
Automatic Test Data Generation for Data Flow Testing 
Using a Genetic Algorithm  

 
 

Moheb R. Girgis 
(Department of Computer Science, Faculty of Science 

Minia University, El-Minia, Egypt 
moheb_r_g@yahoo.com) 

 
 
 

Abstract: One of the major difficulties in software testing is the automatic generation of test 
data that satisfy a given adequacy criterion. This paper presents an automatic test data 
generation technique that uses a genetic algorithm (GA), which is guided by the data flow 
dependencies in the program, to search for test data to cover its def-use associations. The GA 
conducts its search by constructing new test data from previously generated test data that are 
evaluated as effective test data. The approach can be used in test data generation for programs 
with/without loops and procedures. The proposed GA accepts as input an instrumented version 
of the program to be tested, the list of def-use associations to be covered, the number of input 
variables, and the domain and precision of each input variable. The algorithm produces a set of 
test cases, the set of def-use associations covered by each test case, and a list of uncovered def-
use associations, if any. In the parent selection process, the GA uses one of two methods: the 
roulette wheel method or a proposed method, called the random selection method, according to 
the user choice. Finally, the paper presents the results of the experiments that have been carried 
out to evaluate the effectiveness of the proposed GA compared to the random testing technique, 
and to compare the proposed random selection method to the roulette wheel method. 
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1  Introduction 

Software testing has two main aspects: test data generation and application of a test 
data adequacy criterion. A test data generation technique is an algorithm that generates 
test cases, whereas an adequacy criterion is a predicate that determines whether the 
testing process is finished, [Frankl, 93]. Several test data adequacy criteria have been 
proposed, such as control flow-based and data flow-based criteria. One of the major 
difficulties in software testing is the automatic generation of test data that satisfy a 
given adequacy criterion. 

An automated test data generator is a tool that assists the tester in creating test 
data. Test data generators can be categorized into three classes: random test data 
generators (e.g., [Mills, 87]; [Voas, 91]), structural-oriented test data generators 
(e.g., [Boyer, 75]; [Clarke, 76]; [Ramamoorthy, 76]; [Howden, 77]; [Korel, 90]; 
[DeMillo, 91]; [Girgis, 93]), and data specification generators (e.g., [Miller, 75]; 
[Bauer, 79]; [Maurer, 90]). Random test data generators select random test data from 
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the domain of input variables. Structural-oriented test data generators are based on 
covering certain structural elements in the program. Most of these generators use 
symbolic execution to generate test data to meet a testing criterion such as path 
coverage, branch coverage, def-use coverage, mutation, etc.  Data specification 
generators select test data from program specification, in order to exercise features of 
the specification.   

Recently, the use of genetic algorithms (GAs) in test data generation became the 
focus of several research studies, (see e.g., [Pei, 94]; [Roper, 95]; [Watkins, 95], 
[Jones, 96]; [Jones, 98]; [Pargas, 99]; [Bueno, 00]; [Lin, 01]; [Michael, 01]. As far as 
the author is aware, none of the reported studies have used GAs to generate test data 
to cover the def-use associations of the program. 

This paper presents a structural-oriented technique for automatic test data 
generation that uses a genetic algorithm, which is guided by the data flow 
dependencies in the program, to search for test data to fulfil one of the most 
demanding in the family of data flow path selection criteria, developed by Rapps and 
Weyuker [Rapps, 85], namely the all-uses criterion. The genetic algorithm conducts 
its search by constructing new test data from previously generated test data that are 
evaluated as effective test data. In the parent selection process, the GA uses one of two 
methods: the roulette wheel method or a proposed method, called the random 
selection method, according to the user choice. The approach can be used in test data 
generation for programs with/without loops and procedures. 

This paper is organized as follows: Section 2 describes the data flow analysis 
technique used to implement the all-uses criterion. Section 3 describes the principles 
of GAs. Section 4 describes the proposed GA for automatic test data generation, and 
gives the result of applying this algorithm to an example program. Section 5 presents 
the results of the experiments that are conducted to evaluate the effectiveness of the 
proposed GA compared to the random testing technique, and to compare the proposed 
random selection method to the roulette wheel method. 

2  The Data Flow Analysis Technique 

This section describes the all-uses criterion and the data flow analysis technique used 
to implement it. Firstly, some definitions used in describing this technique are 
presented.  

