

A Provably Efficient Computational Model For Approximate
Spatiotemporal Retrieval ∗

Vasilis Delis
(Computer Technology Institute, Patras, Greece

delis@cti.gr)

Christos Makris
(Computer Engineering and Informatics Department, University of Patras, Greece

Computer Technology Institute, Patras, Greece
makri@ceid.upatras.gr)

Spyros Sioutas

(Computer Engineering and Informatics Department, University of Patras, Greece
Computer Technology Institute, Patras, Greece

sioutas@ceid.upatras.gr)

Abstract: The paper is concerned with the effective and efficient processing of spatiotemporal
selection queries under varying degrees of approximation. Such queries may employ operators
like overlaps, north, during, etc., and their result is a set of entities standing approximately in
some spatiotemporal relation θ with respect to a query object X. The contribution of the present
work is twofold: i) it presents a formal mathematical framework for representing
multidimensional relations at varying granularity levels, modelling relation approximation
through the concept of relation convexity; ii) it subsequently exploits the proposed framework
for developing approximate spatiotemporal retrieval mechanisms, combining a set of existing
as well as new main memory and secondary memory data structures that achieve either optimal
or the best known performance in terms of time and space complexity, for both the static and
the dynamic setting.

Keywords: Spatiotemporal Databases, Spatiotemporal Data Modeling, Spatiotemporal Data
Structures, Range Queries of high dimensionality
Categories: H.1.0, H.3.1, H.3.3

1 Overview

The handling of spatiotemporal information is an increasingly evident demand for
modern DBMSs, initially motivated by applications like GIS, CAD, etc. and soon
expanded in areas such as robotics, medical imaging, multimedia applications, etc.
[Gaede, 98]. Efficient query processing for this type of data is a feature of primary
importance.

Spatiotemporal databases are collections of entities, which have either spatial
attributes (e.g. geographic databases) or temporal attributes (e.g. medical databases)

∗ A preliminary version of this paper has been presented in ACM GIS 1999.

Journal of Universal Computer Science, vol. 11, no. 6 (2005), 830-849
submitted: 21/12/04, accepted: 26/6/05, appeared: 28/6/05 © J.UCS

or combinations thereof (e.g. multimedia databases). Spatial attributes can be viewed
as 0D, 1D, 2D or 3D positions in a "space", either the physical one (e.g. map objects)
or an artificial one such as a computer screen (e.g. multimedia objects). Temporal
attributes capture the temporal existence of entities and in the general case can be
represented as time points or time intervals.

In order to support querying of such attributes, a DBMS must provide appropriate
operators, usually in the form of binary spatial and temporal predicates (or relations),
such as contains, west, near, after, etc. (e.g. "find all buildings northeast of the park
built during 1970-1980"). A main category of queries of this sort is the class of
spatiotemporal selection queries which ask for all entities standing in some
spatiotemporal relation θ to a query object X. The processing of such selection queries
gives rise to three main requirements, which are addressed in this work:
! a formal framework for the effective representation of spatiotemporal relations;
! efficient handling of approximate matches;
! appropriate data structures for efficient query processing.

The study of binary spatial and temporal relations have been traditionally among
the research interests of the DB and AI communities, respectively (see [Papadias, 94];
[Egenhofer, 97]; [Kautz]; [Allen, 83]). This interaction has yielded an abundance of
models, which however suffer from a particular limitation: they allow for the
representation of fixed sets of relations, thus restricting the potential range of
applications. To our knowledge, no existing model provides varying granularity levels
in the description of relations. Moreover, there is no universally accepted uniform
spatiotemporal model.

Responding to these requirements, we propose a multidimensional relation
framework that can be tuned in various levels of detail and which is based on 1D
partitions called resolution schemes. The feasible relations at every resolution level
are represented as binary strings, which are characterised by an inherent poset
structure, called conceptual neighbourhood, which provides certain desirable
properties. An early informal description of the relation framework has been presented
in [Papadias, 98] and it was applied for 2D configuration retrieval (queries that ask
for a set of objects that satisfy a particular spatial configuration), whereas a rigorous
formulation can be found in [Delis, 99]. Section 2 in this paper borrows from the latter
the concepts that pertain to spatiotemporal selection queries and provides the
corresponding relation background.

