
Automatic Test Data Generation for Data Flow Testing
Using a Genetic Algorithm

Moheb R. Girgis
(Department of Computer Science, Faculty of Science

Minia University, El-Minia, Egypt
moheb_r_g@yahoo.com)

Abstract: One of the major difficulties in software testing is the automatic generation of test
data that satisfy a given adequacy criterion. This paper presents an automatic test data
generation technique that uses a genetic algorithm (GA), which is guided by the data flow
dependencies in the program, to search for test data to cover its def-use associations. The GA
conducts its search by constructing new test data from previously generated test data that are
evaluated as effective test data. The approach can be used in test data generation for programs
with/without loops and procedures. The proposed GA accepts as input an instrumented version
of the program to be tested, the list of def-use associations to be covered, the number of input
variables, and the domain and precision of each input variable. The algorithm produces a set of
test cases, the set of def-use associations covered by each test case, and a list of uncovered def-
use associations, if any. In the parent selection process, the GA uses one of two methods: the
roulette wheel method or a proposed method, called the random selection method, according to
the user choice. Finally, the paper presents the results of the experiments that have been carried
out to evaluate the effectiveness of the proposed GA compared to the random testing technique,
and to compare the proposed random selection method to the roulette wheel method.

Keywords: software testing, automatic test data generation, data flow testing, Genetic
algorithms
Categories: D.2.5, K.6.3

1 Introduction

Software testing has two main aspects: test data generation and application of a test
data adequacy criterion. A test data generation technique is an algorithm that generates
test cases, whereas an adequacy criterion is a predicate that determines whether the
testing process is finished, [Frankl, 93]. Several test data adequacy criteria have been
proposed, such as control flow-based and data flow-based criteria. One of the major
difficulties in software testing is the automatic generation of test data that satisfy a
given adequacy criterion.

An automated test data generator is a tool that assists the tester in creating test
data. Test data generators can be categorized into three classes: random test data
generators (e.g., [Mills, 87]; [Voas, 91]), structural-oriented test data generators
(e.g., [Boyer, 75]; [Clarke, 76]; [Ramamoorthy, 76]; [Howden, 77]; [Korel, 90];
[DeMillo, 91]; [Girgis, 93]), and data specification generators (e.g., [Miller, 75];
[Bauer, 79]; [Maurer, 90]). Random test data generators select random test data from

Journal of Universal Computer Science, vol. 11, no. 6 (2005), 898-915
submitted: 16/6/04, accepted: 17/1/05, appeared: 28/6/05 © J.UCS

the domain of input variables. Structural-oriented test data generators are based on
covering certain structural elements in the program. Most of these generators use
symbolic execution to generate test data to meet a testing criterion such as path
coverage, branch coverage, def-use coverage, mutation, etc. Data specification
generators select test data from program specification, in order to exercise features of
the specification.

Recently, the use of genetic algorithms (GAs) in test data generation became the
focus of several research studies, (see e.g., [Pei, 94]; [Roper, 95]; [Watkins, 95],
[Jones, 96]; [Jones, 98]; [Pargas, 99]; [Bueno, 00]; [Lin, 01]; [Michael, 01]. As far as
the author is aware, none of the reported studies have used GAs to generate test data
to cover the def-use associations of the program.

This paper presents a structural-oriented technique for automatic test data
generation that uses a genetic algorithm, which is guided by the data flow
dependencies in the program, to search for test data to fulfil one of the most
demanding in the family of data flow path selection criteria, developed by Rapps and
Weyuker [Rapps, 85], namely the all-uses criterion. The genetic algorithm conducts
its search by constructing new test data from previously generated test data that are
evaluated as effective test data. In the parent selection process, the GA uses one of two
methods: the roulette wheel method or a proposed method, called the random
selection method, according to the user choice. The approach can be used in test data
generation for programs with/without loops and procedures.

This paper is organized as follows: Section 2 describes the data flow analysis
technique used to implement the all-uses criterion. Section 3 describes the principles
of GAs. Section 4 describes the proposed GA for automatic test data generation, and
gives the result of applying this algorithm to an example program. Section 5 presents
the results of the experiments that are conducted to evaluate the effectiveness of the
proposed GA compared to the random testing technique, and to compare the proposed
random selection method to the roulette wheel method.

2 The Data Flow Analysis Technique

This section describes the all-uses criterion and the data flow analysis technique used
to implement it. Firstly, some definitions used in describing this technique are
presented.

The control flow of a program can be represented by a directed graph with a set of
nodes and a set of edges. Each node represents a group of consecutive statements,
which together constitute a basic block. The edges of the graph are then possible
transfers of control flow between the nodes. A path is a finite sequence of nodes
connected by edges. A complete path is a path whose first node is the start node and
whose last node is an exit node. A path is def-clear with respect to a variable if it
contains no new definition of that variable. Figure 2 presents the flow graph of the
example program, shown in Figure 1, which determines the middle value of three
given integers X, Y, and Z.