The control flow of a program can be represented by a directed graph with a set of 
nodes and a set of edges. Each node represents a group of consecutive statements, 
which together constitute a basic block. The edges of the graph are then possible 
transfers of control flow between the nodes. A path is a finite sequence of nodes 
connected by edges. A complete path is a path whose first node is the start node and 
whose last node is an exit node. A path is def-clear with respect to a variable if it 
contains no new definition of that variable. Figure 2 presents the flow graph of the 
example program, shown in Figure 1, which determines the middle value of three 
given integers X, Y, and Z. 

Data flow analysis focuses on the interactions between variable definitions (defs) 
and references (uses) in a program.  Variable uses can be split into ‘c-uses’ and  ‘p-
uses’ according to whether the variable use occurs in a computation or a predicate 
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[Rapps, 85]. Defs and c-uses are associated with nodes, but p-uses are associated with 
edges. The purpose of the data flow analysis is to determine the defs of every variable 
in the program and the uses that might be affected by these defs, i.e. the def-use 
associations. Such data flow relationships can be represented by the following two 
sets: dcu(i), the set of all variable defs for which there are def-clear paths to their c-
uses at node i; and dpu(i,j), the set of all variable defs for which there are def-clear 
paths to their p-uses at edge (i,j), [Girgis, 85b]. 
 

    1      1         INTEGER X,Y,Z 
    2      1         READ(5,*)X,Y,Z 
    3      1         MID=Z 
    4      1         IF(Y.LT.Z)THEN 
    5      2          IF(X.LT.Y)THEN 
    6      3           MID=Y 
    7      4          ELSE 
    8      4           IF(X.LT.Z)THEN 
    9      5            MID=X 
  10      6           END IF 
  11      7          END IF 

12      8         ELSE 
13      8          IF(X.GE.Y)THEN 
14      9           MID=Y 
15    10         ELSE 
16    10           IF(X.GT.Z)THEN 
17    11            MID=X 
18    12           END IF 
19    13          END IF 
20    14         END IF 
21    14         PRINT*,'MIDDLE VALUE= ', MID 
22    14         END 

Figure 1:  Example program (The 1st column represents statement numbers, and the 
2nd one represents block numbers) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Flow graph for the example program 

Using information concerning the location of variable defs and uses, together with 
the ‘basic static reach algorithm’ [Allen, 76], the sets dcu(i) and dpu(i,j) can be  
determined [Girgis, 1985a]. The ‘basic static reach algorithm’ is used to determine 
two sets called reach(i) and avail(i).  The set reach(i) is the set of all variable defs that 
“reach” node i. (A def of a variable x in node k is said to reach node i if  there is a def-
clear path w.r.t. x from node k to node i). The set avail(i) is the set of all “available” 
variable defs at node i. It is the union of the set of global defs at node i together with 
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the set of all defs that reach this node and are preserved through it. (Clearly any def of 
a variable in node i will not preserve any other def of the same variable). Using these 
two sets, the sets dcu(i) and dpu(i,j) are constructed from the formulae:  

dcu(i)   := reach(i) ∩ c-use(i), and 
dpu(i,j) := avail(i) ∩ p-use(i,j), 

where c-use(i) is the set of variables for which node i contains a global c-use, and p-
use(i,j) is the set of variables for which edge (i,j) contains a p-use. 

The all-uses criterion requires a def-clear path from each def of a variable to each 
use (c-use and p-use) of that variable to be traversed. It should be noted that, the all-
uses criterion includes all the members of the family of the data flow criteria, 
developed by Rapps and Weyuker [Rapps, 85], except the all-du-paths criterion. In 
other words, any complete path satisfying the all-uses criterion also satisfies the 
others. In order to determine the set of paths that satisfy the all-uses criterion, it is 
necessary to determine the def-use associations of program variables. As described 
above, such data flow relationships can be represented by the dcu and dpu sets.  

The def-clear paths required to fulfil the all-uses criterion are constructed from the 
dcu and dpu sets by using the technique described in [Girgis, 93]. These paths are 
divided into two groups: dcu-paths and dpu-paths. In the dcu-paths list, each dcu-path 
is represented by: a def-node (a node containing a def of a variable), a c-use-node (a 
node containing a c-use of that variable), and the set of nodes that must not be 
included in that path (nodes containing other defs of that variable). These nodes are 
called killing nodes. In the dpu-paths list, each dpu-path is represented by:  a def-node  
(node containing a def of a variable), p-use-edge (an edge having a p-use of that 
variable), and the set of killing nodes. Henceforth, the term ‘def-use paths’ will be 
used to mean the set of dcu-paths and dpu-paths together. Figures 3 and 4 show the 
lists of the def-use paths of the example program. 