Unlike traditional selection queries where the output consists of a set of exact
matches, in spatiotemporal queries we are equally interested in approximate matches
as well, because inherently, answers closely similar to an exact match are not equally
important to dissimilar ones, and there are no universally accepted semantics for some
spatiotemporal predicates (e.g. north-east, see Fig. 1). Instead of dealing with
approximate matches for queries employing exact relations, one can equivalently
accept exact matches for queries on approximate relations. A trivial way to deal with
such uncertainty is to treat an ambiguous or approximate relation as a disjunction of
all potentially exact candidate relations. The drawback however is that such a query is
implemented as a set of subqueries, each corresponding to a candidate relation, whose
outcome must be eventually combined (at the cost of extra processing overhead). In
Section 3 we present an alternative elegant way to define approximate relations, free

831Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

of the undesirable query processing overhead, based on the concept of relation
convexity. We also present a mapping of an ND selection query to an N'D (N'=2N)
range query, that is a query that asks for all N'D points contained in an N'D range (or
window). The constituent 1D ranges can be semi-infinite or finite intervals. Unlike
efforts in the relevant literature that try to reduce dimensionality, this transformation
allows us to exploit the rich set of available solutions for the relatively well studied
range query problem.

Section 4 presents a suite of main memory and secondary memory data structures
that answer multidimensional range queries in provably optimal or the best-known
asymptotic time. The significance of our results is clear for 1D (temporal indexing
applications), 2D (GIS and spatial DB applications) and 3D (viewed as either volume
handling applications, or multimedia applications -2D snapshots over time-).

A

X

C

B

northeast(A, X)
northeast(B, X)?
northeast(C, X)?

 Figure 1: Example of Approximate Spatial Matches

The majority of the related work makes use of spatial indexing schemes, most
often R-trees and their variants [Guttman, 84]; [Sellis, 87]; [Beckmann, 90], to answer
a subset of spatial (usually topological or directional) queries in 2D [Papadias, 97],
[Theodoridis, 98]. Lately R-trees have been also utilised for higher dimensionalities
[Theodoridis, 96b]. In contrast, employing our 2D relation framework we can answer
a richer set of queries based on user-tuned relations including topological, directional
and approximate distance relations.

The wide adoption of secondary memory indexing schemes and especially of the
R-tree family for this type of problems, is mainly attributed to their satisfactory
average performance in terms of page accesses. However, this does not undermine
approaches towards main memory structures, for several factors: i) theoretical average
performance estimation for the R-tree family has been particularly evasive (see
[Theodoridis, 96b] for some late results) while worst case performance can be very
bad, ii) the assumption that most searches are more I/O-bounded than CPU-bounded
(which justifies the choice of secondary memory structures) is not always true in
spatial data management [Gaede, 95]; [Hoel, 95], and iii) the availability of
increasingly larger memories at lower costs justifies the use of main memory
structures even for the processing of large datasets.

Nowadays, for up to three dimensions there are available secondary memory

832 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

structures, discussed in Section 4, that exhibit worst case performance analogous to
that of main memory ones, i.e. query time costs of the form O(logBn+t/B) and space
usage close to linear (O(n/B)) for range queries (where n denotes the number of stored
items, B denotes the page size and t denotes the output size). However, for higher
dimensionalities and cases where good worst-case performance is critical, approaches
utilising main memory structures must be considered as possible alternatives to
secondary memory indexing schemes.

For spatiotemporal selection queries the above practically means that: i) 1D
relation selection queries (transformed to 2D range queries) can be very efficiently
answered using secondary memory structures, ii) for 2D, 3D and generally ND
selection queries (equivalently, 4D, 6D and 2ND range queries) one should choose
from a set of classic multidimensional indexing schemes plus a family of very efficient
main memory structures.

Before proceeding to the main part of the paper we will introduce to the reader
two terms that are used in the sequel: Hasse diagrams and Allen’s relations [Allen,
83].

The term Hasse diagram was introduced in the mathematical theory of order
theory, and is basically a simple schematic representation of a finite partially ordered
set S; in a Hasse diagram one represents each member of S as a vertex and draws an
edge that goes upward from x to y if x<y, and there is no z such that x<z<y.

According to Allen’s framework there are thirteen basic relations (before, after,
overlap, during, starts, finishes, their six converse relations and equals) that can hold
between two intervals, where the relation between two intervals is allowed to be a
disjunction of the basic relations and sets are used to list the disjunctions. Let I be the
set of all basic relations. Allen allows the relation between two events to be any subset
of I.

2 Relation Framework

The two probably most popular formal models for the representation of temporal and
spatial relations are Allen’s interval algebra [Allen, 83] and Egenhofer’s intersection
model [Egenhofer, 91] respectively. The former proposes a complete set of pair-wise
disjoint relations between temporal intervals while the latter suggests that the
topological relations between spatial objects can be determined considering the
emptiness or not of the pair-wise intersections among the objects’ boundaries and
interiors.

