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Abstract: The paper is concerned with the effective and efficient processing of spatiotemporal 
selection queries under varying degrees of approximation. Such queries may employ operators 
like overlaps, north, during, etc., and their result is a set of entities standing approximately in 
some spatiotemporal relation θ with respect to a query object X. The contribution of the present 
work is twofold: i) it presents a formal mathematical framework for representing 
multidimensional relations at varying granularity levels, modelling relation approximation 
through the concept of relation convexity; ii) it subsequently exploits the proposed framework 
for developing approximate spatiotemporal retrieval mechanisms, combining a set of existing 
as well as new main memory and secondary memory data structures that achieve either optimal 
or the best known performance in terms of time and space complexity, for both the static and 
the dynamic setting.  

Keywords: Spatiotemporal Databases, Spatiotemporal Data Modeling, Spatiotemporal Data 
Structures, Range Queries of high dimensionality 
Categories:  H.1.0, H.3.1, H.3.3 

1  Overview 

The handling of spatiotemporal information is an increasingly evident demand for 
modern DBMSs, initially motivated by applications like GIS, CAD, etc. and soon 
expanded in areas such as robotics, medical imaging, multimedia applications, etc. 
[Gaede, 98]. Efficient query processing for this type of data is a feature of primary 
importance. 

Spatiotemporal databases are collections of entities, which have either spatial 
attributes (e.g. geographic databases) or temporal attributes (e.g. medical databases) 
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or combinations thereof (e.g. multimedia databases). Spatial attributes can be viewed 
as 0D, 1D, 2D or 3D positions in a "space", either the physical one (e.g. map objects) 
or an artificial one such as a computer screen (e.g. multimedia objects). Temporal 
attributes capture the temporal existence of entities and in the general case can be 
represented as time points or time intervals. 

In order to support querying of such attributes, a DBMS must provide appropriate 
operators, usually in the form of binary spatial and temporal predicates (or relations), 
such as contains, west, near, after, etc. (e.g. "find all buildings northeast of the park 
built during 1970-1980"). A main category of queries of this sort is the class of 
spatiotemporal selection queries which ask for all entities standing in some 
spatiotemporal relation θ to a query object X. The processing of such selection queries 
gives rise to three main requirements, which are addressed in this work: 
! a formal framework for the effective representation of spatiotemporal relations; 
! efficient handling of approximate matches; 
! appropriate data structures for efficient query processing. 

The study of binary spatial and temporal relations have been traditionally among 
the research interests of the DB and AI communities, respectively (see [Papadias, 94]; 
[Egenhofer, 97]; [Kautz];  [Allen, 83]). This interaction has yielded an abundance of 
models, which however suffer from a particular limitation: they allow for the 
representation of fixed sets of relations, thus restricting the potential range of 
applications. To our knowledge, no existing model provides varying granularity levels 
in the description of relations. Moreover, there is no universally accepted uniform 
spatiotemporal model.  

Responding to these requirements, we propose a multidimensional relation 
framework that can be tuned in various levels of detail and which is based on 1D 
partitions called resolution schemes. The feasible relations at every resolution level 
are represented as binary strings, which are characterised by an inherent poset 
structure, called conceptual neighbourhood, which provides certain desirable 
properties. An early informal description of the relation framework has been presented 
in [Papadias, 98]  and it was applied for 2D configuration retrieval (queries that ask 
for a set of objects that satisfy a particular spatial configuration), whereas a rigorous 
formulation can be found in [Delis, 99]. Section 2 in this paper borrows from the latter 
the concepts that pertain to spatiotemporal selection queries and provides the 
corresponding relation background. 

Unlike traditional selection queries where the output consists of a set of exact 
matches, in spatiotemporal queries we are equally interested in approximate matches 
as well, because inherently, answers closely similar to an exact match are not equally 
important to dissimilar ones, and there are no universally accepted semantics for some 
spatiotemporal predicates (e.g. north-east, see Fig. 1). Instead of dealing with 
approximate matches for queries employing exact relations, one can equivalently 
accept exact matches for queries on approximate relations. A trivial way to deal with 
such uncertainty is to treat an ambiguous or approximate relation as a disjunction of 
all potentially exact candidate relations. The drawback however is that such a query is 
implemented as a set of subqueries, each corresponding to a candidate relation, whose 
outcome must be eventually combined (at the cost of extra processing overhead). In 
Section 3 we present an alternative elegant way to define approximate relations, free 
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of the undesirable query processing overhead, based on the concept of relation 
convexity. We also present a mapping of an ND selection query to an N'D (N'=2N) 
range query, that is a query that asks for all N'D points contained in an N'D range (or 
window). The constituent 1D ranges can be semi-infinite or finite intervals. Unlike 
efforts in the relevant literature that try to reduce dimensionality, this transformation 
allows us to exploit the rich set of available solutions for the relatively well studied 
range query problem.   

