
On Theoretical Upper Bounds for Routing Estimation

Fei He
(Dept. CS&T and School of Software, Tsinghua University, China

hef02@mails.tsinghua.edu.cn)

Lerong Cheng, Guowu Yang, Xiaoyu Song
(Dept. ECE, Portland State University, USA

chenglerong@yahoo.com, {whung, song}@ece.pdx.edu)

Ming Gu, Jiaguang Sun
(School of Software, Tsinghua University, China

{guming, sunjg}@tsinghua.edu.cn)

Abstract: Routing space estimation plays a crucial role in design automation of digital
systems. We investigate the problem of estimating upper bounds for global routing of
two-terminal nets in two-dimensional arrays. We show the soundness of the bounds for
both wiring space and total wire-length estimation.
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1 Introduction

With deep-submicron technology, the interconnection delay becomes a dominant
factor in integrated circuit designs. An efficient physical design entails accurate
estimations of the individual modules for area planning, optimal placement,
and routability of interconnections. Estimation of interconnects before layout
becomes a crucial issue for a hierarchical design process.

In the hierarchical design process, the location of each module is determined
during placement stage. After placement, routing process is performed for in-
terconnects. Routing consists of global and local routing [Sherwani 95]. During
global routing, an approximate route for each net is determined while in local
routing an exact route is fixed for each net. Prior to the routing phase, placement
is a difficult task. An ineffective placement may cause a unsolvable routing prob-
lem at later stage, thus reducing the routability. Therefore, an early estimation
process is crucial to the success of placement.

Global routing of two-terminal nets is known to be NP-complete [Karp 87,
Sherwani 95]. There have been many heuristic algorithms for global routing
[Burstein 83, Cho 98, Kuh 86, Li 84, Luk 87, Sarrafzadeh 90, Veccchi 83].

Routing is to interconnect individual modules. A netlist provide the detail
information for interconnection, where every net in the list specifies which pin in
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which module should be connected together. Nets must be routed in area that
is not occupied by any module, namely routing region.

In this paper, we present a quick prediction approach. Wire space estima-
tion can provide a deeper insight for the placement stage [Cho 00, Gamal 81,
Song 00]. We present theoretical upper bounds for routing estimation on both
wire space and length.

Our paper is organized as follows. In Section 2, we give the formulation of
the problem. In Section 3, we present a new upper-bound density. In Section
4, the estimation of the total wire length is discussed. Section 5 concludes the
paper.

2 Preliminaries

As defined in [Cho 00], consider the global routing for a set of n two-terminal
nets in a two-dimensional array. A plane consists of a 2-D m × m grid with
1 × 1 being the basic cell-grid size. A path was assumed to go from cell to cell
horizontally or vertically. Let cell(i, j) be a cell at the i-th row and the j-th
column of the routing region. Let dh(i, j) denote the number of nets crossing the
border of cell(i, j) and cell(i, j + 1). Similarly, let dv(i, j) denote the number of
nets crossing the border of cell(i, j) and cell(i+1, j). The global density dR is the
maximum value of all dh(i, j) and dv(i, j), i.e. dR = max

i,j
{dh(i, j), dv(i, j)}.Our

purpose is to minimize the global density.
Our estimation approach is based on a top-down hierarchical approach, which

partitions a routing region into four square sub-regions recursively [Burstein 83].
For the convenience of notation, we refer to the map to be quad-partitioned as
quadrisection map. Let QM(0) denote the original whole routing area. Each
quadrisection map QM(i) is partitioned into four quadrants Qi

k, k = 1, 2, 3, 4
(labeled counterclockwise from upper-right corner). A common boundary of two
adjacent quadrants is said to be a cut line. There are two vertical and two
horizontal cut lines in QM(i), denoted by Ci

k, k = 1, 2, 3, 4 (labeled counter-
clockwise from right horizontal cut line). The length of every cut line in QM(i)
is denoted by Li = m/2i+1, 0 ≤ i ≤ log2m − 1 (assume m is a power of 2).