We argue however that there is no a priori complete set for spatiotemporal
relations for any class of entities. Rather, each time the application at hand indicates
the appropriate type and resolution of relations to be considered. Egenhofer’s model
provides the assumption that relationships in space (and time) can be qualitatively
described by the emptiness or not of intersections (coincidence of spatial or temporal
occupancy) while Allen’s relations indirectly suggest that different amounts of detail
can be captured in the description of a relation between intervals, depending on the
definition of appropriate 1D regions of interest. Inspired by these ideas, we propose a
multiresolution relation framework, considering initially relations in 1D. Given a

833Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

reference interval [a,b], we can identify five potential regions of interest: 1.(-∞,a)
2.[a,a] 3.(a,b) 4.[b,b] 5.(b,+∞).

Given an arbitrary interval [c,d] (which we call primary), its relation to [a,b] can
be uniquely determined by the five intersections of [c,d] with each of the above
regions, the emptiness of which are modelled by five binary variables t1, t2, t3, t4, t5,
("0" corresponds to an empty intersection and "1" corresponds to a non-empty one).
For example, R11000 corresponds to the left-meet relation (⎯__). The different
relations that can be defined in this way coincide with Allen's [Allen, 83] interval
relations.

The choice of regions of interest can be arbitrary and in fact the particular choice
(thus, the number of relation bits) determines the resolution level in the description of
relations. Let Y=<X1, X2, …, Xn> be a partition of (-∞,∞). Given an interval X, let X.l
and X.r represent its left and right endpoint (regardless of closure at endpoints),
respectively (in case X has zero length, X.l=X.r). Also, let seq(Y)=<x1, x2, …, xm> be
the ordered sequence of the elements of {X1.l, X1.r, X2.l, X2.r, …, Xn.l, Xn.r}-{-∞,∞}
(e.g. seq((-∞,a), [a,a], (a,b), [b,b], (b,+ ∞)) = <a, b>).
Definition 1. Assume a reference interval [a,b]. A resolution scheme (or simply
scheme) Y(a,b) =<X1, X2, …, Xn> is a partition of (-∞,∞), where seq(Y(a,b)) = <x1, x2,
…, xm>. A relation R over Y is a binary string t1t2…tn, ti∈{0,1}, ti="1" iff Xi∩[x,y]≠∅
and ti="0" otherwise, complying with the following constraints: i) it contains exactly
one substring of consecutive "1"s and ii) there is at least one ti="1", in a position i
such that Xi is a non-zero length interval. Given a primary interval [x,y] we use the
notation R01100([x,y],[a,b]) to indicate that the relation between [x,y] and [a,b] is
represented by the string 01100. For any reasonably practical scheme a and b must be
included in seq(Y(a,b)), i.e. ∃k ∃p, k<p≤m: xk=a, xp=b.

A few indicative resolution schemes, some example relation strings and the
corresponding interval configurations are given in Figure 2 and described below:
− (-∞,a) [a,b] (b,+∞): a coarse scheme where meet (at endpoints) relations can not
be distinguished. Figure 2.a portrays different interval relationships that correspond to
the same example relation string. This example shows that the endpoints of regions of
interest need not necessarily constitute zero-length regions by themselves, unless
meeting or not at the endpoints should discriminate two relations. This is not the case
in this scheme.
− (-∞,a) [a,a] (a,(a+b)/2) [(a+b)/2,(a+b)/2] ((a+b)/2, b) [b,b] (b,+∞): a scheme
which refines overlap relations (Figure 2.c).
− (-∞,a-δ1), [a-δ1,a-δ1], (a-δ1,a), [a,a], (a,b), [b,b] (b,b+δ2) [b+δ2,b+δ2] (b+δ2,+∞): a
distance enhanced scheme, where near is defined as being in a distance of up to δ and
far otherwise (Figure 1.e). Left and right distances need not necessarily be symmetric.

834 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

Figure 2: Example Resolution Schemes and Corresponding Relations

The intuition behind the above is that in order to distinguish several left or right
relations with respect to a reference interval, one can establish appropriate regions of
interest by defining points to the left and to the right of [a,b]. An analogous definition
of regions of interest by establishing appropriate points in [a,b] allows the description
of several overlap relations (e.g. strong overlap as at least 50% coverage of [a,b] vs.
weak overlap, defined as less than 50% coverage). In general, such points can de
defined at either absolute distances (e.g. a-d) or at relative to the length of [a,b]
distances (e.g. b+λ(b-α)).