Section 4 presents a suite of main memory and secondary memory data structures 
that answer multidimensional range queries in provably optimal or the best-known 
asymptotic time. The significance of our results is clear for 1D (temporal indexing 
applications), 2D (GIS and spatial DB applications) and 3D (viewed as either volume 
handling applications, or multimedia applications -2D snapshots over time-). 

 
 

A

X

C

B

 

 
 

northeast(A, X) 
northeast(B, X)? 
northeast(C, X)? 

                       Figure 1: Example of Approximate Spatial Matches 
 

The majority of the related work makes use of spatial indexing schemes, most 
often R-trees and their variants [Guttman, 84]; [Sellis, 87]; [Beckmann, 90], to answer 
a subset of spatial (usually topological or directional) queries in 2D [Papadias, 97], 
[Theodoridis, 98]. Lately R-trees have been also utilised for higher dimensionalities 
[Theodoridis, 96b]. In contrast, employing our 2D relation framework we can answer 
a richer set of queries based on user-tuned relations including topological, directional 
and approximate distance relations.  

The wide adoption of secondary memory indexing schemes and especially of the 
R-tree family for this type of problems, is mainly attributed to their satisfactory 
average performance in terms of page accesses. However, this does not undermine 
approaches towards main memory structures, for several factors: i) theoretical average 
performance estimation for the R-tree family has been particularly evasive (see 
[Theodoridis, 96b]  for some late results) while worst case performance can be very 
bad, ii) the assumption that most searches are more I/O-bounded than CPU-bounded 
(which justifies the choice of secondary memory structures) is not always true in 
spatial data management [Gaede, 95];  [Hoel, 95], and iii) the availability of 
increasingly larger memories at lower costs justifies the use of main memory 
structures even for the processing of large datasets. 

Nowadays, for up to three dimensions there are available secondary memory 
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structures, discussed in Section 4, that exhibit worst case performance analogous to 
that of main memory ones, i.e. query time costs of the form O(logBn+t/B) and space 
usage close to linear (O(n/B)) for range queries (where n denotes the number of stored 
items, B denotes the page size and t denotes the output size). However, for higher 
dimensionalities and cases where good worst-case performance is critical, approaches 
utilising main memory structures must be considered as possible alternatives to 
secondary memory indexing schemes.  

For spatiotemporal selection queries the above practically means that: i) 1D 
relation selection queries (transformed to 2D range queries) can be very efficiently 
answered using secondary memory structures, ii) for 2D, 3D and generally ND 
selection queries (equivalently, 4D, 6D and 2ND range queries) one should choose 
from a set of classic multidimensional indexing schemes plus a family of very efficient 
main memory structures. 

Before proceeding to the main part of the paper we will introduce to the reader 
two terms that are used in the sequel: Hasse diagrams and Allen’s relations [Allen, 
83].  

The term Hasse diagram was introduced in the mathematical theory of order 
theory, and is basically a simple schematic representation of a finite partially ordered 
set S; in a Hasse diagram one represents each member of S as a vertex and draws an 
edge that goes upward from x to y if x<y, and there is no z such that x<z<y. 

According to Allen’s framework there are thirteen basic relations (before, after, 
overlap, during, starts, finishes, their six converse relations and equals) that can hold 
between two intervals, where the relation between two intervals is allowed to be a 
disjunction of the basic relations and sets are used to list the disjunctions. Let I be the 
set of all basic relations. Allen allows the relation between two events to be any subset 
of I.    

2  Relation Framework 

The two probably most popular formal models for the representation of temporal and 
spatial relations are Allen’s interval algebra  [Allen, 83] and Egenhofer’s intersection 
model [Egenhofer, 91] respectively. The former proposes a complete set of pair-wise 
disjoint relations between temporal intervals while the latter suggests that the 
topological relations between spatial objects can be determined considering the 
emptiness or not of the pair-wise intersections among the objects’ boundaries and 
interiors. 

We argue however that there is no a priori complete set for spatiotemporal 
relations for any class of entities. Rather, each time the application at hand indicates 
the appropriate type and resolution of relations to be considered. Egenhofer’s model 
provides the assumption that relationships in space (and time) can be qualitatively 
described by the emptiness or not of intersections (coincidence of spatial or temporal 
occupancy) while Allen’s relations indirectly suggest that different amounts of detail 
can be captured in the description of a relation between intervals, depending on the 
definition of appropriate 1D regions of interest. Inspired by these ideas, we propose a 
multiresolution relation framework, considering initially relations in 1D. Given a 
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reference interval [a,b], we can identify five potential regions of interest: 1.(-∞,a) 
2.[a,a] 3.(a,b) 4.[b,b] 5.(b,+∞).  