To construct the def-use paths that satisfy the all-uses criterion in the presence of 
procedure calls, the interprocedural dcu and dpu sets are determined, which represent 
the def-use associations across procedure boundaries, then the above technique is 
applied directly to these sets. [Girgis, 00] For programs with loops, only paths in 
which each loop is iterated zero, one and two times, and satisfy the all-uses criterion 
are selected, [Girgis, 93].   
 

DCU-Path No. Variable Def Node C-use Node Killing Nodes 
1 Y 1 3 None 
2 X 1 5 None 
3 Y 1 9 None 
4 X 1 11 None 
5 MID 1 14 3, 5, 9, 11 
6 MID 3 14 1, 5, 9, 11 
7 MID 5 14 1, 3, 9, 11 
8 MID 9 14 1, 3, 5, 11 
9 MID 11 14 1, 3, 5, 9 

Figure 3: List of the dcu-paths of the example program. 
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DPU-Path No. Variable Def Node P-use Edge Killing Nodes 
1 Y 1 1-2 None 
2 Z 1 1-2 None 
3 Y 1 1-8 None 
4 Z 1 1-8 None 
5 X 1 2-3 None 
6 Y 1 2-3 None 
7 X 1 2-4 None 
8 Y 1 2-4 None 
9 X 1 4-5 None 

10 Z 1 4-5 None 
11 X 1 4-6 None 
12 Z 1 4-6 None 
13 X 1 8-9 None 
14 Y 1 8-9 None 
15 X 1 8-10 None 
16 Y 1 8-10 None 
17 X 1 10-11 None 
18 Z 1 10-11 None 
19 X 1 10-12 None 
20 Z 1 10-12 None 

Figure 4: List of the dpu-paths of the example program. 

3  The Principles of Genetic Algorithms  

The basic concepts of genetic algorithms (GAs) were developed by Holland [Holland, 
75]. GAs are commonly applied to a variety of problems involving search and 
optimisation. GAs search methods are rooted in the mechanisms of evolution and 
natural genetics. GAs draw inspiration from the natural search and selection processes 
leading to the survival of the fittest individuals. GAs generate a sequence of 
populations by using a selection mechanism, and use crossover and mutation as search 
mechanisms. [Srinivas, 94] 

The principle behind GAs is that they create and maintain a population of 
individuals represented by chromosomes (essentially a character string analogous to 
the chromosomes appearing in DNA). These chromosomes are typically encoded 
solutions to a problem. The chromosomes then undergo a process of evolution 
according to rules of selection, mutation and reproduction. 

Each individual in the environment (represented by a chromosome) receives a 
measure of its fitness in the environment. Reproduction selects individuals with high 
fitness values in the population, and through crossover and mutation of such 
individuals, a new population is derived in which individuals may be even better fitted 
to their environment. The process of crossover involves two chromosomes swapping 
chunks of data (genetic information) and is analogous to the process of sexual 
reproduction. Mutation introduces slight changes into a small proportion of the 
population and is representative of an evolutionary step. The structure of a simple GA 
is given below. 
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Simple Genetic Algorithm () 
{ 
 initialize population; 
 evaluate population; 
 while termination criterion not reached 
  { 
  select solutions for next population; 
  perform crossover and mutation; 
  evaluate population; 
  } 
} 
 

The algorithm will iterate until the population has evolved to form a solution to 
the problem, or until a maximum number of iterations have taken place (suggesting 
that a solution is not going to be found given the resources available). 

4  A Genetic Algorithm For Test-Data Generation 

This section describes the proposed GA for automatic test data generation, which is 
guided by the data flow dependencies in the program. The algorithm searches for test 
cases that satisfy the all-uses criterion. Firstly, the major components of this GA are 
discussed in turn, then the overall algorithm is presented. 

4.1  Representation 

The proposed GA uses a binary vector as a chromosome to represent values of the 
program input variables x. The length of the vector depends on the required precision 
and the domain length for each input variable. 

Suppose we wish to generate test cases for a program of k input variables x1, …, 
xk, and each variable xi can take values from a domain Di = [ai, bi]. Suppose further 
that di decimal places are desirable for the values of each variable xi. To achieve such 

precision, each domain Di should be cut into (bi - ai) · 10
di equal size ranges. Let us 

denote by mi the smallest integer such that (bi - ai) · 10
di ≤ 2

mi – 1. Then, a 
representation having each variable xi coded as a binary string stringi of length mi 
clearly satisfies the precision requirement. The mapping from the binary string stringi 
into a real number xi from the range [ai, bi] is performed by the following formula: 

xi = ai + xi′ · 
12 −

−
m

ab
i

ii ,    (4.1) 

where xi′ represents the decimal value of the binary string stringi, (Michalewicz, 
1999). 
 