The binary string encoding of relations is particularly useful for a certain kind of
relation reasoning, involving efficient calculation of relation similarity and relation
neighbourhood computation (see [Delis, 99]). For our purposes however any
notational convention would equally do. The distinguishable relations at a particular
scheme are called primitive relations. In general, if n is the number of bits used by the
resolution scheme, the number of distinguishable relations (equivalently, the number
of all binary strings satisfying the previous constraints) is n(n+1)/2-k, where k is the
number of bits assigned to zero-length regions of interest (e.g. for the scheme in Fig.
2.b n=5, k=2). The set of primitive relations at every scheme is inherently permeated
by a partial order, defined as:

Resolution Schemes Relations

a b-∞ ∞

t1 t2 t3

distinguishes 6 relations

 R010

(a) «inside»

a b

t

-∞ ∞

1 t2 t3 t4 t5

distinguishes 13 (Allen’s)

relations

 R00011

(b) «meet right»

a b-∞ ∞

t

a+b
2

1 t2 t3 t4 t5 t6 t7

distinguishes 25 relations

 R1111100

(c) «left strong overlap»

a b-∞ ∞δδ

1t 2t 3t 4t 5t 6t 7t 8t 9t

1 2

distinguishes 41 relations

 R111000000

(d) «left near»

835Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

X≤Y iff
rm(X)≤rm(Y) ∧ lm(X)≤lm(Y)

where X=x1x2…xn,Y=y1y2…yn, xi, yi ∈ {0,1}, are relation strings, rm(X), lm(X)
return the position of the rightmost and leftmost "1", respectively, in the binary string
of a relation X.

The corresponding Hasse diagram (which is in fact a distributive lattice) is called
conceptual neighbourhood graph. It has the property that similar relations are closer
to each other than non-similar ones, a fact that we will exploit in the next section in
order to define approximate relations. Figure 3 presents such an example graph for
Allen’s relations (the least and greatest lattice elements are the leftmost and rightmost
relations in the figure, respectively). This particular graph was first proposed by
Freksa [Freksa, 91] as a means to capture similarity among interval relations (two
relations are linked through an edge if they can be transformed to each other by a
continuous minimal deformation of the primary interval). In this work however we
have formalised and generalised the definition.

So far we have established a flexible framework for the definition of 1D relations
at varying detail levels. This can be easily extended to multiple dimensions for the
definition of projection-based relations among ND rectangles. Such rectangular
approximations of real objects (Minimum Bounding Rectangles -MBRs- being the
most popular representatives for 2D) are often utilised for multidimensional querying
as to facilitate the so called two-step query processing: i) at a filter step non qualifying
candidates are very fast eliminated, resulting in a set of potential answers to the query,
then ii) at a refinement step the exact objects of the answer set are examined to detect
possible false hits.

The relation between two such ND objects is determined by the combination of N
1D relations, each corresponding to the relation between the object projections for
each of the dimensions. Thus an ND relation can be naturally defined as a N-tuple of
1D relations, e.g. R11000-11100 = <R11000 , R11100>. So, depending on the particular
application, relations at each of the dimensions need not necessarily be defined at the
same resolution scheme. Assuming the distance-enhanced scheme for the x and y axes,
and Allen’s scheme for the z and time axes, Figure 4 illustrates an example of a 3D
relation, interpreted either as a relation between volumes or as a relation between
planar objects with temporal existence (e.g. multimedia objects), by giving the Rx-y-z,
Rx-y-time representation.

836 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

R10000 R11000 R11100

R11110

R11111

R01111

R00111 R00011 R00001R01110

R01100 R00110

R00100

Figure 3: Neighborhood Graph for Scheme of Fig. 2b

There are S1S2…Sn distinct ND relations, where Si is the number of distinguishable
relations at the i-th dimension. All of the properties of relations in 1D can be directly
extended in ND. For example, ND relations are partially ordered where the ND partial
order is the logical combination of N 1D partial orders like the one defined above, one
for each of the dimensions. Also, ND conceptual neighbourhood graphs are fractal
graphs, i.e. graphs whose nodes are graphs whose nodes are graphs, etc., for N levels
of nesting (see [Delis, 99]). In the next section we introduce a concept which allows us
to define approximate relations.

x

y C

X

relative durations
X
C

δ

δ

 x

y

δ
δX

C

z

Figure 4: Configurations for R000000111-000001100-00011(C,X)

3 Approximate Relation Querying

We have already stressed in the introductory section the need for a formal definition
of approximate relations, as an effective means to deal with approximate query
matches. Typical selection queries ask for all entities standing in some spatiotemporal
relation θ to a query object X, where θ can in general be a set of ND primitive
relations for a particular value of N, semantically corresponding to their disjunction. In
the two extreme cases, θ is a singleton (corresponding to an exact query relation), or
the full set of primitive relations, called the universal relation (indicating complete
lack of knowledge for a particular relationship). In between, θ being a proper subset of
the set of all primitive relations introduces some degree of uncertainty in the

837Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

description of the requested relationship.
Such arbitrary relation subsets are bound to processing overhead as they can be

only implemented as combinations of several distinct queries, each for every primitive
relation in the set. In the sequel we will restrict the form of such sets in a way that
does not introduce extra processing cost.