Given an arbitrary interval [c,d] (which we call primary), its relation to [a,b] can 
be uniquely determined by the five intersections of [c,d] with each of the above 
regions, the emptiness of which are modelled by five binary variables t1, t2, t3, t4, t5, 
("0" corresponds to an empty intersection and "1" corresponds to a non-empty one). 
For example, R11000 corresponds to the left-meet relation (⎯__). The different 
relations that can be defined in this way coincide with Allen's [Allen, 83] interval 
relations.   

The choice of regions of interest can be arbitrary and in fact the particular choice 
(thus, the number of relation bits) determines the resolution level in the description of 
relations. Let Y=<X1, X2, …, Xn> be a partition of  (-∞,∞). Given an interval X, let X.l 
and X.r represent its left and right endpoint (regardless of closure at endpoints), 
respectively (in case X has zero length, X.l=X.r). Also, let seq(Y)=<x1, x2, …, xm> be 
the ordered sequence of the elements of {X1.l, X1.r, X2.l, X2.r, …, Xn.l, Xn.r}-{-∞,∞} 
(e.g. seq((-∞,a), [a,a], (a,b), [b,b], (b,+ ∞)) = <a, b>).  
Definition 1. Assume a reference interval [a,b]. A resolution scheme (or simply 
scheme) Y(a,b) =<X1, X2, …, Xn>  is a partition of (-∞,∞), where seq(Y(a,b)) = <x1, x2, 
…, xm>. A relation R over Y is a binary string t1t2…tn, ti∈{0,1}, ti="1" iff Xi∩[x,y]≠∅ 
and ti="0" otherwise, complying with the following constraints: i) it contains exactly 
one substring of consecutive "1"s and ii) there is at least one ti="1", in a position i 
such that Xi is a non-zero length interval. Given a primary interval [x,y] we use the 
notation R01100([x,y],[a,b]) to indicate that the relation between [x,y] and [a,b] is 
represented by the string 01100. For any reasonably practical scheme a and b must be 
included in seq(Y(a,b)), i.e. ∃k ∃p, k<p≤m: xk=a, xp=b. 

A few indicative resolution schemes, some example relation strings and the 
corresponding interval configurations are given in Figure 2 and described below: 
− (-∞,a) [a,b] (b,+∞): a coarse scheme where meet (at endpoints) relations can not 
be distinguished. Figure 2.a portrays different interval relationships that correspond to 
the same example relation string. This example shows that the endpoints of regions of 
interest need not necessarily constitute zero-length regions by themselves, unless 
meeting or not at the endpoints should discriminate two relations. This is not the case 
in this scheme. 
− (-∞,a) [a,a] (a,(a+b)/2) [(a+b)/2,(a+b)/2] ((a+b)/2, b) [b,b] (b,+∞): a scheme 
which refines overlap relations (Figure 2.c). 
− (-∞,a-δ1), [a-δ1,a-δ1], (a-δ1,a), [a,a], (a,b), [b,b] (b,b+δ2) [b+δ2,b+δ2] (b+δ2,+∞): a 
distance enhanced scheme, where near is defined as being in a distance of up to δ and 
far otherwise (Figure 1.e). Left and right distances need not necessarily be symmetric. 
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Figure 2: Example Resolution Schemes and Corresponding Relations 

The intuition behind the above is that in order to distinguish several left or right 
relations with respect to a reference interval, one can establish appropriate regions of 
interest by defining points to the left and to the right of [a,b]. An analogous definition 
of regions of interest by establishing appropriate points in [a,b] allows the description 
of several overlap relations (e.g. strong overlap as at least 50% coverage of [a,b] vs. 
weak overlap, defined as less than 50% coverage). In general, such points can de 
defined at either absolute distances (e.g. a-d) or at relative to the length of [a,b] 
distances (e.g. b+λ(b-α)). 

The binary string encoding of relations is particularly useful for a certain kind of 
relation reasoning, involving efficient calculation of relation similarity and relation 
neighbourhood computation (see [Delis, 99]). For our purposes however any 
notational convention would equally do. The distinguishable relations at a particular 
scheme are called primitive relations. In general, if n is the number of bits used by the 
resolution scheme, the number of distinguishable relations (equivalently, the number 
of all binary strings satisfying the previous constraints) is n(n+1)/2-k, where k is the 
number of bits assigned to zero-length regions of interest (e.g. for the scheme in Fig. 
2.b n=5, k=2). The set of primitive relations at every scheme is inherently permeated 
by a partial order, defined as: 

Resolution Schemes Relations 

a b-∞ ∞

t1 t2 t3

 
distinguishes 6 relations 

 R010

 

(a)                           «inside» 

a b

t

-∞ ∞

1 t2 t3 t4 t5

 
distinguishes 13 (Allen’s)  

relations 

 R00011

 

(b)                        «meet right» 

a b-∞ ∞

t

a+b
2

1 t2 t3 t4 t5 t6 t7

 
distinguishes 25 relations 

 R1111100

 

(c)                 «left strong overlap» 

a b-∞ ∞δδ

1t 2t 3t 4t 5t 6t 7t 8t 9t

1 2

 

distinguishes 41 relations 

 R111000000

 

(d)                         «left near» 
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X≤Y iff  
rm(X)≤rm(Y) ∧ lm(X)≤lm(Y) 

where X=x1x2…xn,Y=y1y2…yn,  xi, yi ∈ {0,1}, are relation strings, rm(X), lm(X) 
return the position of the rightmost and leftmost "1", respectively, in the binary string 
of a relation X.  

