In the above example, Nil and
Cons are constructors.

In .NET there is not a direct counterpart for discriminated unions. Instead we
have enumerations, but these types cannot receive arguments and are mapped to
integer constants. However, we have the concept of classes, which can be used to
represent record types and subtyping relationships. We only need to find efficient
ways to inspect which constructor is being used.

One intuitive option is the generation of an abstract class to represent the
discriminated union – in the above example, a class called List – and one sub-
class per constructor. We can then use a special CIL instruction to dynamically
discover the object’s class. An example is shown below, in C# syntax:

List l;

...

if(l is Nil){...}
else if(l ”is Cons){...}

In the example, the operator is is compiled to the special CIL instruction
cited in the last paragraph. However, an even simpler approach is to annotate
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each object with an integer tag that identifies its constructor [Jones, 1987]. This
way we can dynamically inspect this tag without using any special instructions,
like in the example shown below:

switch(l.tag){
case 1: /* 1 is the tag corresponding to

Nil in the type definition*/

...

case 2: /* 2 is the tag corresponding to

Cons in the type definition*/

...

}

The test for an integer constant tends to be cheaper than the test for an object
type. Besides this, a switch instruction is usually implemented by a lookup table
instead of a set of sequential tests. In general, this technique showed better
performance in our experiments and we decided to use it for the Haskell .NET
compiler. Finally, we avoid the generation of classes by having a set of pre-defined
classes for each number of constructor arguments.

4 The Haskell .NET compiler

In this section we introduce the Haskell .NET compiler, a Haskell implementation
targeting the .NET Platform.

We do not aim to achieve excellent execution times but only a sufficiently
good performance to enable future experimentation with interoperability in
.NET, one of our long-term objectives. Such interoperability will make it possible
to invoke routines written in other .NET languages from Haskell and vice-versa.

We used an optimizing state-of-art Haskell compiler – the Glasgow Haskell
Compiler (GHC) – as a basis for our work. Particularly, we have added to GHC
(version 6-2.2) one back-end capable of generating CIL code.

In the next subsections we introduce the proposed compilation strategies.

4.1 Basic Compilation Strategy

We decided to adopt a compilation strategy mostly based on the Spineless Tag-
less G-Machine (STG) [Jones, 1992], a compilation model considered the state-
of-art for implementation of non-strict functional languages.

According to the STG model, the source program is translated into a program
expressed in a functional intermediate language – the STG Language – whose
(simplified) grammar is shown in Figure 1. The output program is then compiled
according to the STG machine’s compilation rules.
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The decision of using STG instead of GHC Core language as the source lan-
guage for our compiler was motivated by the fact that the first one identifies
explicitly the closures, so providing useful information to our implementation.
The syntax of STG language used by GHC is not identical to the syntax shown
in Figure 1 because it contains annotations related to types, strictness analysis
and several other kinds of information. Particularly, the type annotations enable
us to give exact types to data, reducing the number of casts, for example. All
the information provided by the annotations may be used in the future for opti-
mizations. We also consider to implement a pre-processor to remove annotation
code related to specific GHC versions.

Program prog → binds
Bindings binds → var1 = lf1; ...; varn = lfn n ≥ 1
Lambda-forms lf → varsf\π varsa ⇒ expr
Update flag π → u Updateable

| n Not updateable
Expression expr → let binds in expr Local definition

| case expr of alts Case recursion
| var atoms Application
| constr atoms Saturated constructor
| prim atoms Saturated built-in op
| literal

Alternatives alts → aalt1; ...; aaltn; default n ≥ 1 (Algebraic)
| palt1; ...; paltn; default n ≥ 1 (Primitive)

Algebraic alt aalt → constr vars ⇒ expr
Primitive alt palt → literal ⇒ expr
Default alt default → var ⇒ expr

| default ⇒ expr
Literals literal → 0# |1# |... Primitive integers

| ...
Primitive ops prim → +# |-# |*# |/# Primitive integer ops

| ...
Variable lists vars → {var1, ...varn} n ≥ 0
Atom lists atoms → {atom1, ...atomn} n ≥ 0

atom → var |literal

Figure 1: STG Language

First of all, each Haskell module is compiled to a .NET assembly - a kind
of compilation unit. This assembly contains the declaration of a public class
which has the same name as the module. The class declares public static meth-
ods representing the functions and public static fields representing the top-level
closures. An assembly can access all the public classes/fields/methods declared
in other assemblies. So separate compilation comes for free.