Definition 2. A convex relation (the term was coined by Ligozat [Ligozat, 91] in a
different context though) is an interval in the relation lattice at a particular resolution
scheme, i.e. a relation of the form [R, S] where R, S are primitive relations (thus
including exact relations as a special case).

Therefore, an ND relation is convex if its 1D constituent relations are convex. An
example of an 1D convex relation is [R11100, R01110]={R11100, R01100, R11110, R01110} (see
Fig. 3). Intuitively, convex relations capture a continuous uncertainty (contain all
intermediate relations between R, S as potential candidates) in our knowledge of a
particular relationship. They are more reasonable approximations than arbitrary
disjunctive relations since in practical cases they are likely to arise due to
inexact/ambiguous observations (e.g. when asking for directions, it is more likely to
get an answer "the post office is two or three or four blocks away", than "the post
office is two blocks or ten blocks away").

Viewing each 1D interval as a point in the x<y half-plane, a 1D relation is
represented by a 0D, 1D or 2D region in the half-plane (see Fig. 5). Convex relations
have an elegant geometrical characterisation, which is a convex point-set (a point-set
is convex if the points of a line segment that connects any two points belong to the
set), as expressed by the following theorem.

Theorem 1. Assume a reference interval [a,b], a primary interval [x,y] and a
resolution scheme Y(a,b)=<Y1,Y2,…, Ym>, where seq(Y(a,b))= x1x2…xn. A relation R
between [x,y] and [a,b] is convex iff its geometric representation can be defined by
the conjunctive expression

(a1 σ1 x σ2 a2) ∧ (a3 σ3 y σ4 a4) ∧ (x<y),
where σi is either < or ≤, a1<a3, a2<a4, a1≤a2, a3≤a4 and ai∈R for all ai, i=1…4.
Proof sketch. The key idea is that, according to the above expression, x and y are
constrained by convex interval domains, say dom(x) and dom(y). If R is convex then it
is a relation interval [R1, R2] at the corresponding lattice. Let Yi,Yj, be the leftmost and
rightmost regions of interest whose corresponding bit is set to "1" in R1 and Yk,Yl, be
the leftmost and rightmost regions of interest whose corresponding bit is set to "1" in
R2. Since R can be any relation between R1 and R2, it can be expressed by the
conjunction: (Yi.l σ1 x σ2 Yk.r)∧(Yj.l σ3 y σ4 Yl.r)∧(x < y)
For the inverse, assume that x and y are constrained by dom(x) and dom(y), given
respectively by the expressions (a1 σ1 x σ2 a2), (a3 σ3 y σ4 a4). In a similar manner we
can find appropriate regions of interest Yi,Yj, Yk,Yl, whose intersection with dom(x) and
dom(y) is non-empty and construct two relation strings R1, R2 such that R=[R1, R2] is
convex (see [Delis, 99] for the full proof). #

Assuming that we have stored in a database only points that correspond to valid
1D intervals (points above the x=y line), the above theorem essentially says that a 1D
selection query, asking for an approximate (i.e. convex) relation with respect to an

838 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

interval [a,b], is equivalent to a classical 2D range query. For the example in Figure 5
the approximate relation is [R11100, R01110] (adopting the scheme of Allen’s relations)
and the corresponding query window is (-∞,a]×(a,b].

For a 2D example, consider the four distinct queries of Figure 6 which are all
instances of the approximate query relation [R11100-11100, R11110-11110]. This query is
equivalent to the range query (-∞,a)×(a,b]×(-∞,c)×(c,d] in a 4D space where the
rectangle X is represented by the 4-tuple <a, b, c, d>. Generalising, an ND convex
relation selection query is equivalent to a classic 2ND range query.

y

x

x=y

a

(a,b)

a b

b

R01100

R11100

R01110

R11110

Figure 5: Geometric Representation of Interval Relations (assuming the reference
interval [a,b])

y

x

c

a b

d
X

A

y

x

c

a b

d

X

A

y

x

c

a b

d
X

A

y

x

c

a b

d

X

A

 Figure 6: A 2D Approximate Query

839Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

4 Data Structures for Range Queries

In this section we describe fast main memory and secondary memory structures for
range queries. As explained in the previous section, selection queries can in general be
mapped to ND (where N is even) range queries, where ranges can be the combination
of N finite or semi-infinite, closed or open 1D intervals. The proposed structures
accommodate all type for ranges, with appropriate adjustment of the searching
algorithms.