The corresponding Hasse diagram (which is in fact a distributive lattice) is called 
conceptual neighbourhood graph. It has the property that similar relations are closer 
to each other than non-similar ones, a fact that we will exploit in the next section in 
order to define approximate relations. Figure 3 presents such an example graph for 
Allen’s relations (the least and greatest lattice elements are the leftmost and rightmost 
relations in the figure, respectively). This particular graph was first proposed by 
Freksa [Freksa, 91] as a means to capture similarity among interval relations (two 
relations are linked through an edge if they can be transformed to each other by a 
continuous minimal deformation of the primary interval). In this work however we 
have formalised and generalised the definition. 

So far we have established a flexible framework for the definition of 1D relations 
at varying detail levels. This can be easily extended to multiple dimensions for the 
definition of projection-based relations among ND rectangles. Such rectangular 
approximations of real objects (Minimum Bounding Rectangles -MBRs- being the 
most popular representatives for 2D) are often utilised for multidimensional querying 
as to facilitate the so called two-step query processing: i) at a filter step non qualifying 
candidates are very fast eliminated, resulting in a set of potential answers to the query, 
then ii) at a refinement step the exact objects of the answer set are examined to detect 
possible false hits. 

The relation between two such ND objects is determined by the combination of N 
1D relations, each corresponding to the relation between the object projections for 
each of the dimensions. Thus an ND relation can be naturally defined as a N-tuple of 
1D relations, e.g. R11000-11100 = <R11000 , R11100>. So, depending on the particular 
application, relations at each of the dimensions need not necessarily be defined at the 
same resolution scheme. Assuming the distance-enhanced scheme for the x and y axes, 
and Allen’s scheme for the z and time axes, Figure 4 illustrates an example of a 3D 
relation, interpreted either as a relation between volumes or as a relation between 
planar objects with temporal existence (e.g. multimedia objects), by giving the Rx-y-z, 
Rx-y-time representation.  
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R10000 R11000 R11100

R11110

R11111

R01111

R00111 R00011 R00001R01110

R01100 R00110

R00100   

Figure 3: Neighborhood Graph for Scheme of Fig. 2b 

There are S1S2…Sn distinct ND relations, where Si is the number of distinguishable 
relations at the i-th dimension. All of the properties of relations in 1D can be directly 
extended in ND. For example, ND relations are partially ordered where the ND partial 
order is the logical combination of N 1D partial orders like the one defined above, one 
for each of the dimensions. Also, ND conceptual neighbourhood graphs are fractal 
graphs, i.e. graphs whose nodes are graphs whose nodes are graphs, etc., for N levels 
of nesting (see [Delis, 99]). In the next section we introduce a concept which allows us 
to define approximate relations. 
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Figure 4: Configurations for R000000111-000001100-00011(C,X) 

3  Approximate Relation Querying 

We have already stressed in the introductory section the need for a formal definition 
of approximate relations, as an effective means to deal with approximate query 
matches. Typical selection queries ask for all entities standing in some spatiotemporal 
relation θ to a query object X, where θ can in general be a set of ND primitive 
relations for a particular value of N, semantically corresponding to their disjunction. In 
the two extreme cases, θ is a singleton (corresponding to an exact query relation), or 
the full set of primitive relations, called the universal relation (indicating complete 
lack of knowledge for a particular relationship). In between, θ being a proper subset of 
the set of all primitive relations introduces some degree of uncertainty in the 
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description of the requested relationship. 
Such arbitrary relation subsets are bound to processing overhead as they can be 

only implemented as combinations of several distinct queries, each for every primitive 
relation in the set. In the sequel we will restrict the form of such sets in a way that 
does not introduce extra processing cost. 

Definition 2. A convex relation (the term was coined by Ligozat [Ligozat, 91] in a 
different context though) is an interval in the relation lattice at a particular resolution 
scheme, i.e. a relation of the form [R, S] where R, S are primitive relations (thus 
including exact relations as a special case).  

Therefore, an ND relation is convex if its 1D constituent relations are convex. An 
example of an 1D convex relation is [R11100, R01110]={R11100, R01100, R11110, R01110} (see 
Fig. 3). Intuitively, convex relations capture a continuous uncertainty (contain all 
intermediate relations between R, S as potential candidates) in our knowledge of a 
particular relationship. They are more reasonable approximations than arbitrary 
disjunctive relations since in practical cases they are likely to arise due to 
inexact/ambiguous observations (e.g. when asking for directions, it is more likely to 
get an answer "the post office is two or three or four blocks away", than "the post 
office is two blocks or ten blocks away"). 