In what follows, we restrict our discussion to two-terminal nets. Two-terminal
nets are nets only connecting two pins of modules. It follows that the terminals
of any pair of those nets are disjunct, because otherwise the pair of nets would be
counted as one net with three terminals. The model can be extended to handle
the multi-terminal case by using rectilinear Steiner tree or minimum spanning
tree. A level-i net is a net in QM(i) whose two terminals are located in the
different quadrants of QM(i). The terminals corresponding to the level-i nets
are known as level-i terminals. Assume there are t(i) level-i terminals in QM(i),
then the number of level-i nets is obviously t(i)/2. These t(i) terminals have been
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QM(0)

 QM(1)

QM(2)

.   .   .   .   .   .

Figure 1: A quad-tree

(a) (b) (c)

Figure 2: Three types of connections: (a) straight connection; (b) one-bend con-
nection; (c) detour connection

distributed into four quadrants of QM(i). Let t(i, k) be the number of level-i
terminals distributed to Qi

k. We have: t(i) =
∑4

k=1 t(i, k).
The process of quad-partitioning can be denoted by a quad-tree such that its

root is QM(0) and all of its level-i nodes are QM(i), as shown in Fig. 1. It should
be noted that there are 4i QM(i) in the level-i of a quad-tree. Considering the
whole routing region as an m×m grid, the corresponding quad-tree has at most
log2m levels.

As in [Cho 00], the set of level-i nets in QM(i) can be sorted as two types:
type-1 (adjacent combination) and type-2 (diagonal combination). The type-1
nets can be routed using detour connection or straight connection, while the
type-2 nets can be routed only using one-bend connection, as shown in Fig. 2.
Furthermore, the set of type-1 nets can be sorted as: F i

12, F i
23, F i

34 and F i
41;

the set of type-2 nets can be sorted as F i
13 and F i

24, where F i
pq (p, q = 1, 2, 3, 4)

denotes the nets which has one terminal in Qi
p and the other terminal in Qi

q. Let
f i

pq be the number of nets in F i
pq.

Theorem 1. [Cho 00] Assuming that nets are distributed evenly over cut lines,
the tightly estimated upper bound on the number of tracks required on every cut
line of QM(i) is:

�(f i
13 + f i

24 + f i
max1 + f i

max2)/2�,
where f i

max1 = max{f i
12, f

i
23, f

i
34, f

i
41}, and f i

max2 = max{{f i
12, f

i
23, f

i
34, f

i
41} −
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{f i
max1}}.
Although some discussion on the proof scheme was given in [Cho 00], we give

a rigorous and detailed proof as follows.

Proof. Let F i
max1 be the subset of type-1 nets which has f i

max1 nets, and Ci
max1

be the cut lines corresponding to F i
max1. Similarly we define F i

max2 and Ci
max2.

Then consider the following routing strategy.
1) All nets in F i

12 ∪ F i
23 ∪ F i

34 ∪ F i
41 − F i

max1 are connected by adjacent con-
nections; f i

max2 nets in F i
max1 are connected by adjacent connections. Among

f i
max1 − f i

max2 remaining nets in F i
max1, half of which are assigned also by ad-

jacent connections, half of which are assigned by detour connection; then there
are at most �(f i

max1 + f i
max2)/2� tracks required on Ci

max1 and Ci
max2 to route

these type-1 nets.
2) For type-2 nets, they are assigned evenly, such that there are at most

�(f i
13 + f i

24)/2� tracks required on Ci
max1 and Ci

max2 to route these type-2 nets.
Totally, there are at most �(f i

13+f i
24+f i

max1+f i
max2)/2� tracks required on Ci

max1

and Ci
max2. Obviously, the numbers on other cut lines cannot be greater than the

number on Ci
max1 and Ci

max2. With the assumption that the nets are distributed
evenly, which is stronger than above routing strategy, the number of tracks
required on every cut line must not be greater than the number produced by the
above routing strategy. That is to say with this assumption, the upper bound for
the number of tracks required on every cut line is �(f i

13+f i
24+f i

max1+f i
max2)/2�.

3 An Existential Density Upper Bound

Let di
k be the density of nets on cut line Ci

k, i.e. the number of nets crossing Ci
k.