4.1 Structures for Main Memory

Let n be the number of stored points, k be the output size and N be the universe size.
For three-sided range queries on the plane (i.e. queries of the form [a,b]x(-∞,c] - any
of the four endpoints could be infinity) we can use the classic priority search tree
[Mehlhorn, 84] that answers queries in O(logn+k) time is updated in O(logn) time
and uses O(n) space. On the grid (where objects are described by integer coordinates),
Gabow et al. [Gabow, 84] solved the static version of the problem in optimal query
time O(k) and O(n+N) space. Their structure retains the O(k) query time even for
continuous space problems, provided we have access to the nodes of the structure
corresponding to a, b (the endpoints of the closed range). It should be noted that in
[Sioutas, 04] a data structure based on a suitable modification of the priority search
tree was presented, that matched the performance characteristics of the structure of
Gabow et al. This structure, which was developed by using the techniques of
bucketing, persistence, and microset table lookup, can be considered a viable
alternative to the structure of [Cabow, 84] since both theoretically and experimentally
is faster (in terms of the involved constant factors).

In the sequel we will show how the data structure presented in [Gabow, 84] (or
equivalently the data structure presented in [Sioutas, 04]) permits to solve efficiently
the 2D range searching problem.

Theorem 2. In the RAM model of computation a set S of n points can be stored in an
O(nlogn) space data structure that answers two-dimensional range queries in

O(nn loglog/log +k) time.

Proof. Let [a1,b1]×[a2,b2] be the query range. We use a balanced binary tree T, which
stores in its leaves the points according to their y-coordinate. To each internal node u
we associate two sets of points S1(u), S2(u). S1(u) contains the points of the left subtree
of u while S2(u) contains the points of the right subtree. The points in S1(u) are stored
in a secondary structure D1(u) while the points in S2(u) are stored in a secondary
structure D2(u). D1(u) is used to answer queries of the form [a1,b1]×[a2,+∞] and D2(u)
to answer queries of the form [a1,b1]×[-∞,b2]. D1(u) and D2(u) are implemented using
the structure of [Gabow, 84]. Moreover, the sets Si(u) are stored in two instances of
the structure of Andersson and Thorup ([Andersson, 00], see also [Andersson, 96])
that permits 1D searching in O(nn loglog/log +k) time and O(n) space. Since each

point is stored in O(logn) secondary structures the total space is O(nlogn).
To answer a window query of the form [a1,b1]×[a2, b2] we initially locate in T the node
u where the search paths for a2 and b2 split that is we locate the nearest common

840 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

ancestor of a2 and b2. This computation can be performed in constant time by
employing the nearest common ancestor structure of [Harel, 84]. Then by using the
[Andersson, 00] structure we locate in S1 and S2 the elements that are predecessors of
the a1, b1 values and query the structure D1(u) with [a1,b1]×[a2,+∞] and D2(u) with
[a1,b1]×[-∞,b2]. The total time cost is O(nn loglog/log +k). #

For higher dimensions, the d-dimensional window query can be solved using the

classic Range tree [Mehlhorn, 84] in O(logd-1nloglogn+k) query time, O(logd-

1nloglogn) update time and O(nlogd-1n) space.
In static d-dimensional searching there are several related structures that can

achieve less time and space. In the following, we describe in detail such a structure
(see also [Sioutas, 04]) because it exhibits a number of techniques common in the
design of both main and secondary memory structures.

Let S be a set of n d-dimensional points, d≥3. We want to store them in a data
structure so that the points that lie in a query range of the form [a1,b1]×[a2,b2]×…
×[ad,bd] can be located efficiently. We show that this query can be answered in O(logd-

2 n + k) time and O(nlogd-1 n) space. First we show how to solve the 3D problem for
queries of the form [a1,b1]×[a2,b2]×(-∞,b3]. We will use a two-level structure. The first
level is a balanced binary tree T that stores in its leaves the points of S sorted
according to their first coordinate. With each internal node u we associate a secondary
structure D(u) storing the projections in the last two coordinates of the points in the
subtree of u. Each D(u) is implemented with the structure of [Gabow, 84] for the last
two coordinates of the points.