Data flow analysis focuses on the interactions between variable definitions (defs)
and references (uses) in a program. Variable uses can be split into ‘c-uses’ and ‘p-
uses’ according to whether the variable use occurs in a computation or a predicate

899Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

[Rapps, 85]. Defs and c-uses are associated with nodes, but p-uses are associated with
edges. The purpose of the data flow analysis is to determine the defs of every variable
in the program and the uses that might be affected by these defs, i.e. the def-use
associations. Such data flow relationships can be represented by the following two
sets: dcu(i), the set of all variable defs for which there are def-clear paths to their c-
uses at node i; and dpu(i,j), the set of all variable defs for which there are def-clear
paths to their p-uses at edge (i,j), [Girgis, 85b].

 1 1 INTEGER X,Y,Z
 2 1 READ(5,*)X,Y,Z
 3 1 MID=Z
 4 1 IF(Y.LT.Z)THEN
 5 2 IF(X.LT.Y)THEN
 6 3 MID=Y
 7 4 ELSE
 8 4 IF(X.LT.Z)THEN
 9 5 MID=X
 10 6 END IF
 11 7 END IF

12 8 ELSE
13 8 IF(X.GE.Y)THEN
14 9 MID=Y
15 10 ELSE
16 10 IF(X.GT.Z)THEN
17 11 MID=X
18 12 END IF
19 13 END IF
20 14 END IF
21 14 PRINT*,'MIDDLE VALUE= ', MID
22 14 END

Figure 1: Example program (The 1st column represents statement numbers, and the
2nd one represents block numbers)

Figure 2: Flow graph for the example program

Using information concerning the location of variable defs and uses, together with
the ‘basic static reach algorithm’ [Allen, 76], the sets dcu(i) and dpu(i,j) can be
determined [Girgis, 1985a]. The ‘basic static reach algorithm’ is used to determine
two sets called reach(i) and avail(i). The set reach(i) is the set of all variable defs that
“reach” node i. (A def of a variable x in node k is said to reach node i if there is a def-
clear path w.r.t. x from node k to node i). The set avail(i) is the set of all “available”
variable defs at node i. It is the union of the set of global defs at node i together with

1

2 8

3 4 9 10

5 6 11 12

7 13

14

900 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

the set of all defs that reach this node and are preserved through it. (Clearly any def of
a variable in node i will not preserve any other def of the same variable). Using these
two sets, the sets dcu(i) and dpu(i,j) are constructed from the formulae:

dcu(i) := reach(i) ∩ c-use(i), and
dpu(i,j) := avail(i) ∩ p-use(i,j),

where c-use(i) is the set of variables for which node i contains a global c-use, and p-
use(i,j) is the set of variables for which edge (i,j) contains a p-use.

The all-uses criterion requires a def-clear path from each def of a variable to each
use (c-use and p-use) of that variable to be traversed. It should be noted that, the all-
uses criterion includes all the members of the family of the data flow criteria,
developed by Rapps and Weyuker [Rapps, 85], except the all-du-paths criterion. In
other words, any complete path satisfying the all-uses criterion also satisfies the
others. In order to determine the set of paths that satisfy the all-uses criterion, it is
necessary to determine the def-use associations of program variables. As described
above, such data flow relationships can be represented by the dcu and dpu sets.

The def-clear paths required to fulfil the all-uses criterion are constructed from the
dcu and dpu sets by using the technique described in [Girgis, 93]. These paths are
divided into two groups: dcu-paths and dpu-paths. In the dcu-paths list, each dcu-path
is represented by: a def-node (a node containing a def of a variable), a c-use-node (a
node containing a c-use of that variable), and the set of nodes that must not be
included in that path (nodes containing other defs of that variable). These nodes are
called killing nodes. In the dpu-paths list, each dpu-path is represented by: a def-node
(node containing a def of a variable), p-use-edge (an edge having a p-use of that
variable), and the set of killing nodes. Henceforth, the term ‘def-use paths’ will be
used to mean the set of dcu-paths and dpu-paths together. Figures 3 and 4 show the
lists of the def-use paths of the example program.

To construct the def-use paths that satisfy the all-uses criterion in the presence of
procedure calls, the interprocedural dcu and dpu sets are determined, which represent
the def-use associations across procedure boundaries, then the above technique is
applied directly to these sets. [Girgis, 00] For programs with loops, only paths in
which each loop is iterated zero, one and two times, and satisfy the all-uses criterion
are selected, [Girgis, 93].

DCU-Path No. Variable Def Node C-use Node Killing Nodes
1 Y 1 3 None
2 X 1 5 None
3 Y 1 9 None
4 X 1 11 None
5 MID 1 14 3, 5, 9, 11
6 MID 3 14 1, 5, 9, 11
7 MID 5 14 1, 3, 9, 11
8 MID 9 14 1, 3, 5, 11
9 MID 11 14 1, 3, 5, 9

Figure 3: List of the dcu-paths of the example program.

901Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

DPU-Path No. Variable Def Node P-use Edge Killing Nodes
1 Y 1 1-2 None
2 Z 1 1-2 None
3 Y 1 1-8 None
4 Z 1 1-8 None
5 X 1 2-3 None
6 Y 1 2-3 None
7 X 1 2-4 None
8 Y 1 2-4 None
9 X 1 4-5 None

10 Z 1 4-5 None
11 X 1 4-6 None
12 Z 1 4-6 None
13 X 1 8-9 None
14 Y 1 8-9 None
15 X 1 8-10 None
16 Y 1 8-10 None
17 X 1 10-11 None
18 Z 1 10-11 None
19 X 1 10-12 None
20 Z 1 10-12 None

Figure 4: List of the dpu-paths of the example program.

3 The Principles of Genetic Algorithms

The basic concepts of genetic algorithms (GAs) were developed by Holland [Holland,
75]. GAs are commonly applied to a variety of problems involving search and
optimisation. GAs search methods are rooted in the mechanisms of evolution and
natural genetics. GAs draw inspiration from the natural search and selection processes
leading to the survival of the fittest individuals. GAs generate a sequence of
populations by using a selection mechanism, and use crossover and mutation as search
mechanisms. [Srinivas, 94]

The principle behind GAs is that they create and maintain a population of
individuals represented by chromosomes (essentially a character string analogous to
the chromosomes appearing in DNA). These chromosomes are typically encoded
solutions to a problem. The chromosomes then undergo a process of evolution
according to rules of selection, mutation and reproduction.

Each individual in the environment (represented by a chromosome) receives a
measure of its fitness in the environment. Reproduction selects individuals with high
fitness values in the population, and through crossover and mutation of such
individuals, a new population is derived in which individuals may be even better fitted
to their environment. The process of crossover involves two chromosomes swapping
chunks of data (genetic information) and is analogous to the process of sexual
reproduction. Mutation introduces slight changes into a small proportion of the
population and is representative of an evolutionary step. The structure of a simple GA
is given below.

902 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

Simple Genetic Algorithm ()
{
 initialize population;
 evaluate population;
 while termination criterion not reached
 {
 select solutions for next population;
 perform crossover and mutation;
 evaluate population;
 }
}

The algorithm will iterate until the population has evolved to form a solution to
the problem, or until a maximum number of iterations have taken place (suggesting
that a solution is not going to be found given the resources available).

4 A Genetic Algorithm For Test-Data Generation

This section describes the proposed GA for automatic test data generation, which is
guided by the data flow dependencies in the program. The algorithm searches for test
cases that satisfy the all-uses criterion. Firstly, the major components of this GA are
discussed in turn, then the overall algorithm is presented.

4.1 Representation

The proposed GA uses a binary vector as a chromosome to represent values of the
program input variables x. The length of the vector depends on the required precision
and the domain length for each input variable.

Suppose we wish to generate test cases for a program of k input variables x1, …,
xk, and each variable xi can take values from a domain Di = [ai, bi]. Suppose further
that di decimal places are desirable for the values of each variable xi. To achieve such

precision, each domain Di should be cut into (bi - ai) · 10
di equal size ranges. Let us

denote by mi the smallest integer such that (bi - ai) · 10
di ≤ 2

mi – 1. Then, a
representation having each variable xi coded as a binary string stringi of length mi
clearly satisfies the precision requirement. The mapping from the binary string stringi
into a real number xi from the range [ai, bi] is performed by the following formula:

xi = ai + xi′ ·
12 −

−
m

ab
i

ii , (4.1)

where xi′ represents the decimal value of the binary string stringi, (Michalewicz,
1999).

It should be noted that the above method can be applied for representing values of
integer input variables by setting di to 0, and using the following formula instead of
formula (4.1):

903Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

xi = ai + int (xi′ ·
12 −

−
m

ab
i

ii), (4.2)

Now, each chromosome (as a test case) is represented by a binary string of length

m = ∑ =

k

i im1
; the first m1 bits map into a value from the range [a1, b1] of variable x1,

the next group of m2 bits map into a value from the range [a2, b2] of variable x2, and so
on; the last group of mk bits map into a value from the range [ak, bk] of variable xk.

For example, let a program have 2 input variables x and y, where –3.0 ≤ x ≤ 12.1
and 4.1 ≤ y ≤ 5.8, and the required precision is 4 decimal places for each variable. The
domain of variable x has length 15.1; the precision requirement implies that the range
[-3.0, 12.1] should be divided into at least 15.1 · 10000 equal size ranges. This means
that 18 bits are required as the first part of the chromosome: 2

17 < 151000 ≤ 2
18. The

domain of variable y has length 1.7; the precision requirement implies that the range
[4.1, 5.8] should be divided into at least 1.7 · 10000 equal size ranges. This means that
15 bits are required as the second part of the chromosome: 2

14 < 17000 ≤ 2
15

. The
total length of a chromosome (test case) is then m = 18+15=33 bits; the first 18 bits
code x and remaining 15 bits code y. Let us consider an example chromosome:

010001001011010000111110010100010.
By using formula (4.1), the first 18 bits, 010001001011010000, represents x = 1.0524,
and the next 15 bits, 111110010100010, represents y = 5.7553. So the given
chromosome corresponds to the data values 1.0524 and 5.7553 for the variables x and
y, respectively.