It should be noted that the above method can be applied for representing values of 
integer input variables by setting di to 0, and using the following formula instead of 
formula (4.1): 
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xi = ai + int (xi′ · 
12 −

−
m

ab
i

ii ),   (4.2) 

Now, each chromosome (as a test case) is represented by a binary string of length 

m = ∑ =

k

i im1
; the first m1 bits map into a value from the range [a1, b1] of variable x1, 

the next group of m2 bits map into a value from the range [a2, b2] of variable x2, and so 
on; the last group of mk bits map into a value from the range [ak, bk] of variable xk. 

For example, let a program have 2 input variables x and y, where –3.0 ≤ x ≤ 12.1 
and 4.1 ≤ y ≤ 5.8, and the required precision is 4 decimal places for each variable. The 
domain of variable x has length 15.1; the precision requirement implies that the range 
[-3.0, 12.1] should be divided into at least 15.1 · 10000 equal size ranges. This means 
that 18 bits are required as the first part of the chromosome:  2

17 < 151000 ≤ 2
18. The 

domain of variable y has length 1.7; the precision requirement implies that the range 
[4.1, 5.8] should be divided into at least 1.7 · 10000 equal size ranges. This means that 
15 bits are required as the second part of the chromosome:  2

14 < 17000 ≤ 2
15

. The 
total length of a chromosome (test case) is then m = 18+15=33 bits; the first 18 bits 
code x and remaining 15 bits code y. Let us consider an example chromosome:  

010001001011010000111110010100010. 
By using formula (4.1), the first 18 bits, 010001001011010000, represents x = 1.0524, 
and the next 15 bits, 111110010100010, represents y = 5.7553. So the given 
chromosome corresponds to the data values 1.0524 and 5.7553 for the variables x and 
y, respectively. 

4.2  Initial population 

As mentioned above, each chromosome (as a test case) is represented by a binary 
string of length m. We randomly generate pop_size m-bit strings to represent the 
initial population, where pop_size is the population size. The appropriate value of 
pop_size is experimentally determined. Each chromosome is converted to k decimal 
numbers representing values of k input variables x1, …, xk (i.e. a test case) by using 
formula (4.1)/(4.2). 

4.3  Evaluation function 

The algorithm evaluates each test case by executing the program with it as input, and 
recording the def-use paths in the program that are covered by this test case. (A test 
case is said to cover a def-use path, if it causes the program to traverse a path that has 
a subpath, which starts at the def-node and ends at the c-use node/p-use edge of the 
def-use path and does not pass through its killing nodes.) The fitness value eval(vi) for 
each chromosome vi  (i = 1, …, pop_size) is calculated as follows: 

eval(vi) = 
paths use-def of no. total

by  covered paths use-def of no. vi  

The fitness value is the only feedback from the problem for the GA. A test case 
which is represented by the chromosome vi is considered effective if its fitness value 
eval(vi) > 0. 
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4.4  Selection 

After computing the fitness of each test case in the current population, the algorithm 
selects test cases from the effective members of the current population that will be 
parents of the new population. If none of the members of the current population was 
effective, all the members of current population are considered the parents of the new 
population. In the selection process the GA uses one of two methods: the roulette 
wheel method [Goldberg, 89] or a proposed method, called the random selection 
method, according to the user choice. These two methods are described below.  
 
(i) Roulette wheel: For the selection of a new population with respect to the 
probability distribution based on fitness values, a roulette wheel with slots sized 
according to fitness is used. Such roulette wheel is constructed as follows: 

• Calculate the fitness value eval(vi) for each chromosome vi (i = 1, …, 
pop_size). 

• Find the total fitness of the population  F = )(
_

1∑ =

sizepop

i iveval , 

• Calculate the probability of a selection pi for each chromosome vi (i = 1, …, 
pop_size):   pi = eval(vi)/F. 

• Calculate a cumulative probability qi for each chromosome vi  (i = 1, …, 
pop_size): 

qi = ∑ =

i

j jp
1

. 