In our compilation strategy, we avoided the generation of one class per closure
and adopted the use of delegates for representing closures and functions. In fact,
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each function/closure is compiled to two static methods: a slow entry point and
a fast entry point.

The fast entry point should be invoked when we know the function that will
be called and have all its arguments at hand. It uses the CLR’s stack to find its
arguments, enabling thus the use of efficient argument passing mechanisms. The
slow entry point is used in two situations: when the function is applied to an
insufficient number of arguments (partial application) or when we do not know
the arity of the function to be called, which occurs when it is an argument or is
stored in a data structure, for example.

The slow entry point receives only one argument: the closure, which contains
free variables if they exist. In these cases, the function’s arguments are expected
to be in special stacks referred here as“HSNET’s stacks” 1. We maintain array
based data structures to implement this kind of stack and keep one stack per
possible type – integer, floating point number, closure or generic object. The
slow entry point checks the sizes of the HSNET’s stacks of the corresponding
arguments types. If there are enough arguments on it, they are popped and
pushed on the CLR’s stack and the fast entry point is called through a tail
call instruction. Otherwise, the arguments found on the HSNET’s stacks are
popped and stored into the the closure argument, which is then returned. When
a known function is called with more arguments than necessary, only the excess
arguments are pushed on the HSNET’s stacks and the fast entry point is called.

An example of this strategy is shown in the next section. Appendix A shows
the compilation schemes used in the current implementation.

4.2 Runtime System

In order to support the representation of closures, we needed to provide a runtime
system with the necessary types and the HSNET’s stacks access methods. In
Figure 2 we show a subset of the types provided by our runtime system. The
HSNET’s stack access methods are encapsulated in a separated module and are
not showed here for simplicity.

In our runtime system, the closure’s Enter method is responsible for the
invocation of the closure’s slow entry-point, passing to it the reference to the
closure object to enable the closure’s code to access the free variables.

It is time we examined in details .NET delegates and their Invoke method.
A delegate inherits from .NET System.Delegate class and stores a pointer to a
method as well as a pointer to the object in which the method will be called (or a
null pointer in the case of static methods). Whenever a delegate’s Invoke method
is called, the method pointed by this delegate is called. Invoke’s signature must
match exactly the signature of the method pointed by the delegate. Invoke’s
1 Note that this is not the CLR’s stack
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Figure 2: Runtime System

body is implemented by the CLR and consists basically of a jump to the pointed
method’s body [Box and Sells, 2003]. In our implementation, a delegate points
to the closure’s slow entry point, and Invoke is called by the Enter method.
Although it is not shown in Figure 2 due to lack of space, the Invoke method
receives as argument the closure (referenced in the Enter method through the
“this” pointer).

As it can be seen from Figure 2, two kinds of closures are treated differently:
updateable closures and non-updateable closures. Updateable closures point to
functions with no arguments and are updated in order to avoid the same compu-
tation more than once. Non updateable closures usually point to functions which
receive arguments. The analysis responsible for identifying updateable closures
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is done statically by the STG code generator.
The updateable closures keep a field – value – that stores the closure’s value

after its first evaluation and its Enter method’s implementation follows the steps
below:

1. Tests if the closure’s value was already computed by inspecting the value

field. If it was already evaluated, a tail call to value’s Enter method is done.
Otherwise, step 2 is executed.

2. Pushes the HSNET’s stacks’ sizes on a second stack – the update stack –
and sets their sizes to 0. This step has the same effect as saving the update
frame in the STG machine.

3. Generates a call to Invoke and stores the result in value.

4. Restores the HSNET’s stacks’ sizes.

The non-updateable closures’ Enter method just makes a tail call to the In-

voke method. They also keep an object which encapsulates arguments previously
passed in partial applications – the “pap” field. It stores the received arguments
for future applications of the same closure/function. Finally, the arity field is
decremented by the same number of elements which are stored in the partial
application field.