4.2 Initial population

As mentioned above, each chromosome (as a test case) is represented by a binary
string of length m. We randomly generate pop_size m-bit strings to represent the
initial population, where pop_size is the population size. The appropriate value of
pop_size is experimentally determined. Each chromosome is converted to k decimal
numbers representing values of k input variables x1, …, xk (i.e. a test case) by using
formula (4.1)/(4.2).

4.3 Evaluation function

The algorithm evaluates each test case by executing the program with it as input, and
recording the def-use paths in the program that are covered by this test case. (A test
case is said to cover a def-use path, if it causes the program to traverse a path that has
a subpath, which starts at the def-node and ends at the c-use node/p-use edge of the
def-use path and does not pass through its killing nodes.) The fitness value eval(vi) for
each chromosome vi (i = 1, …, pop_size) is calculated as follows:

eval(vi) =
paths use-def of no. total

by covered paths use-def of no. vi

The fitness value is the only feedback from the problem for the GA. A test case
which is represented by the chromosome vi is considered effective if its fitness value
eval(vi) > 0.

904 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

4.4 Selection

After computing the fitness of each test case in the current population, the algorithm
selects test cases from the effective members of the current population that will be
parents of the new population. If none of the members of the current population was
effective, all the members of current population are considered the parents of the new
population. In the selection process the GA uses one of two methods: the roulette
wheel method [Goldberg, 89] or a proposed method, called the random selection
method, according to the user choice. These two methods are described below.

(i) Roulette wheel: For the selection of a new population with respect to the
probability distribution based on fitness values, a roulette wheel with slots sized
according to fitness is used. Such roulette wheel is constructed as follows:

• Calculate the fitness value eval(vi) for each chromosome vi (i = 1, …,
pop_size).

• Find the total fitness of the population F =)(
_

1∑ =

sizepop

i iveval ,

• Calculate the probability of a selection pi for each chromosome vi (i = 1, …,
pop_size): pi = eval(vi)/F.

• Calculate a cumulative probability qi for each chromosome vi (i = 1, …,
pop_size):

qi = ∑ =

i

j jp
1

.

The selection process is based on spinning the roulette wheel pop_size times; each
time we select a single chromosome for a new population in the following way:

• Generate a random (float) number r from the range [0..1].
• If r < q1 then select the first chromosome (v1); otherwise select the i-th

chromosome vi (2 ≤ i ≤ pop_size) such that qi-1 < r ≤ qi.
Obviously, some chromosomes would be selected more than once.

(ii) Random selection: In this method, the selection of parents is made randomly, so
that every effective member of the current population has an equal chance of being
selected for recombination.
Assume that l members of the current population were effective, where l ≤ pop_size.
The parents are selected as follows:
 Isolate the effective members and number them from 1 to l;
 For i=1 to pop_size do
 Begin
 Generate an random integer number j from the range [0..l];
 Select chromosome vj from the effective members;
 End For;
The experiments showed that this selection method produced better results than the
roulette wheel method (see Section 5).

905Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

4.5 Recombination

In the recombination phase, we use two operators, crossover and mutation, which are
the key to the power of GAs. These operators create new individuals from the selected
parents to form a new population.

Crossover: It operates at the individual level. During crossover, two parents
(chromosomes) exchange sub string information (genetic material) at a random
position in the chromosome to produce two new strings (offspring). The objective
here is to create better population over time by combining material from pairs of
(fitter) members from the parent population. Crossover occurs according to a
crossover probability. The probability of crossover pc gives us the expected number
pc · pop_size of chromosomes, which undergo the crossover operation. We proceed in
the following way:
For each chromosome in the (new) population:

• Generate a random (float) number r from the range [0..1];
• If r < pc then select given chromosome for crossover.

Now we mate selected chromosomes randomly: For each pair of coupled
chromosomes we generate a random integer number pos from the range [1..m-1] (m is
the number of bits in a chromosome). The number pos indicates the position of the
crossing point. Two chromosomes (b1…bposbpos+1…bm) and (c1…cposcpos+1…cm) are
replaced by a pair of their offspring (b1…bposcpos+1…cm) and (c1…cposbpos+1…bm).

Mutation: It is performed on a bit-by-bit basis. Mutation always operates after the
crossover operator, and flips each bit with the pre-determined probability. The
probability of mutation pm, gives us the expected number of mutated bits pm · m ·
pop_size. Every bit (in all chromosomes in the whole population) has an equal chance
to undergo mutation, i.e., change from 0 to 1 or vice versa. So we proceed in the
following way:
For each chromosome in the current (i.e. after crossover) population and for each bit
within the chromosome:

• Generate a random (float) number r from the range [0..1];
• If r < pm then mutate the bit.
In the traditional GA approach the population would evolve until one individual

from the whole set which represents the solution is found. In our case, this would
correspond to one group of data items achieving maximum coverage of the program
(i.e. traversing all the def-use paths of the program). Whilst this feasible for some
programs, the majority of programs cannot be ‘covered’ by just one group of data
items (i.e. one test case) – it might take many groups and several runs of the program
to achieve the desired level of testing. So, we let the population evolves until a
combined subset of the population achieves the desired level of coverage. This is done
by recording which def-use paths of the program each individual has covered and
halting the evolution when a set of individuals has traversed the entire def-use paths of
program, if possible. The solution is this set.