Viewing each 1D interval as a point in the x<y half-plane, a 1D relation is 
represented by a 0D, 1D or 2D region in the half-plane (see Fig. 5). Convex relations 
have an elegant geometrical characterisation, which is a convex point-set (a point-set 
is convex if the points of a line segment that connects any two points belong to the 
set), as expressed by the following theorem. 

Theorem 1. Assume a reference interval [a,b], a primary interval [x,y] and a 
resolution scheme Y(a,b)=<Y1,Y2,…, Ym>, where seq(Y(a,b))= x1x2…xn. A relation R 
between [x,y] and [a,b] is convex iff its geometric representation can be defined by 
the conjunctive expression 

(a1 σ1 x σ2 a2) ∧ (a3 σ3 y σ4 a4) ∧ (x<y), 
where σi is either < or ≤, a1<a3, a2<a4, a1≤a2, a3≤a4  and  ai∈R for all ai, i=1…4. 
Proof sketch. The key idea is that, according to the above expression, x and y are 
constrained by convex interval domains, say dom(x) and dom(y). If R is convex then it 
is a relation interval [R1, R2] at the corresponding lattice. Let Yi,Yj, be the leftmost and 
rightmost regions of interest whose corresponding bit is set to "1" in R1 and Yk,Yl, be 
the leftmost and rightmost regions of interest whose corresponding bit is set to "1" in 
R2. Since R can be any relation between R1 and R2, it can be expressed by the 
conjunction: (Yi.l σ1 x σ2 Yk.r)∧(Yj.l σ3 y σ4 Yl.r)∧(x < y) 
For the inverse, assume that x and y are constrained by dom(x) and dom(y), given 
respectively by the expressions (a1 σ1 x σ2 a2), (a3 σ3 y σ4 a4). In a similar manner we 
can find appropriate regions of interest Yi,Yj, Yk,Yl, whose intersection with dom(x) and 
dom(y) is non-empty and construct two relation strings R1, R2 such that R=[R1, R2] is 
convex (see [Delis, 99] for the full proof).  # 
 

Assuming that we have stored in a database only points that correspond to valid 
1D intervals (points above the x=y line), the above theorem essentially says that a 1D 
selection query, asking for an approximate (i.e. convex) relation with respect to an 
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interval [a,b], is equivalent to a classical 2D range query. For the example in Figure 5 
the approximate relation is [R11100, R01110] (adopting the scheme of Allen’s relations) 
and the corresponding query window is (-∞,a]×(a,b]. 

For a 2D example, consider the four distinct queries of Figure 6 which are all 
instances of the approximate query relation [R11100-11100, R11110-11110]. This query is 
equivalent to the range query (-∞,a)×(a,b]×(-∞,c)×(c,d] in a 4D space where the 
rectangle X is represented by the 4-tuple <a, b, c, d>. Generalising, an ND convex 
relation selection query is equivalent to a classic 2ND range query.  

y

x

x=y

a

(a,b)

a b

b

R01100

R11100

R01110

R11110

 

Figure 5:  Geometric Representation of Interval Relations (assuming the reference 
interval [a,b]) 
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                            Figure 6: A 2D Approximate Query 
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4  Data Structures for Range Queries 

In this section we describe fast main memory and secondary memory structures for 
range queries. As explained in the previous section, selection queries can in general be 
mapped to ND (where N is even) range queries, where ranges can be the combination 
of N finite or semi-infinite, closed or open 1D intervals. The proposed structures 
accommodate all type for ranges, with appropriate adjustment of the searching 
algorithms.  

4.1 Structures for Main Memory 

Let n be the number of stored points, k be the output size and N be the universe size. 
For three-sided range queries on the plane (i.e. queries of the form [a,b]x(-∞,c] - any 
of the four endpoints could be infinity) we can use the classic priority search tree 
[Mehlhorn, 84] that answers queries in O(logn+k) time  is updated in O(logn) time 
and uses O(n) space. On the grid (where objects are described by integer coordinates), 
Gabow et al. [Gabow, 84] solved the static version of the problem in optimal query 
time O(k) and O(n+N) space. Their structure retains the O(k) query time even for 
continuous space problems, provided we have access to the nodes of the structure 
corresponding to a, b (the endpoints of the closed range). It should be noted that in 
[Sioutas, 04] a data structure based on a suitable modification of the priority search 
tree was presented, that matched the performance characteristics of the structure of 
Gabow et al. This structure, which was developed by using the techniques of 
bucketing, persistence, and microset table lookup, can be considered a viable 
alternative to the structure of [Cabow, 84] since both theoretically and experimentally 
is faster (in terms of the involved constant factors). 