The global density (dR) can be estimated as the maximal value of all di
k on all

cut lines. Obviously, the nets contributing to the densities in QM(i) (i.e. the net
densities on cut lines in QM(i)) include not only the level-i nets, but also some
higher level nets. Here the higher level nets denote the nets whose two terminals
are distributed in different quadrants of higher-level nodes in a quad-tree.

Let sum(i) be the sum of the number of nets which do affect the densities in
QM(i). From Theorem 1, we can conclude that the number of tracks required
on every cut line of QM(i) is at most �sum(i)/2�. The level density which
only considers the effect of the current level nets is defined as [Cho 00]: d0 =
max{�U i/(2 · Li)� | 0 ≤ i ≤ log2m − 1}, where U i = max{t(i, k) | 1 ≤ k ≤ 4i+1}.
Consider the level r−2 nets that pass QM(r−1) as candidate nets, and define σ

to be the maximal value of the propagation ratio of the candidate nets to QM(r)
(2 ≤ r ≤ log2m−1).

Theorem 2. There are at most 2
(

1 +
i∑

l=0

2lσl

)
d0 tracks required at each chan-

nel on the cut line in QM(i).
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Proof. When i=0, the number of level-0 terminals in QM(0) is t(0) =
4∑

k=1

t(0, k)

≤ 4U0, and the number of level-0 nets in QM(0) is t(0)/2 ≤ 2U0 ≤ 2 · 2L0d0 =
4L0d0 (by d0 ≥ U0/(2L0)). From Theorem 1, we can conclude the maximal
number of tracks required on every cut line of QM(0) is no more than half
of the total number of level-0 nets, so the density in QM(0) is no more than
4L0d0/(2L0) = 2d0.

When i=1, there are two types of nets that contribute to QM(1), one is
the level-1 nets in QM(1), and the other is the level-0 nets that pass QM(1).
From the analysis of i=0, the number of level-1 nets in QM(1) is at most 4L1d0.
Considering QM(1) being a quadrant of QM(0), there are two borders between
QM(1) and other quadrants of QM(0), each of which can have at most L0d0

tracks to connect the level-0 nets (by the definition of d0). So the maximal
number of tracks on the border of QM(1) that can be used to connect level-0
nets is 2L0d0. In other words, there totally can have 2L0d0 level-0 nets passing
QM(1). Thus, the maximal density in QM(1) is (4L1d0 + 2L0d0)/(2L1) = 4d0.

When i=2, there are totally three types of nets which contribute to QM(2),
type 1 is the level-2 nets in QM(2), type 2 is the level-1 nets that pass QM(2),
type 3 is the level-0 nets that pass QM(2). From the analysis of i=0, the maximal
number of level-2 nets in QM(2) is 4L2d0; while from the analysis of i=1, the
maximal number of level-1 nets contributing to QM(2) is 2L1d0. It is a bit
harder to decide the propagation of type 3 nets to QM(2). We consider the
level-0 nets that pass QM(1) as candidate nets. According to the discussion
when i=1, we know the number of the candidate nets is 2L0d0. The candidate
nets will affect QM(2) in two cases: one of the terminals of the net is in QM(2);
no terminal is in QM(2) but the wire will cross QM(i + 2). For the set of
candidate nets, assume the percentages of candidate nets in cases 1 and 2 are r1

and r2, respectively. Note that all the candidate nets in case 1 will be propagated
to QM(2), i.e. the propagation ratio of the candidate nets in case 1 is 1. Assume
the propagation ratio of the candidate nets in case 2 is x, then the propagation
ratio of the total candidate nets is r1 + r2 · x, where the parameters r1, r2

and x depend on the global routing. We can deduce the propagation ratio is
between x and 1, by 1 ≥ r1 + r2 · x ≥ r1 ≥ x + r2 · x ≥ (r1 + r2) · x ≥ x.
In this paper, we assume the propagation ratio of any set of candidate nets is
no more than σ, where x ≤ σ ≤ 1. Then the maximal density in QM(2) is
(4L2d0 + 2L1d0 + σ · 2L0d0)/(2L2) = 4(σ + 1)d0.