In order to answer a query we locate the O(logn) nodes in T that store the points
with first coordinate in [a1,b1]. For each node u we query the structure D(u) with the
range [a2,b2]×(-∞,b3]. Through fractional cascading [CG86], the leaves on the search
paths corresponding to the values a2, b2 can be found in O(logn+logn)=O(logn) time.
So the query time is O(logn+k). The space is O(nlogn) since each point is stored in
O(logn) secondary structures and each secondary structure needs linear space.
Therefore we have an overall query performance O(logn+k), using O(nlogn) space.

Now consider the general case of arbitrary ranges [a1,b1]×[a2,b2]×[a3,b3]. As in
[O88] the classical technique of Edelsbrunner [Edelsbrunner, 81] is employed. Let T
be a balanced binary tree which stores in its leaves the points according to their third
coordinate. To each internal node u we associate two sets of points S1(u), S2(u). The
set S1(u) contains the points in the left subtree of u while the set S2(u) contains the
points in the right subtree of u. Each set S1(u) is stored in a secondary structure D1(u)
while each set S2(u) is stored in a secondary structure D2(u). The D1(u) structures
answer queries with ranges of the form [a1,b1]×[a2,b2]×(a3,+∞] while the D2(u)

structures answer queries of the form [a1,b1]×[a2,b2]×(-∞,b3]. Since each point is
stored in O(logn) secondary structures the space is (nlog2n). To answer a query with
the range [a1,b1]×[a2,b2]×(a3,b3] we find in T the node u where the search paths for a3
and b3 split. Then we query the structure D1(u) with [a1,b1]×[a2,b2]×(a3,+∞] and
D2(u) with [a1,b1]×[a2,b2]×(-∞, b3]. This takes O(logn+k) time.

For the correctness note that since the search paths for a3 and b3 split in u, then the
points in S1(u) have third coordinate smaller than b3 and the points in S2(u) have third

841Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

coordinate greater than a3. Furthermore all points with third coordinate in [a3,b3] are
in S1(u)∪S2(u) so the query algorithm is correct. Therefore:

Lemma 1. The three dimensional static range searching problem can be solved in
O(nlog2n) space and O(logn+k) query time.

To solve the d-dimensional problem for d>3 we use a structure with d–2 levels.
The first level is a balanced binary tree, which stores in its leaves the points according
to their first coordinate. To each node we associate the set of points stored in its
subtree. This set is stored, in the same way, in a second level structure according to
the second coordinates of the points. The construction continues in the same way,
until the (d-2)-th level, where we use the structure of Lemma 1. It follows easily that
each level incurs an increase by a logn factor to the query time and space of the
structure, that is:

Theorem 3. In the RAM model, the d-dimensional static range searching problem
with iso-oriented rectangular ranges can be solved in O(nlogd-1n) space and O(logd-

2n+k) query time.
Notes: i) The same result can be easily obtained in the Pointer Machine model
[Bozanis, 97]. ii) For the RAM model it is possible to attain improved time and space
bounds by employing the elegant though complex construction of [Alstrup, 01]. In
particular, for the 3D range reporting problem, it is achieved query time O(logn+k)
using O(nlog1+ε n) space. These bounds can be extended for any fixed d, to d-
dimensional range reporting, for d≥4, with a multiplicative factor of O(logd-3+ε n) in
space and O((logn/loglogn)d-3) in query time (excluding the term involving k).
Improvements to these results have also been reported in [Mortensen, 03a],
[Mortensen , 03b], [Mortensen, 05], iii) In the special case of 3D dominance
searching (all ranges semi-infinite) a set of three linear space algorithms were
proposed in [Makris, 98]. The first works on a grid, is rather complicated and achieves
O((loglogN)2logloglogN+kloglogN) query time, where N denotes the universe size.
The second achieves O(lognloglogn+k) time performance for the pointer machine
model of computation and the third achieves O(logn+k) time performance for the
RAM model of computation. Improvements to this result were reported in [JaJa, 04],
iv) The main weakness of the aforementioned structures is that their query time and
space costs are growing exponentially with the dimension d (a phenomenon that is
often referred to as the “curse of dimensionality”). Therefore for reasonable values of
d, a query is most efficiently computed by a linear scan of the stored points. An
optimization of this method using space O(dn) is to keep the points sorted by each
coordinate and restrict the scan to the dimension having fewer points in the respective
interval of the query range. This approach can be made to run in the optimal
O(d+scan) time, where scan is the number of scanned points, by employing the data
structuring techniques developed in [Alstrup, 01].

4.2 Structures For Secondary Memory

Let n denote the number of stored items and t the output size. We assume that our
external memory consists of a single disk and that each I/O operation is able to
transfer a block of B units of data from the disk to the main memory. The efficiency of

842 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

an algorithm will be measured in terms of the number of the performed I/O accesses
and the number of blocks required to store the proposed structure. Our subsequent
presentation is based heavily on [Vitter, 01].