The selection process is based on spinning the roulette wheel pop_size times; each 
time we select a single chromosome for a new population in the following way: 

• Generate a random (float) number r from the range [0..1]. 
• If r < q1 then select the first chromosome (v1); otherwise select the i-th 

chromosome vi  (2 ≤ i ≤ pop_size) such that qi-1 < r ≤ qi. 
Obviously, some chromosomes would be selected more than once. 
 
(ii) Random selection: In this method, the selection of parents is made randomly, so 
that every effective member of the current population has an equal chance of being 
selected for recombination.  
Assume that l members of the current population were effective, where l ≤ pop_size. 
The parents are selected as follows: 
 Isolate the effective members and number them from 1 to l; 
 For i=1 to pop_size do 
 Begin 
  Generate an random integer number j from the range [0..l]; 
  Select chromosome vj from the effective members; 
 End For; 
The experiments showed that this selection method produced better results than the 
roulette wheel method (see Section 5). 
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4.5  Recombination 

In the recombination phase, we use two operators, crossover and mutation, which are 
the key to the power of GAs. These operators create new individuals from the selected 
parents to form a new population. 
 
Crossover: It operates at the individual level. During crossover, two parents 
(chromosomes) exchange sub string information (genetic material) at a random 
position in the chromosome to produce two new strings (offspring). The objective 
here is to create better population over time by combining material from pairs of 
(fitter) members from the parent population. Crossover occurs according to a 
crossover probability.  The probability of crossover pc gives us the expected number 
pc · pop_size of chromosomes, which undergo the crossover operation. We proceed in 
the following way: 
For each chromosome in the (new) population: 

• Generate a random (float) number r from the range [0..1]; 
• If r < pc then select given chromosome for crossover. 

Now we mate selected chromosomes randomly: For each pair of coupled 
chromosomes we generate a random integer number pos from the range [1..m-1] (m is 
the number of bits in a chromosome). The number pos indicates the position of the 
crossing point. Two chromosomes (b1…bposbpos+1…bm) and (c1…cposcpos+1…cm) are 
replaced by a pair of their offspring (b1…bposcpos+1…cm) and (c1…cposbpos+1…bm).   
 
Mutation: It is performed on a bit-by-bit basis. Mutation always operates after the 
crossover operator, and flips each bit with the pre-determined probability. The 
probability of mutation pm, gives us the expected number of mutated bits pm · m · 
pop_size.  Every bit (in all chromosomes in the whole population) has an equal chance 
to undergo mutation, i.e., change from 0 to 1 or vice versa. So we proceed in the 
following way: 
For each chromosome in the current (i.e. after crossover) population and for each bit 
within the chromosome: 

• Generate a random (float) number r from the range [0..1]; 
• If r < pm then mutate the bit. 
In the traditional GA approach the population would evolve until one individual 

from the whole set which represents the solution is found. In our case, this would 
correspond to one group of data items achieving maximum coverage of the program 
(i.e. traversing all the def-use paths of the program). Whilst this feasible for some 
programs, the majority of programs cannot be ‘covered’ by just one group of data 
items (i.e. one test case) – it might take many groups and several runs of the program 
to achieve the desired level of testing. So, we let the population evolves until a 
combined subset of the population achieves the desired level of coverage. This is done 
by recording which def-use paths of the program each individual has covered and 
halting the evolution when a set of individuals has traversed the entire def-use paths of 
program, if possible. The solution is this set. 
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4.6  Overall Algorithm 

The proposed genetic algorithm accepts as input an instrumented version of the 
program to be tested, the list of def-use paths to be covered, the number of input 
variables, and the domain and precision of each input variable. Also, it accepts the GA 
parameters: population size, maximum number of generations, and probabilities of the 
crossover and mutation. The algorithm produces a set of test cases, the set of def-use 
paths covered by each test case, and the list of uncovered def-use paths, if any. It 
should be noted that the instrumentation process and the generation of the program 
def-use paths are performed by a testing system previously developed by the author 
[Girgis, 93, 00].  

The algorithm uses an integer vector, called the def-use coverage vector, to record 
the traversed def-use paths. In this vector, each element (initially zero) corresponds to 
a def-use path. Whenever a def-use path is covered, the number of the test case that 
caused this coverage is stored in the corresponding element of the def-use coverage 
vector (see Table 1). The algorithm keeps track of all generated test cases that cover 
new def-use paths. It uses a counter, called nCases, to count them. These test cases are 
stored for later use. It uses another counter, called nEffective, to count the number of 
effective members of the current population. This counter indicates whether the 
current population contains any effective members. The overall GA is presented 
below. 
 