906 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

4.6 Overall Algorithm

The proposed genetic algorithm accepts as input an instrumented version of the
program to be tested, the list of def-use paths to be covered, the number of input
variables, and the domain and precision of each input variable. Also, it accepts the GA
parameters: population size, maximum number of generations, and probabilities of the
crossover and mutation. The algorithm produces a set of test cases, the set of def-use
paths covered by each test case, and the list of uncovered def-use paths, if any. It
should be noted that the instrumentation process and the generation of the program
def-use paths are performed by a testing system previously developed by the author
[Girgis, 93, 00].

The algorithm uses an integer vector, called the def-use coverage vector, to record
the traversed def-use paths. In this vector, each element (initially zero) corresponds to
a def-use path. Whenever a def-use path is covered, the number of the test case that
caused this coverage is stored in the corresponding element of the def-use coverage
vector (see Table 1). The algorithm keeps track of all generated test cases that cover
new def-use paths. It uses a counter, called nCases, to count them. These test cases are
stored for later use. It uses another counter, called nEffective, to count the number of
effective members of the current population. This counter indicates whether the
current population contains any effective members. The overall GA is presented
below.

/* A GA algorithm to automatically generate test cases for a given program */
Input:
 Instrumented version P' of the program to be tested P;

List of def-use paths to be covered;
Number of program input variables;
Domain and precision of input data;
Population size;
Maximum no. of generations (Max_Gen);
Probability of crossover;
Probability of mutation;

Output:
Set of test cases for P, and the set of def-use paths covered by each test case;
List of uncovered def-use paths, if any;

Begin
Step 1: Initialization

Initialize the def-use coverage vector to zeros;
Create Initial_Population;
Current_population ← Initial_Population;
Set of test cases for P ← φ;
Coverage_Percent ← 0;
No_Of_Generations ← 0;
nCases ← 0;

Step 2: Generate test cases
nEffective ← 0;

907Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

For each member of current population do
Begin
 Convert the current chromosome to the corresponding set of decimal values;
 Execute P' with this data set as input;
 Evaluate the current test case;
 If (some def-use paths are covered) then

nCases ← nCases + 1;
 Add effective test case to set of test cases for P;
 Update the def-use coverage vector;
 Update Coverage_Percent;
 nEffective ← nEffective + 1;
 End If
End For;
While (Coverage_Percent ≠ 100 and No_Of_Generations ≤ Max_Gen) do
Begin
 If (nEffective > 0) then

Select set of parents of new population from effective members of
current population using roulette wheel method or random selection
method;

 Else
 Set of parents of new population ← Current_Population;
 End If;

Create New_Population using crossover and mutation operators;
Current_Population ← New_Population;
nEffective ← 0;
For each member of Current_Population do
Begin

 Convert current chromosome to the corresponding set of decimal values;
 Execute P' with this data set as input;
 Evaluate the current test case;
 If (some def-use paths are covered) then

 nCases ← nCases + 1;
 Add effective test cases to set of test cases for P;
 Update the def-use coverage vector;
 Update Coverage_Percent;

 nEffective ← nEffective + 1;
 End If

End For;
Increment No_Of_Generations;

End While;
Step 3: Produce output

Return set of test cases for P, and set of def-use paths covered by each test case;
Report on uncovered def-use paths, if any;

End.

908 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

4.7 Example

To illustrate the operation of the above algorithm, the result of applying the system,
which implements it, to the example program (Figure 1), is presented below. Table 1
shows the def-use coverage vector of the example program at the end of the system
execution.

POP_SIZE: 4
CROSSOVER PROBABILITY: 0.8
MUTATION PROBABILITY: 0.15
NO. OF INPUT VARIABLES: 3
DOMAIN AND PRECESSION OF INPUT VARIABLES:
 1-20, 0; 1-20, 0; 1-20, 0
** GA STARTED **
* INITIAL POPOULATION *
 000011100101110 2,16,10
 111111111010101 20,19,14
 110001110011110 16,18,19
 101101011010100 14,14,13
CASE 1: *** SELECTED ***
 TRAVERSED PATH: 1,8,10,12,13,14
 COVERED DCU-PATHS: 5
 COVERED DPU-PATHS: 3,4,15,16,19,20
 * DEF-USE COVERAGE: 24.1%
 * ACCUMULATED DEF-USE COVERAGE: 24.1%
CASE 2: *** SELECTED ***
 TRAVERSED PATH: 1,8,9,13,14
 COVERED DCU-PATHS: 3,8
 COVERED DPU-PATHS: 13,14
 * DEF-USE COVERAGE: 13.8%
 * ACCUMULATED DEF-USE COVERAGE: 37.9%
CASE 3: *** SELECTED ***
 TRAVERSED PATH: 1,2,3,7,14
 COVERED DCU-PATHS: 1,6
 COVERED DPU-PATHS: 1,2,5,6
 * DEF-USE COVERAGE: 20.7%
 * ACCUMULATED DEF-USE COVERAGE: 58.6%
CASE 4: *** NOT SELECTED ***
* PARENT SELECTION USING ROULETTE WHEEL METHOD *
 000011100101110
 111111111010101
 111111111010101
 000011100101110
* CROSSOVER OPERATION *
SELECTED PARENTS CROSSOVER