In the current implementation, we obtain the arity information from the STG
program generated by GHC. When a function/closure is statically unknown, its
arity information is also unknown and is set to 0 (zero) by GHC’s front end. This
leads us to deal with calls to unknown closures and to updateable closures (arity
= 0) in the same way: generating a call to the slow entry point (the closure’s
Enter method).

Again from Figure 2 we see classes that represent data instead of closures –
the “Pack...” classes [Jones, 1987]. Instances of these classes represent construc-
tors of discriminated unions. They store the constructor’s arguments and a tag
to identify it. Their Enter method simply returns. Some optimizations are done,
such as mapping nullary constructors applications to null whenever possible.

In order to represent the types of elements such as free variables, function
arguments and constructor arguments, we use Generics. The Figure 2 shows only
a subset of our runtime system, because in fact there are classes for representing
closures with more than 2 arguments or more than 2 free variables and data
constructors with more than 2 arguments. For situations in which a very large
number of arguments/free variables are needed, new classes can be generated.

The compilation strategy is better understood with an example: the map

function, which receives a function f and a list l and returns a new list whose
elements result from the application of f to the elements of l. The STG code for
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map is shown below. We use the STG notation varsf\π varsa -> expr (varsf is
the set of free variables, varsa is the set of arguments and π is the update flag
– u for updateable and n for non-updateable).

map = {} \n {f,l}-> case l of

Nil {}-> Nil {}
Cons {x,xs }-> let fx = {f,x} \u {} -> f {x}

fxs = {f,xs} \u -> map {f,xs}
in Cons {fx,fxs}

The code generated is similar to the one shown below, written in pseudo-C#
notation for simplicity. In the code, “<tail>” means tail call.

//slow entry point

public static IClosure map(NonUpdateable clo){
/*If there are enough arguments in the HSNET’s stacks, tail calls the fast

entry point. Otherwise, returns a partial application.*/

}
//fast entry point

public static Pack 2<IClosure, IClosure >map(IClosure f, IClosure l){
Pack 2<IClosure, IClosure> scrutinee = (Pack 2<IClosure, IClosure>)l.Enter();

if(scrutinee != null) {
IClosure x = scrutinee.args1;

IClosure xs = scrutinee.args2;

Updateable 2 FV<IClosure, IClosure> fx closure =

new Updateable 2 FV<IClosure, IClosure>(fx);

fx closure.fv1 = f;

fx closure.fv2 = x;

Updateable 2 FV<IClosure, IClosure> fxs closure =

new Updateable 2 FV<IClosure, IClosure>(fx);

fxs closure.fv1 = f;

fxs closure.fv2 = xs;

return new Pack 2<IClosure, IClosure>(fx closure, fxs closure);

} else return null;

}
public static IClosure fx(Updateable 2 FV<IClosure, IClosure> closure){
RTS.Push(closure.fv2);

<tail>closure.fv1.Enter(); //call to unknown function

}
public static IClosure fxs(Updateable 2 FV<IClosure, IClosure>closure)

<tail>map(closure.fv1, closure.fv2);

}
fx and fxs do not need fast entry-points since they have no arguments.
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5 Conclusions and Future Work

We have described a compilation strategy for non-strict functional languages
targeting the .NET Platform. Our strategy was based on the push/enter ex-
ecution model and we focused on the Haskell language as a case study. Our
approach does not generate one class per closure/function like most non-strict
functional languages’ implementations for object-oriented virtual machines. In-
stead, it takes advantage of a new feature present in .NET: delegates, a kind
of type-safe function pointer. Like closures, delegates are dynamically allocated
objects that can store fields and a pointer to code. Finally, we support efficient
argument passing mechanisms and tail calls.

Our implementation is in an initial stage, currently supporting the compila-
tion of part of the Haskell prelude and small programs. We have not evaluated
and tuned it for performance yet, and therefore it is too early to present perfor-
mance results compared to other Haskell compilers or GHC back-ends.