/* A GA algorithm to automatically generate test cases for a given program */ 
Input:  
 Instrumented version P' of the program to be tested P; 

List of def-use paths to be covered; 
Number of program input variables; 
Domain and precision of input data; 
Population size; 
Maximum no. of generations (Max_Gen); 
Probability of crossover; 
Probability of mutation; 

Output: 
Set of test cases for P, and the set of def-use paths covered by each test case; 
List of uncovered def-use paths, if any; 

Begin 
Step 1: Initialization  

Initialize the def-use coverage vector to zeros; 
Create Initial_Population; 
Current_population ← Initial_Population; 
Set of test cases for P ← φ; 
Coverage_Percent ← 0; 
No_Of_Generations ← 0; 
nCases ← 0;  

Step 2: Generate test cases 
nEffective ← 0; 
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For each member of current population do 
Begin 
 Convert the current chromosome to the corresponding set of decimal values; 
 Execute P' with this data set as input; 
 Evaluate the current test case; 
 If (some def-use paths are covered) then 

nCases ← nCases + 1;  
  Add effective test case to set of test cases for P; 
  Update the def-use coverage vector; 
  Update Coverage_Percent; 
  nEffective ← nEffective + 1; 
 End If 
End For; 
While (Coverage_Percent ≠ 100 and No_Of_Generations ≤ Max_Gen) do 
Begin 
 If (nEffective > 0) then 

Select set of parents of new population from effective members of 
current population using roulette wheel method or random selection 
method; 

 Else 
 Set of parents of new population ← Current_Population; 
 End If; 

Create New_Population using crossover and mutation operators; 
Current_Population ← New_Population; 
nEffective ← 0;    
For each member of Current_Population do 
Begin 

 Convert current chromosome to the corresponding set of decimal values; 
 Execute P' with this data set as input; 
 Evaluate the current test case; 
 If (some def-use paths are covered) then 

   nCases ← nCases + 1;  
   Add effective test cases to set of test cases for P; 
   Update the def-use coverage vector; 
   Update Coverage_Percent; 

   nEffective ← nEffective + 1; 
 End If 

End For; 
Increment No_Of_Generations; 

End While; 
Step 3: Produce output 

Return set of test cases for P, and set of def-use paths covered by each test case; 
Report on uncovered def-use paths, if any; 

End. 
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4.7  Example 

To illustrate the operation of the above algorithm, the result of applying the system, 
which implements it, to the example program (Figure 1), is presented below. Table 1 
shows the def-use coverage vector of the example program at the end of the system 
execution. 
 
POP_SIZE:  4 
CROSSOVER PROBABILITY: 0.8 
MUTATION PROBABILITY: 0.15 
NO. OF INPUT VARIABLES: 3 
DOMAIN AND PRECESSION OF INPUT VARIABLES: 
 1-20, 0; 1-20, 0; 1-20, 0 
** GA STARTED ** 
* INITIAL POPOULATION * 
  000011100101110           2,16,10 
  111111111010101          20,19,14 
  110001110011110          16,18,19 
  101101011010100          14,14,13 
CASE 1: *** SELECTED *** 
 TRAVERSED PATH: 1,8,10,12,13,14 
 COVERED DCU-PATHS:  5 
 COVERED DPU-PATHS:  3,4,15,16,19,20 
 * DEF-USE COVERAGE:              24.1% 
 * ACCUMULATED DEF-USE COVERAGE:  24.1% 
CASE 2: *** SELECTED *** 
 TRAVERSED PATH: 1,8,9,13,14 
 COVERED DCU-PATHS: 3,8 
 COVERED DPU-PATHS: 13,14 
 * DEF-USE COVERAGE:              13.8% 
 * ACCUMULATED DEF-USE COVERAGE:  37.9% 
CASE 3: *** SELECTED *** 
 TRAVERSED PATH: 1,2,3,7,14 
 COVERED DCU-PATHS: 1,6 
 COVERED DPU-PATHS: 1,2,5,6 
 * DEF-USE COVERAGE:              20.7% 
 * ACCUMULATED DEF-USE COVERAGE:  58.6% 
CASE 4: *** NOT SELECTED *** 
* PARENT SELECTION USING ROULETTE WHEEL METHOD * 
  000011100101110 
  111111111010101 
  111111111010101 
  000011100101110 
* CROSSOVER OPERATION * 
SELECTED PARENTS CROSSOVER 