POSITION
OFFSPRING

1, 2 3 110011100101110 001111111010101
3, 4 13 000011100101101 111111111010110
* MUTATION OPERATION *
SELECTED CHROMOSOME MUTATION POSITION MUTATED CHROMOSOME
1 5 110001100101110
2 7 001111011010101
3 14 000011100101111
4 2 101111111010110
4 15 101111111010111
* NEW POPOULATION *
 110001100101110 16,16,10
 001111011010101 5,14,14
 000011100101111 2,16,10

909Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

 101111111010111 15,19,15
CASE 5: *** NOT SELECTED ***
CASE 6: *** NOT SELECTED ***
CASE 7: *** NOT SELECTED ***
CASE 8: *** NOT SELECTED ***
* PARENTS = CURRENT POPULATION *
* CROSSOVER OPERATION *
SELECTED
PARENTS

CROSSOVER
POSITION

OFFSPRING

1, 4 11 101111111001110 110001100110111
* MUTATION OPERATION *
SELECTED CHROMOSOME MUTATION POSITION MUTATED CHROMOSOME
2 6 001110011010101
4 6 110000100110111
4 8 110000110110111
* NEW POPOULATION *
 101111111001110 15,19,10
 001110011010101 5, 5,14
 000011100101111 2,16,10
 110000110110111 16, 9,15
CASE 9: *** SELECTED ***
 TRAVERSED PATH: 1,8,10,11,12,13,14
 COVERED DCU-PATHS: 4,9
 COVERED DPU-PATHS: 17,18
 * DEF-USE COVERAGE: 13.8%
 * ACCUMULATED DEF-USE COVERAGE: 72.4%
CASE 10: *** SELECTED ***
 TRAVERSED PATH: 1,2,4,5,6,7,14
 COVERED DCU-PATHS: 2,7
 COVERED DPU-PATHS: 7,8,9,10
 * DEF-USE COVERAGE: 20.7%
 * ACCUMULATED DEF-USE COVERAGE: 93.1%
CASE 11: *** NOT SELECTED ***
CASE 12: *** SELECTED ***
 TRAVERSED PATH: 1,2,4,6,7,14
 COVERED DPU-PATHS: 11,12
 * DEF-USE COVERAGE: 6.9%
 * ACCUMULATED DEF-USE COVERAGE: 100.0%
** GA TERMINATED **
** NO. OF GENERATIONS = 3
** GENERATED TEST CASES **
 2,16,10
 20,19,14
 16,18,19
 15,19,10
 5, 5,14
 16, 9,15

--
Dcu-path 1 2 3 4 5 6 7 8 9
Test Case 3 10 2 9 1 3 10 2 9
Dpu-path 1 2 3 4 5 6 7 8 9 10
Test Case 3 3 1 1 3 3 10 10 10 10
Dpu-path 11 12 13 14 15 16 17 18 19 20
Test Case 12 12 2 2 1 1 9 9 1 1

Table 1: The def-use coverage vector of the example program

910 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

5 Experimental Results

This section presents the results of the experiments that have been carried out to
evaluate the effectiveness of the proposed GA compared to the random testing (RT)
technique, and to compare the proposed random selection method to the roulette
wheel method. A set of 15 small FORTRAN programs is used in the experiments.
Two of these programs (Prog#14 and 15) include subroutines. To achieve a fair
comparison, the random test data generator was designed to randomly generate sets of
pop_size test cases in each iteration. The used GA parameters were as follows:
Max_Gen = 100, pc = 0.8, and pm = 0.15.