A question to be addressed is the impact of runtime typing, because it may
generate considerable overhead due to unnecessary type verifications. Functional
languages are statically typed and so runtime type errors should never occur. We
have not measured this impact yet. In performance critical applications which
do not have security restrictions, it can be reduced through the generation of
unverifiable code, where runtime casts are not mandatory. However, we believe
that some extensions should be incorporated into the CLR in order to support
static typed languages in an efficient and type-safe way.

We plan to experiment with the eval/apply execution model. It enables us to
remove the HSNET’s stacks. However, it may lead to the instantiation of more
objects representing partial applications and extra tests on function arity. We
will be able to decide which execution model is best for the .NET Platform after
implementing both and comparing their performance over different aspects. We
also intend to experiment with other representations for closures in order to find
out if delegates really lead to the best performance. These experiments may tell
us if extensions to the CLR architecture are necessary. We believe that the native
CLR support to the representation of closures might provide better performance,
but only experimentation can give us an exact answer.

We will also work on interoperability issues for Haskell .NET by researching
ways of calling Haskell code from other .NET languages and vice-versa. The in-
teroperability with other .NET languages and consequently with .NET standard
libraries will enable the Haskell programmers to implement real-world systems,
including graphical user interfaces, distributed systems and web applications. At
the present, the interoperability with the .NET world occurs at a low level, in
the implementation of standard I/O functions from the Haskell prelude. Finally,
we intend to develop the necessary tools for enabling the development of ASP
.NET pages in Haskell.
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6 Related Work

Some well known strict functional languages have been successfully implemented
in the .NET Platform, such as SML [Benton et al., 2004] – extended to provide
interoperability with .NET – and Scheme (Bigloo) [Bres et al., 2004]. The first
one was extended to provide interoperability with .NET. and provides a limited
support to separate compilation.

Mondrian is a non-strict functional language which was implemented for the
.NET Platform. However its implementation was highly experimental and had
no optimizations. Since it targets C#, it does not support tail-calls, for example.

Other attempts have been made to compile Haskell to .NET. One of them
consisted of compiling Haskell to Mondrian code, but it did not cover the full
Haskell prelude. Another attempt consisted of generating ILX code. However,
both implementations had no efforts towards performance and were mostly
proofs of concept. None of them have published performance results.

Finally, some solutions resulted in the creation of new languages, such as
Mondrian and F#. However, the problem of creating new functional languages
targeting the .NET Platform is that they are not known by the development
community. Besides this, they tend to incorporate hybrid or multi-paradigm
features and sacrifice the typical functional features, in some cases. Nonetheless
some of these languages have very interesting interoperability characteristics,
being free to define their syntax and semantics.
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A Compilation Schemes

The set of compilation rules used by the Haskell .NET compiler is presented
in Figures 3 and 4. The expression currently being compiled is shown in the
left hand-side, in STG notation, and its compiled version is shown in the right
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hand-side. Although the compiled version is in fact generated in CIL, it is shown
in C# for simplicity.

The following schemes are used in the compilation rules:

– B (Figure 3), responsible for the compilation of bounded expressions,

– E (Figure 3), responsible for the compilation of expressions,

– A (Figure 4), responsible for the compilation of alternatives,

– C (Figure 4), responsible for the compilation of auxiliary expressions,

– T (Figure 4), responsible for returning the corresponding .NET type of an
STG type,

– L (Figure 4), responsible for returning the lazy type corresponding to an
STG type. The “lazy type” is meant to be closure type (interface IClosure)
if the STG type is non-primitive, or the corresponding .NET primitive type
otherwise.

Other symbols are also used in the compilation schemes:

– τ is the STG type of an element;

– * is used for an optional element;

– “SEP” is an abbreviation for “slow entry-point” and <<id> SEP> means “the
slow entry-point of the function bounded to id”. In C# language it is the
method’s name, however in CIL a pointer to the method is used instead.

– “push” is an abbreviation for the method responsible for pushing an object
on the suitable HSNET’s stack.

Although it is not explicitly shown in the compilation schemes, a function
invocation is compiled to a tail call whenever possible. However, if a function
invocation is not the last expression in its scope, the tail call obviously cannot
be used and a normal call is generated instead.