POSITION 
OFFSPRING 

1, 2 3 110011100101110 001111111010101 
3, 4 13 000011100101101 111111111010110 
* MUTATION OPERATION * 
SELECTED CHROMOSOME MUTATION POSITION MUTATED CHROMOSOME 
1 5 110001100101110 
2 7 001111011010101 
3 14 000011100101111 
4 2 101111111010110 
4 15 101111111010111 
* NEW POPOULATION * 
  110001100101110          16,16,10 
  001111011010101           5,14,14 
  000011100101111           2,16,10 
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  101111111010111          15,19,15 
CASE 5: *** NOT SELECTED *** 
CASE 6: *** NOT SELECTED *** 
CASE 7: *** NOT SELECTED *** 
CASE 8: *** NOT SELECTED *** 
* PARENTS = CURRENT POPULATION * 
* CROSSOVER OPERATION * 
SELECTED 
PARENTS 

CROSSOVER 
POSITION 

OFFSPRING 

1, 4 11 101111111001110 110001100110111 
* MUTATION OPERATION * 
SELECTED CHROMOSOME MUTATION POSITION MUTATED CHROMOSOME 
2 6 001110011010101 
4 6 110000100110111 
4 8 110000110110111 
* NEW POPOULATION * 
  101111111001110          15,19,10 
  001110011010101           5, 5,14 
  000011100101111           2,16,10 
  110000110110111          16, 9,15 
CASE 9: *** SELECTED *** 
 TRAVERSED PATH: 1,8,10,11,12,13,14 
 COVERED DCU-PATHS:  4,9 
 COVERED DPU-PATHS: 17,18 
 * DEF-USE COVERAGE:              13.8% 
 * ACCUMULATED DEF-USE COVERAGE:  72.4% 
CASE 10: *** SELECTED *** 
 TRAVERSED PATH: 1,2,4,5,6,7,14 
 COVERED DCU-PATHS:  2,7 
 COVERED DPU-PATHS:  7,8,9,10 
 * DEF-USE COVERAGE:              20.7% 
 * ACCUMULATED DEF-USE COVERAGE:  93.1% 
CASE 11: *** NOT SELECTED *** 
CASE 12: *** SELECTED *** 
 TRAVERSED PATH: 1,2,4,6,7,14 
 COVERED DPU-PATHS: 11,12 
 * DEF-USE COVERAGE:               6.9% 
 * ACCUMULATED DEF-USE COVERAGE: 100.0% 
** GA TERMINATED ** 
** NO. OF GENERATIONS = 3  
** GENERATED TEST CASES ** 
           2,16,10 
          20,19,14 
          16,18,19 
          15,19,10 
           5, 5,14 
          16, 9,15 

---------------------------------------------------------------------------------------------------------- 
Dcu-path 1 2 3 4 5 6 7 8 9  
Test Case 3 10 2 9 1 3 10 2 9  
Dpu-path 1 2 3 4 5 6 7 8 9 10 
Test Case 3 3 1 1 3 3 10 10 10 10 
Dpu-path 11 12 13 14 15 16 17 18 19 20 
Test Case 12 12 2 2 1 1 9 9 1 1 

Table 1:  The def-use coverage vector of the example program 
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5  Experimental Results 

This section presents the results of the experiments that have been carried out to 
evaluate the effectiveness of the proposed GA compared to the random testing (RT) 
technique, and to compare the proposed random selection method to the roulette 
wheel method. A set of 15 small FORTRAN programs is used in the experiments. 
Two of these programs (Prog#14 and 15) include subroutines. To achieve a fair 
comparison, the random test data generator was designed to randomly generate sets of 
pop_size test cases in each iteration. The used GA parameters were as follows: 
Max_Gen = 100, pc = 0.8, and pm = 0.15.  
 