Recursively when i=r, there would be r+1 types of nets that do affect the
densities in QM(r), these nets are level-0 to level-r nets respectively. Because
the propagation ratio of level-l candidate nets to QM(l + 2) is no more than
σ, then the propagation ratio of it to QM(l + 3) is no more than σ2, . . . , and
recursively the propagation ratio of it to QM(r) is no more then σr−l−1. Then
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we can conclude that the maximal density in QM(r) is:

(4Lrd0 + 2Lr−1d0 + σ · 2Lr−2d0 + σ2 · 2Lr−3d0 + . . . + σr−1 · 2L0d0)/(2Lr)

= 2

(
1 +

i∑
l=0

2lσl

)
d0

=

⎧⎪⎨
⎪⎩

2
(

1 +
1 − 2iσi

1 − 2σ

)
d0 if σ �= 0.5;

2(i + 1)d0 if σ = 0.5.

Thus the theorem holds.

In [Cho 00], the propagation ratio of any set of candidate nets is implicitly
limited to be no more than 0.5 (this conclusion can be easily arrived following
the similar analysis as the proof to Theorem 2), and thus the number of tracks
required on any channel is at most 2(i +1)d0. It is, in fact, a special form of our
theorem with σ = 0.5. Our theorem can be viewed as the extended form of the
Invariant in [Cho 00].

The corresponding conclusion in [Cho 00] can cover over most of but not all
routing cases. As shown in Fig. 3, the routing area is 216 × 216 (m=216). There
are totally 216 2-terminal nets. These nets are all level-0 nets, because for each
of which its two terminals are located in different quadrants of QM(0). For each
net, one terminal is in Area A and the other terminal is in Area B, where Area A
and Area B are 28 × 28 square regions in the upper left quadrant and the lower
right quadrant, respectively. There may be other terminals in area besides A and
B, but they are not level-0 terminals and are not drawn in Fig. 3. According to
our proposed model, Area A and Area B are corresponded to a level-8 node in the
quad-tree, respectively. Especially, we denote Area A as QM(8). The nodes on
the path from root to QM(8) (not including root and QM(8)) in the quad-tree
are denoted as QM(1), QM(2), . . . , QM(7) orderly. Note that all the terminals
in Area A are not only in QM(0), but also in QM(1), QM(2), . . . , QM(7).
Thus, the level-0 nets corresponding to these terminals would all be propagated
to QM(1), QM(2), . . . , QM(7). If we consider the level-0 nets which pass QM(1)
as candidate nets, then this example is just the extreme case with r1=1, r2=0
and therefore σ = 1. Obviously, the conclusion of [Cho 00] cannot hold for this
case.

From Theorem 2, we can easily estimate the global density as:

Theorem 3. In a 2-D m × m grid, the worst-case upper bound for the global
density is:

dR ≤ max

{
2

(
1 +

i∑
l=0

2lσl

)
d0|0 ≤ i ≤ log2 m − 1

}
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Each pin in area A connects
 to a pin in Area BArea A

Area B

150 2L

162

82

82

 A AreainpinsTotally 1628 2)2(

B AreainpinsTotally 1628 2)2(

Figure 3: An example of the density upper bound

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2d0 0 ≤ σ < 0.5

2 log2 m · d0 σ = 0.5

2
(

1 +
1 − (2σ)log2 m−1

1 − 2σ

)
· d0 0.5 < σ ≤ 1

Considering the example shown in Fig. 3, if we let σ = 1, then the estimated
worst-case upper bound density is dR ≤ 216.

Because the grid size is m×m, with the upper bound density, the total wire
space can be further estimated as no more than dR

2.

4 Total Wirelength Estimation

Consider the connections for the set of level-i nets in QM(i). As shown in Fig.
2, the straight connection that crosses one cut line is Li long, the one-bend con-
nection that crosses two cut lines is 2Li long, and the detour connection that
crosses three cut lines is 3Li long. Assume that there are at most f i

1 straight
connections, f i

2 one-bend connections and f i
3 detour connections in QM(i), re-

spectively, then the total wire length required to route the level-i nets in QM(i)
is Li(3f i

3 + 2f i
2 + f i

1). There are totally 4i level-i nodes in a quad-tree, for
i = 0, . . . , log2m − 1. Let F i