Prog#
No. of

Variables
Pop.
Size

Method
No. of

Generations
No. of

Test Cases
Def-Use

Coverage %
GA 4 6 100

1 3 8
RT 2 6 100
GA 1 6 100

2 3 8
RT 2 7 100
GA 3 4 100

3 3 8
RT 35 4 100
GA 16 4 100

4 3 8
RT 28 4 100
GA 18 6 81.3

5 3 8
RT 26 6 81.3
GA 3 8 100

6 4 8
RT 5 8 100
GA 4 5 100

7 3 8
RT 91 5 100
GA 15 10 63.6

8 3 10
RT 51 9 58.4
GA 1 3 100

9 2 8
RT 4 4 100
GA 7 5 100

10 1 8
RT 3 5 100
GA 2 5 92

11 1 8
RT 4 5 92
GA 5 5 100

12 3 8
RT 91 5 100
GA 5 3 96

13 2 4
RT 2 3 96
GA 2 6 63.6

14 1 8
RT 15 6 63.6
GA 8 11 87.2

15 3 8
RT 16 9 81.7

Table 2: A comparison between the GA technique and the random testing (RT)
technique

911Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

Table 2 shows the results of applying the GA technique and the RT technique to
the 15 programs. As can be seen, the GA technique outperformed the RT technique in
12 out of the 15 programs. In 10 of these programs, the GA technique required less
number of generations than the RT technique to achieve the same def-use coverage
percentage. For Prog#8, the RT technique required 51 generations to cover 58.4% of
the def-use paths, while the GA technique required only 15 generations to cover
63.6% of the def-use paths, and for Prog#15, the RT technique required 16
generations to cover 81.7% of the def-use paths, while the GA technique required only
8 generations to cover 87.2% of the def-use paths; i.e. in these two programs, the GA
reached higher coverage percentage in fewer generations than the random testing
technique.

Prog# Method
No. of

Generations
No. of

Test Cases
Def-Use

Coverage %
Roulette Wheel 4 6 100

1
Random Selection 4 6 100

Roulette Wheel 1 6 100
2

Random Selection 1 6 100
Roulette Wheel 3 4 100

3
Random Selection 3 4 100

Roulette Wheel 42 4 100
4*

Random Selection 16 4 100
Roulette Wheel 19 6 81.3

5*
Random Selection 18 6 81.3

Roulette Wheel 16 8 100
6*

Random Selection 3 8 100
Roulette Wheel 4 5 100

7
Random Selection 4 5 100

Roulette Wheel 32 10 63.6
8*

Random Selection 15 10 63.6
Roulette Wheel 1 3 100

9
Random Selection 1 3 100

Roulette Wheel 10 5 100
10*

Random Selection 7 5 100
Roulette Wheel 5 5 92

11*
Random Selection 2 5 92

Roulette Wheel 5 5 100
12

Random Selection 5 5 100
Roulette Wheel 5 3 96

13
Random Selection 9 3 96

Roulette Wheel 2 6 63.6
14

Random Selection 2 6 63.6
Roulette Wheel 25 13 87.2

15*
Random Selection 8 11 87.2

Table 3: A comparison between parent selection methods used in the GA technique

912 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

It should be noted that, in the cases where less than 100% coverage is achieved,
the programs included some def-use paths that cannot be covered by any test data due
the existence of infeasible paths.

Table 3 shows a comparison between the two parent selection methods used in the
GA technique. As can be seen, the proposed random selection method was better than
the roulette wheel method in 7 programs (the stared cases), and the roulette wheel
method was better than the random selection method in only one program (the shaded
case). In the remaining 7 programs, the performance of both methods was identical.

6 Conclusions

The GA technique presented in this paper is guided by the data flow dependencies in
the program to search for test data to fulfil the all-uses criterion. This is the main
contribution of this paper. The approach can be used in test data generation for
programs with/without loops and procedures. The proposed GA accepts as input an
instrumented version of the program to be tested, the list of def-use paths to be
covered, the number of input variables, and the domain and precision of each input
variable. Also, it accepts the GA parameters: population size, maximum number of
generations, and probabilities of the crossover and mutation. The algorithm produces a
set of test cases, the set of def-use paths covered by each test case, and a list of
uncovered def-use paths, if any.

Experiments have been carried out to evaluate the effectiveness of the proposed
GA compared to the random testing technique, and to compare the proposed random
selection method to the roulette wheel method. The results of these experiments
showed that the GA technique outperformed the random testing technique in 12 out of
the 15 programs used in the experiment. In 10 of these programs, the GA technique
required less number of generations than the random testing technique to achieve the
same def-use coverage percentage. In two programs, the GA reached higher coverage
percentage in fewer generations than the random testing technique. The experiments
also showed that the proposed selection method produced better results than the
roulette wheel method.

References

[Allen, 76] F.E. Allen, J. Cocke, A program data flow analysis procedure, Communication of
the ACM, 19 (3), 137-147, 1976.

[Bauer, 79] J. A. Bauer, A. B. Finger, Test plan generation using formal grammars,
Proceedings of the 4th International Conference on Software Engineering, IEEE Computer
Society, pp. 425-432, 1979.

[Boyer, 75] R. S. Boyer, B. Elspas, K. N. Levitt, SELECT - a formal system for testing and
debugging programs by symbolic execution, Proceedings of the International Conference on
Reliable software, pp. 234-245, 1975.

913Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

[Bueno, 00] P. M. S. Bueno, M. Jino, Identification of potentially infeasible program paths by
monitoring the search for test data, The 15th International Conference on Automated Software
Engineering (ASE’00), Grenoble, France, 2000.

[Clarke, 76] L. A. Clarke, A system to generate test data and symbolically execute programs,
IEEE Transactions on Software Engineering, 2 (3), 215-222, 1976.