Prog# 
No. of  

Variables 
Pop. 
Size 

Method 
No. of  

Generations 
No. of  

Test Cases 
Def-Use 

Coverage % 
GA 4 6 100 

1 3 8 
RT 2 6 100 
GA 1 6 100 

2 3 8 
RT 2 7 100 
GA 3 4 100 

3 3 8 
RT 35 4 100 
GA 16 4 100 

4 3 8 
RT 28 4 100 
GA 18 6 81.3 

5 3 8 
RT 26 6 81.3 
GA 3 8 100 

6 4 8 
RT 5 8 100 
GA 4 5 100 

7 3 8 
RT 91 5 100 
GA 15 10 63.6 

8 3 10 
RT 51 9 58.4 
GA 1 3 100 

9 2 8 
RT 4 4 100 
GA 7 5 100 

10 1 8 
RT 3 5 100 
GA 2 5 92 

11 1 8 
RT 4 5 92 
GA 5 5 100 

12 3 8 
RT 91 5 100 
GA 5 3 96 

13 2 4 
RT 2 3 96 
GA 2 6 63.6 

14 1 8 
RT 15 6 63.6 
GA 8 11 87.2 

15 3 8 
RT 16 9 81.7 

Table 2:  A comparison between the GA technique and the random testing (RT) 
technique 
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Table 2 shows the results of applying the GA technique and the RT technique to 
the 15 programs. As can be seen, the GA technique outperformed the RT technique in 
12 out of the 15 programs. In 10 of these programs, the GA technique required less 
number of generations than the RT technique to achieve the same def-use coverage 
percentage. For Prog#8, the RT technique required 51 generations to cover 58.4% of 
the def-use paths, while the GA technique required only 15 generations to cover 
63.6% of the def-use paths, and for Prog#15, the RT technique required 16 
generations to cover 81.7% of the def-use paths, while the GA technique required only 
8 generations to cover 87.2% of the def-use paths; i.e. in these two programs, the GA 
reached higher coverage percentage in fewer generations than the random testing 
technique.  

 

Prog# Method 
No. of  

Generations 
No. of  

Test Cases 
Def-Use 

Coverage % 
Roulette Wheel 4 6 100 

1 
Random Selection 4 6 100 

Roulette Wheel 1 6 100 
2 

Random Selection 1 6 100 
Roulette Wheel 3 4 100 

3 
Random Selection 3 4 100 

Roulette Wheel 42 4 100 
4* 

Random Selection 16 4 100 
Roulette Wheel 19 6 81.3 

5* 
Random Selection 18 6 81.3 

Roulette Wheel 16 8 100 
6* 

Random Selection 3 8 100 
Roulette Wheel 4 5 100 

7 
Random Selection 4 5 100 

Roulette Wheel 32 10 63.6 
8* 

Random Selection 15 10 63.6 
Roulette Wheel 1 3 100 

9 
Random Selection 1 3 100 

Roulette Wheel 10 5 100 
10* 

Random Selection 7 5 100 
Roulette Wheel 5 5 92 

11* 
Random Selection 2 5 92 

Roulette Wheel 5 5 100 
12 

Random Selection 5 5 100 
Roulette Wheel 5 3 96 

13 
Random Selection 9 3 96 

Roulette Wheel 2 6 63.6 
14 

Random Selection 2 6 63.6 
Roulette Wheel 25 13 87.2 

15* 
Random Selection 8 11 87.2 

Table 3:  A comparison between parent selection methods used in the GA technique 
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It should be noted that, in the cases where less than 100% coverage is achieved, 
the programs included some def-use paths that cannot be covered by any test data due 
the existence of infeasible paths. 

Table 3 shows a comparison between the two parent selection methods used in the 
GA technique. As can be seen, the proposed random selection method was better than 
the roulette wheel method in 7 programs (the stared cases), and the roulette wheel 
method was better than the random selection method in only one program (the shaded 
case). In the remaining 7 programs, the performance of both methods was identical. 

6  Conclusions 

The GA technique presented in this paper is guided by the data flow dependencies in 
the program to search for test data to fulfil the all-uses criterion. This is the main 
contribution of this paper. The approach can be used in test data generation for 
programs with/without loops and procedures. The proposed GA accepts as input an 
instrumented version of the program to be tested, the list of def-use paths to be 
covered, the number of input variables, and the domain and precision of each input 
variable. Also, it accepts the GA parameters: population size, maximum number of 
generations, and probabilities of the crossover and mutation. The algorithm produces a 
set of test cases, the set of def-use paths covered by each test case, and a list of 
uncovered def-use paths, if any. 

Experiments have been carried out to evaluate the effectiveness of the proposed 
GA compared to the random testing technique, and to compare the proposed random 
selection method to the roulette wheel method. The results of these experiments 
showed that the GA technique outperformed the random testing technique in 12 out of 
the 15 programs used in the experiment. In 10 of these programs, the GA technique 
required less number of generations than the random testing technique to achieve the 
same def-use coverage percentage. In two programs, the GA reached higher coverage 
percentage in fewer generations than the random testing technique. The experiments 
also showed that the proposed selection method produced better results than the 
roulette wheel method. 
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