1, F i
2, and F i

3 be the total numbers of straight con-
nections, one-bend connections and detour connections in all 4i level-i nodes
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respectively. Then the total wire length required to route all level-i nets in all
level-i nodes, denoted as ωi, is:

ωi = Li
(
3F i

3 + 2F i
2 + F i

1

)
Note that the total number of the level-i nets in QM(i) is no more than

4Lid0 (refer to Section 3), so f i
3 + f i

2 + f i
1 ≤ 4Lid0, and further: F i

3 + F i
2 + F i

1 ≤
4i × (f i

3 + f i
2 + f i

1) ≤ 4i × 4Lid0 = 4i+1Lid0.
For the union set of level-i nets distributed in all 4i level-i nodes, let αi,

βi be the ratio of type-2 nets (diagonal combination) and type-1 nets (adjacent
combination) respectively. Then we have F i

3 + F i
1 = βi · (F i

3 + F i
2 + F i

1) ≤
βi4i+1Lid0 and F i

2 = αi · (F i
3 + F i

2 + F i
1) ≤ αi4i+1Lid0, for i = 0, . . . , log2m− 1.

For the union set of nets in all levels, let α and β be the ratio of type-2 and
type-1 nets, respectively. Obviously they are also the mean values of {αi}i and
{βi}i respectively. Note that the parameters α and β are independent of the
propagation ratio. The values for α and β can be easily estimated with the
locations of terminals of all nets.

During the global routing, the number of detour connections should be re-
duced as much as possible to minimize the global density, such that F i

3 is much
less than F i

1 and F i
2. Then ωi can be estimated as:

ωi ≈ Li
(
(F i

3 + F i
1) + 2F i

2

) ≤ (2αi + βi)4i+1L2id0 = (2αi + βi)m2d0

As a result, the total wire length in all levels of top-down hierarchy is:

Ω =
log2 m−1∑

i=0

ωi ≤
log2 m−1∑

i=0

(2αi + βi)m2d0 = (2α + β) log2 m · m2d0

If F i
3 cannot be ignored, notice that f i

3 would get its maximal value only in the
case that all level-i nets are type-1 nets and all level-i terminals are distributed in
the same two quadrants. In such a case, the half of the nets should be connected
by adjacent connections, while the other half of nets should be connected by
detour connections. Consider that the number of level-i nets is f i

3 + f i
2 + f i

1, and
then the number of detour connections in this case is (f i

3 + f i
2 + f i

1)/2. So the
maximal value of f i

3 is (f i
3 + f i

2 + f i
1)/2, and we have:

(ωi)′ = Li(F i
1 + F i

3 + 2F i
2 + 2F i

3) ≤ Li(2F i
1 + 2F i

3 + 3F i
2) = (3αi + 2βi)m2d0

Hence, the total wire length in all levels of top-down hierarchy is:

Ω′ =
log2 m−1∑

i=0

(ωi)′ ≤
log2 m−1∑

i=0

(3αi + 2βi)m2d0 = (3α + 2β) log2 m · m2d0

We summarize the above discussion as follows (similar results can be found
in [Cho 00], but they ignored there are 4i QM(i) in the level-i of a quad-tree):
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Theorem 4. The total wirelength required to achieve the upper bound obtained
in Theorem 3 is (2α + β)(log2m) · m2d0, where α is the proportion of diagonal
nets, β is the proportion of adjacent nets, and d0 is the estimated level density.

5 Conclusion

We presented the worst case upper bounds for routing estimation. We proved

that the upper bound density is max

{
2
(

1 +
i∑

l=0

2lσl

)
d0|0 ≤ i ≤ log2 m − 1

}
in a 2-D m × m grid, where d0 is the estimated level density, and the total
wirelength required to achieve the upper bound is (2α+β)(log2m) ·m2d0, where
α is the percentage of diagonal combination nets and β is the percentage of
adjacent combination nets.

In this paper, we focused on the theoretical analysis on routing estimation,
where the propagation ratio of the candidate nets remained to be an unassigned
parameter. Further research can be done with the propagation ratio. There can
be a quick preprocessing before estimation, so that we can quickly check the dis-
tribution of all terminals on the given routing area and then give an appropriate
value to the propagation ratio.
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