In the sequel we will show how the data structure presented in [Gabow, 84] (or 
equivalently the data structure presented in [Sioutas, 04]) permits to solve efficiently 
the 2D range searching problem. 

Theorem 2. In the RAM model of computation a set S of n points can be stored in an 
O(nlogn) space data structure that answers two-dimensional range queries in 

O( nn loglog/log +k) time.  

Proof. Let  [a1,b1]×[a2,b2]  be the query range. We use a balanced binary tree T, which 
stores in its leaves the points according to their y-coordinate. To each internal node u 
we associate two sets of points S1(u), S2(u). S1(u) contains the points of the left subtree 
of u while S2(u) contains the points of the right subtree. The points in S1(u) are stored 
in a secondary structure D1(u) while the points in S2(u) are stored in a secondary 
structure D2(u). D1(u) is used to answer queries of the form [a1,b1]×[a2,+∞] and D2(u) 
to answer queries of the form [a1,b1]×[-∞,b2]. D1(u) and D2(u) are implemented using 
the structure of [Gabow, 84]. Moreover, the sets Si(u) are stored in two instances of 
the structure of Andersson and Thorup ([Andersson, 00], see also [Andersson, 96]) 
that permits 1D searching in O( nn loglog/log +k) time and O(n) space. Since each 

point is stored in O(logn) secondary structures the total space is O(nlogn). 
To answer a window query of the form [a1,b1]×[a2, b2] we initially locate in T the node 
u where the search paths for a2 and b2 split that is we locate the nearest common 
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ancestor of a2 and b2. This computation can be performed in constant time by 
employing the nearest common ancestor structure of [Harel, 84]. Then by using the 
[Andersson, 00] structure we locate in S1 and S2 the elements that are predecessors of 
the a1, b1 values and query the structure D1(u) with [a1,b1]×[a2,+∞] and D2(u) with 
[a1,b1]×[-∞,b2].  The total time cost is O( nn loglog/log +k).   # 

  
For higher dimensions, the d-dimensional window query can be solved using the 

classic Range tree [Mehlhorn, 84] in O(logd-1nloglogn+k) query time, O(logd-

1nloglogn) update time and O(nlogd-1n) space.  
In static d-dimensional searching there are several related structures that can 

achieve less time and space. In the following, we describe in detail such a structure 
(see also [Sioutas, 04]) because it exhibits a number of techniques common in the 
design of both main and secondary memory structures. 

Let S be a set of n d-dimensional points, d≥3. We want to store them in a data 
structure so that the points that lie in a query range of the form [a1,b1]×[a2,b2]×… 
×[ad,bd] can be located efficiently. We show that this query can be answered in O(logd-

2 n + k) time and O(nlogd-1 n) space. First we show how to solve the 3D problem for 
queries of the form [a1,b1]×[a2,b2]×(-∞,b3]. We will use a two-level structure. The first 
level is a balanced binary tree T that stores in its leaves the points of S sorted 
according to their first coordinate. With each internal node u we associate a secondary 
structure D(u) storing the projections in the last two coordinates of the points in the 
subtree of u. Each D(u) is implemented with the structure of [Gabow, 84] for the last 
two coordinates of the points.  

In order to answer a query we locate the O(logn) nodes in T that store the points 
with first coordinate in [a1,b1]. For each node u we query the structure D(u) with the 
range [a2,b2]×(-∞,b3]. Through fractional cascading [CG86], the leaves on the search 
paths corresponding to the values a2, b2 can be found in O(logn+logn)=O(logn) time. 
So the query time is O(logn+k). The space is O(nlogn) since each point is stored in 
O(logn) secondary structures and each secondary structure needs linear space. 
Therefore we have an overall query performance O(logn+k), using O(nlogn) space. 

Now consider the general case of arbitrary ranges [a1,b1]×[a2,b2]×[a3,b3]. As in 
[O88] the classical technique of Edelsbrunner [Edelsbrunner, 81] is employed. Let T 
be a balanced binary tree which stores in its leaves the points according to their third 
coordinate. To each internal node u we associate two sets of points S1(u), S2(u). The 
set S1(u) contains the points in the left subtree of u while the set S2(u) contains the 
points in the right subtree of u. Each set S1(u) is stored in a secondary structure D1(u) 
while each set S2(u) is stored in a secondary structure D2(u). The D1(u) structures 
answer queries with ranges of the form [a1,b1]×[a2,b2]×(a3,+∞] while the D2(u) 

structures answer queries of the form [a1,b1]×[a2,b2]×(-∞,b3]. Since each point is 
stored in O(logn) secondary structures the space is (nlog2n). To answer a query with 
the range [a1,b1]×[a2,b2]×(a3,b3] we find in T the node u where the search paths for a3 
and b3 split. Then we query the structure  D1(u)  with  [a1,b1]×[a2,b2]×(a3,+∞]  and  
D2(u) with [a1,b1]×[a2,b2]×(-∞, b3]. This  takes O(logn+k) time. 