For simplicity, we do not include in the compilation schemes the code relative
to the slow entry points nor the declarations of the generated methods. Moreover,
this code is not directly related to the expressions shown in the first column.
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B[prog → bind1, ..., bindn] = B[bind1]...B[bindn]
B[id = f1..fm\n a1..an → expr] = NonUpdatable FV <m>

<T[τ (f1)],...,T[τ (fm)]> id =
new NonUpdatable FV <m>
<T[τ (f1)],...,T[τ (fm)]>(<id SEP>);

id.fv<1>=C[f1];
...
id.fv<m>=C[fm];
id.arity = <n>;

B[id = f1..fm\u → expr] = Updateable FV <m>
<T[τ (f1)],...,T[τ (fm)]> id =

new Updateable FV <m>
<T[τ (f1)],...,T[τ (fm)]>(<id SEP>);

id.fv<1>=C[f1];
...
id.fv<m>=C[fm];

E[let bind in expr] = B[bind]; E[expr]
E[let bind1, ..., bindn in expr] = B[bind1];...;B[bindn ]; E[expr]
E[case expr of alts] = T[τ (expr)] scrutinee =

(T[τ (expr)]) E[expr];
A[alts]

E[var atom1...atomn, atomn+1, ..., atomm],
var has no free variables and has arity n,
m ≥ 0

= push C[atomm];
...;
push C[atomn+1];
var (C[atom1], ..., C[atomn]);

E[var atom1...atomn, atomn+1, ..., atomm],
var has free variables and has arity n, m ≥ 0

= push C[atomm];
...;
push C[atomn+1];
var (var, C[atom1], ..., C[atomn]);

E[var atom1...atomm], var has arity n,
m < n

= push C[atomm];
...;
push C[atom1];
var.Enter();

E[var atom1...atomm],
var has unknown arity or has arity 0, m ≥ 0

= push C[atomm];
...;
push C[atom1];
var.Enter();

E[constri],
if constri is the only nullary constructor

= null

E[constri atom1...atomn] = new Pack <n>
<L[τ (atom1)],...,L[τ (atomn)]>
(i, C[atom1], ..., C[atomn])

E[Θ atom1...atomn], Θ is primitive = C[atom1] Θ ... Θ C[atomn]
E[n#], where n# is a literal of a primitive
type

= n

Figure 3: B and E Compilation Schemes
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A[constr1 arg0...argm → expr1;
...;
constri → expri;
...;
constrn arg0...argp → exprn;
default]

if constr i is the only nullary constructor

= if(scrutinee == null){
E[expri]

} else {
switch(scrutinee.tag){
case constr1’s tag:

arg 1 = scrutinee.arg1;
...
arg m = scrutinee.arg<m>;
E[expr1]...

case constrn’s tag:
arg 0 = scrutinee.arg1;
...
arg p = scrutinee.arg<p>;
E[exprn]

A[default] }
A[constr1 arg0...argm → expr1;

...;
constrn arg0...argp → exprn;
default]

= switch(scrutinee.tag){
case constr1’s tag:
arg 1 = scrutinee.arg1;
...
arg m = scrutinee.arg<m>;
E[expr1]...

case constrn’s tag:
arg 0 = scrutinee.arg1;
...
arg j = scrutinee.arg<p>;
E[exprn]

A[default]
}

A[default → expr] = case default: E[expr];
A[var → expr] = case default: C[var] = scrutinee;

E[expr];
A[literal1 → expr1;

...;
literaln → exprn;
default]

= switch(scrutinee){
case E[literal1]: E[expr1]...
case E[literaln]: E[exprn]
A[default] }

C[var] = var
C[literal] = E[literal]
L[int#] = T[int#] = int32
L[char#] = T[char#] = char
L[float#] = T[float#] = float32
L[t], t is a boxed type = IClosure
T[t], where t has the form
data X = ...

| constri t1...tm

| ...
| constrj u1...un

{t1, ...tn} �= {u1, ...un}

= Pack

T[t], where t has the form
data X = (constri)∗

| constrj u1...un

| ...
| constrk u1...un

= Pack <n><L[u1],...L[un ]>

Figure 4: A, C, L and T Compilation Schemes
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