[DeMillo, 91] R. A. DeMillo, A. J. Offutt, Constraint-based automatic test data generation,
IEEE Transactions on Software Engineering, 17 (9), 900-910, 1991.

[Frankl, 93] P. G. Frankl, S. N. Weiss, An experimental comparison of the effectiveness of
branch testing and data flow testing, IEEE Transactions on Software Engineering, 19 (8), 774-
787, 1993.

[Girgis, 93] M. R. Girgis, Using symbolic execution and data flow criteria to aid test data
selection, The Journal of Software Testing, Verification and Reliability, 3 (2), 101-112, 1993.

[Girgis, 00] M. R. Girgis, A system for interprocedural data flow analysis and testing,
International Journal of Applied Mathematics, 3 (2), 133-150, 2000.

[Girgis, 85a] M.R. Girgis, M.R. Woodward, An integrated system for program testing using
weak mutation and data flow analysis, Technical Report 85/1, Department of Computer
Science, University of Liverpool, U.K, 1985.

[Girgis, 85b] M.R. Girgis, M.R. Woodward, An integrated system for program testing using
weak mutation and data flow analysis, Proceedings of Eighth International Conference on
Software Engineering, IEEE Computer Society, pp. 313-319, 1985.

[Goldberg, 89] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, Mass., 1989.

[Holland, 75] J. Holland, Adaptation in Natural and Artificial Systems, ISBN 0 472 08460 7.
University of Michigan Press, Ann Arbor, MI, 1975.

[Howden, 77] W. E. Howden, Symbolic testing and the DISSECT symbolic evaluation system,
IEEE Transactions on Software Engineering, 3 (4), 266-278, 1977.

[Jones, 96] B. F. Jones, H. -H. Sthamer, D. E. Eyres, Automatic structural testing using genetic
algorithms, Software Engineering Journal, 8 (9), 299-306, 1996.

[Jones, 98] B. F. Jones, D. E. Eyres, H. -H. Sthamer, A strategy for using genetic algorithms to
automate branch and fault-based testing, The Computer Journal, 41 (2), 98-107, 1998.

[Korel, 90] B. Korel, Automated software test data generation, IEEE Transactions on Software
Engineering, 16 (8), 870-879, 1990.

[Lin, 01] J. -C. Lin, P. -L. Yeh, Automatic test data generation for path testing using GAs,
Information Sciences, 131 (1-4), 47-64, 2001.

[Maurer, 90] P. M. Maurer, Generating testing data with enhanced context-free grammars,
IEEE Software, 7 (4), 1990.

[Michael, 01] C. C. Michael, G. McGraw, M.A. Schatz, Generating Software Test Data by
Evolution, IEEE Transactions on Software Engineering, 27 (12), 1085-1110, 2001.

[Michalewicz, 99] Z. Michalewicz, Genetic algorithms + data structures = evolution programs,
3rd Edition, Springer, 1999.

914 Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

[Miller, 75] E. F. Miller, R. A. Melton, Automated generation of test case data sets,
Proceedings of the International Conference on Reliable Software, pp. 51-58, 1975.

[Mills, 87] H. D. Mills, M. D. Dyer, R. C. Linger, Cleanroom software engineering, IEEE
Software, 4 (5), 19-25, 1987.

[Pargas, 99] R.P. Pargas, M.J. Harrold, R.R. Peck, Test-Data Generation Using Genetic
Algorithms, The Journal of Software Testing, Verification and Reliability, 1999.

[Pei, 94] M. Pei, E. D. Goodman, Z. Gao, K. Zhong, Automated Software Test Data Generation
Using A Genetic Algorithm, Technical Report GARAGe of Michigan State University, 1994.

[Ramamoorthy, 76] C. V. Ramamoorthy, S. F. Ho, W. T. Chen, On the automated generation
of program test data, IEEE Transactions on Software Engineering, 2 (4), 293-300, 1976.

[Rapps, 85] S. Rapps, E.J. Weyuker, Selecting software test data using data flow information,
IEEE Transactions on Software Engineering, 11 (4), 367-375, 1985.

[Roper, 95] M. Roper, I. Maclean, A. Brooks, J. Miller, Wood, M. Genetic Algorithms and the
Automatic Generation of Test Data, Technical Report RR/95/195 [EFoCS-19-95], University
of Strathclyde, Glasgow G1 1XH, U.K, 1995.

[Srinivas, 94] M. Srinivas, L. M. Patnaik, Genetic algorithms: a survey, IEEE Computer, 27
(6), 17-26, 1994.

[Voas, 91] J. M. Voas, L. Morell, K. W. Miller, Predicting where faults can hide from testing,
IEEE Software, 8 (2), 41-48, 1991.

[Watkins, 95] A. E. L. Watkins, A Tool for the Automatic Generation of Test Data Using
Genetic Algorithms, In Proceedings of Software Quality Conference, Dundee, Scotland, 1995.

915Girgis M.R.: Automatic Test Data Generation for Data Flow Testing ...