For the correctness note that since the search paths for a3 and b3 split in u, then the 
points in S1(u) have third coordinate smaller than b3 and the points in S2(u) have third 
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coordinate greater than a3. Furthermore all points with third coordinate in [a3,b3] are 
in S1(u)∪S2(u) so the query algorithm is correct. Therefore: 

Lemma 1. The three dimensional static range searching problem can be solved in 
O(nlog2n) space and O(logn+k) query time.  

To solve the d-dimensional problem for d>3 we use a structure with d–2 levels. 
The first level is a balanced binary tree, which stores in its leaves the points according 
to their first coordinate. To each node we associate the set of points stored in its 
subtree. This set is stored, in the same way, in a second level structure according to 
the second coordinates of the  points.  The construction continues in the same way, 
until the (d-2)-th level, where we use the structure of Lemma 1. It follows easily that 
each level incurs an increase by a logn factor to the query time and space of the 
structure, that is: 

Theorem 3. In the RAM model, the d-dimensional static range searching problem 
with iso-oriented rectangular ranges can be solved in O(nlogd-1n) space and O(logd-

2n+k) query time.  
Notes: i) The same result can be easily obtained in the Pointer Machine model 
[Bozanis, 97]. ii) For the RAM model it is possible to attain improved time and space 
bounds by employing the elegant though complex construction of [Alstrup, 01]. In 
particular, for the 3D range reporting problem, it is achieved query time O(logn+k) 
using  O(nlog1+ε n) space. These bounds can be extended for any fixed d, to d-
dimensional range reporting, for d≥4, with a multiplicative factor of O(logd-3+ε n) in 
space and O((logn/loglogn)d-3) in query time (excluding the term involving k). 
Improvements to these results have also been reported in [Mortensen, 03a], 
[Mortensen , 03b], [Mortensen, 05],  iii) In the special case of 3D dominance 
searching (all ranges semi-infinite) a set of three linear space algorithms were 
proposed in [Makris, 98]. The first works on a grid, is rather complicated and achieves 
O((loglogN)2logloglogN+kloglogN) query time, where N denotes the universe size. 
The second achieves O(lognloglogn+k) time performance for the pointer machine 
model of computation and the third achieves O(logn+k) time performance for the 
RAM model of computation. Improvements to this result were reported in [JaJa, 04], 
iv) The main weakness of the aforementioned structures is that their query time and 
space costs are growing exponentially with the dimension d (a phenomenon that is 
often referred to as the “curse of dimensionality”). Therefore for reasonable values of 
d, a query is most efficiently computed by a linear scan of the stored points. An 
optimization of this method using space O(dn) is to keep the points sorted by each 
coordinate and restrict the scan to the dimension having fewer points in the respective 
interval of the query range. This approach can be made to run in the optimal 
O(d+scan) time, where scan is the number of scanned points, by employing the data 
structuring techniques developed in [Alstrup, 01].  

4.2 Structures For Secondary Memory 

Let n denote the number of stored items and t the output size. We assume that our 
external memory consists of a single disk and that each I/O operation is able to 
transfer a block of B units of data from the disk to the main memory. The efficiency of 
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an algorithm will be measured in terms of the number of the performed I/O accesses 
and the number of blocks required to store the proposed structure. Our subsequent 
presentation is based heavily on [Vitter, 01]. 

Although B-trees [Comer, 79] and their variations achieve optimal worst-case 
bounds for the 1D range searching problem, this is not the case for higher dimensions 
due to the inefficiency in mapping the successful main memory data structures to 
secondary memory. Moreover, the traditional spatial multidimensional indexing data 
structures such as R-trees and variants, grid files, quad trees, hB-trees, kd-B-tres, 
space filling curves, etc. (the interested reader should consult [Gaede, 98] for more 
details) have good average case performance (validated usually through experimental 
tests), but their worst case behavior can be very bad. 

Recently, a significant research effort has focused on obtaining external 
multidimensional range searching structures with satisfying worst-case behavior. This 
research, triggered by the influential paper by Kanellakis et al. [Kanellakis, 96] aims 
at designing data structures with performance similar to the performance of the main  
memory data structures. Similar in this context means that the resultant structures 
should have query time of the form O(logBn+t/B) and the space usage should be close 
to linear (O(n/B)). 

For the special case of 2D range searching with both ranges semi-infinite and with 
the query point lying on the diagonal of the xy-plane, Arge and Vitter [Arge, 96] 
designed an optimal dynamic data structure which uses O(n/B) space and supports 
queries and updates in O(logBn+t/B) and O(logBn) time, respectively. The proposed 
structure is an external version of the well-known interval tree data structure 
[Mehlhorn, 84] and is based on the development of an elegant weight-balanced B-tree. 
The techniques developed there are of independent interest because they can be used 
to derive worst-case versions of other external and main memory data structures. 

In [Ramaswamy, 94] a technique termed path caching was developed that yielded 
a data structure that answers three-sided range queries in optimal O(logBn+t/B) query 
time, supports updates in O(logBn) amortized time and uses O((n/B)loglogB) space. 
The technique is based on the  movement of data from the internal nodes of a tree-like 
data structure to the leaves in order to facilitate the retrieval of information in a 
blocked fashion. The pathing technique was extended in [Subramanian, 95] and a new 
dynamic structure called p-range tree was developed. The structure answers three-
sided range queries in O(logBn+t/B+IL*(B)) time (IL* denotes the iterated log* 
function) supports updates in O(logBn+(logBn)2/B) amortized time and uses linear 
(O(n/B)) space. The structure can be modified to answer 2D range queries in the same 
query time bound and with optimal space O(νlogν/loglogB(n+1)) (ν=n/B). 

Finally in [Arge, 99] a data structure was developed for  the three-sided range 
query with optimal time, space and update bounds. The structure, which was based on 
the use of persistence and weight-balanced B-trees can be generalized to handle 2D 
range queries in O(logBn+t/B) query time, O(νlogν/log(logBn+1)) space and 
O((logBn)logν/log(logBn+1)) update time (ν=n/B). 

For higher dimensions the related research is scarce. In [Vengroff, 96] a near 
optimal static data structure for the 3D range searching was proposed. The structure 
relies on a geometric partitioning of the stored points (related to the well known 
concept of maximal layers) and with some modifications [Vitter, 01] answers queries 
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in optimal O(logBn+t/B) time and uses O(ν(logν)k/(log(logBn+1))k) space. Here k 
denotes the number of closed ranges in the query and ν=n/B. 

Lately, Grossi and Italiano [Grossi, 98] designed a multidimensional version of B-
trees called cross-trees that use linear space, have update time O(logBn) and answer 
queries in O(n1-1/d+t/B) time. 
Notes:  The careful reader should have noticed that the aforementioned external 
memory structures suffer also from “the curse of dimensionality”. In order to face that 
problem: (i) a set of R-like data structures have been proposed (see [Lin 94; Berthold 
96; Ciaccia 97]) whose query cost approaches the time performance of a linear scan, 
when the dimension d becomes larger than a certain threshold, and (ii) there have been 
designed data structures that try to project the set of stored points to a set of lower 
dimensionality (ideally this projection should project to the intrinsic dimensionality of 
the vector space spanned by the points); for more details on this approach the 
interested reader should consult: [Weber 98; Ferhatosmanoglu  00; Chavez 01]. 

Figure 7: Range Searching Structures 
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5  Conclusions 

Spatiotemporal information is increasingly becoming an integral part of databases and 
knowledge bases. The need for its effective and efficient manipulation has motivated a 
lot of research efforts in the DB and AI areas. These have yielded several formal 
frameworks for the representation of binary spatiotemporal relations, which can be 
exploited by query processors for the efficient handling of spatiotemporal retrieval. 

In this work we have focused on mechanisms for the efficient processing of 
spatiotemporal selection queries. Initially we formulated an innovative relation model 
which allows the description of spatiotemporal relations at varying detail (resolution) 
levels. The model is based on a binary string encoding of 1D relations and its 
straightforward extension to multiple dimensions. 

The relations which are characterised at every resolution level have an inherent 
poset structure, called conceptual neighbourhood, which we exploit for the definition 
of  approximate relations. An approximate relation, called a convex relation, is an 
interval in the lattice of such a poset structure and captures a continuous uncertainty in 
the representation of a particular relationship. Approximate relations constitute 
effective means to deal with approximate spatiotemporal selection queries. In 
particular, we have mapped every approximate ND selection query (with exact queries 
being a certain subset thereof) to an equivalent 2ND classic range query. 

On these grounds we have described several main memory and secondary 
memory structures that answer range queries in either optimal or the best known 
asymptotic time. The table in the next page summarises the performance behaviour of 
the proposed structures. The shaded fields indicate our described results for the static 
2D range query problem and an extension of the techniques presented in [Gabow, 84] 
for static range queries of higher dimensions. The rest consist of the state-of-the-art 
structures for such problems. Unless explicitly stated otherwise, the time and space 
complexities refer to problems for continuous space. 

Overall, the techniques proposed in this work are significant for GIS, temporal 
databases, spatial/ multimedia databases and other disciplines for which the handling 
and efficient querying of multidimensional data is of primary importance. 

Some of the proposed structures are currently being implemented and the results 
so far are promising. Our next step for future continuation of this work is an extensive 
experimental evaluation of various structures for several classes of selection queries. 
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