Although B-trees [Comer, 79] and their variations achieve optimal worst-case
bounds for the 1D range searching problem, this is not the case for higher dimensions
due to the inefficiency in mapping the successful main memory data structures to
secondary memory. Moreover, the traditional spatial multidimensional indexing data
structures such as R-trees and variants, grid files, quad trees, hB-trees, kd-B-tres,
space filling curves, etc. (the interested reader should consult [Gaede, 98] for more
details) have good average case performance (validated usually through experimental
tests), but their worst case behavior can be very bad.

Recently, a significant research effort has focused on obtaining external
multidimensional range searching structures with satisfying worst-case behavior. This
research, triggered by the influential paper by Kanellakis et al. [Kanellakis, 96] aims
at designing data structures with performance similar to the performance of the main
memory data structures. Similar in this context means that the resultant structures
should have query time of the form O(logBn+t/B) and the space usage should be close
to linear (O(n/B)).

For the special case of 2D range searching with both ranges semi-infinite and with
the query point lying on the diagonal of the xy-plane, Arge and Vitter [Arge, 96]
designed an optimal dynamic data structure which uses O(n/B) space and supports
queries and updates in O(logBn+t/B) and O(logBn) time, respectively. The proposed
structure is an external version of the well-known interval tree data structure
[Mehlhorn, 84] and is based on the development of an elegant weight-balanced B-tree.
The techniques developed there are of independent interest because they can be used
to derive worst-case versions of other external and main memory data structures.

In [Ramaswamy, 94] a technique termed path caching was developed that yielded
a data structure that answers three-sided range queries in optimal O(logBn+t/B) query
time, supports updates in O(logBn) amortized time and uses O((n/B)loglogB) space.
The technique is based on the movement of data from the internal nodes of a tree-like
data structure to the leaves in order to facilitate the retrieval of information in a
blocked fashion. The pathing technique was extended in [Subramanian, 95] and a new
dynamic structure called p-range tree was developed. The structure answers three-
sided range queries in O(logBn+t/B+IL*(B)) time (IL* denotes the iterated log*
function) supports updates in O(logBn+(logBn)2/B) amortized time and uses linear
(O(n/B)) space. The structure can be modified to answer 2D range queries in the same
query time bound and with optimal space O(νlogν/loglogB(n+1)) (ν=n/B).

Finally in [Arge, 99] a data structure was developed for the three-sided range
query with optimal time, space and update bounds. The structure, which was based on
the use of persistence and weight-balanced B-trees can be generalized to handle 2D
range queries in O(logBn+t/B) query time, O(νlogν/log(logBn+1)) space and
O((logBn)logν/log(logBn+1)) update time (ν=n/B).

For higher dimensions the related research is scarce. In [Vengroff, 96] a near
optimal static data structure for the 3D range searching was proposed. The structure
relies on a geometric partitioning of the stored points (related to the well known
concept of maximal layers) and with some modifications [Vitter, 01] answers queries

843Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

in optimal O(logBn+t/B) time and uses O(ν(logν)k/(log(logBn+1))k) space. Here k
denotes the number of closed ranges in the query and ν=n/B.

Lately, Grossi and Italiano [Grossi, 98] designed a multidimensional version of B-
trees called cross-trees that use linear space, have update time O(logBn) and answer
queries in O(n1-1/d+t/B) time.
Notes: The careful reader should have noticed that the aforementioned external
memory structures suffer also from “the curse of dimensionality”. In order to face that
problem: (i) a set of R-like data structures have been proposed (see [Lin 94; Berthold
96; Ciaccia 97]) whose query cost approaches the time performance of a linear scan,
when the dimension d becomes larger than a certain threshold, and (ii) there have been
designed data structures that try to project the set of stored points to a set of lower
dimensionality (ideally this projection should project to the intrinsic dimensionality of
the vector space spanned by the points); for more details on this approach the
interested reader should consult: [Weber 98; Ferhatosmanoglu 00; Chavez 01].

Figure 7: Range Searching Structures

 Main Memory
 Static Dynamic
 Space Time Space Time
d=2 O(nlogn) O(nn loglog/log +k)

O(nlog1+εn) O(logn+k)
d=3 O(n) • O((loglogU)2loglogl

ogU+kloglogU)
(dominance in a grid)

• O(logn+k)
(dominance in
continuous space)

d≥3 O(nlogd-1n) O(logd-2n+k)

O(nlog d-1n) O(logd-

1nloglogn+k)

 Secondary Memory
 Static Dynamic
 Space Time Space Time

 O(n/B) O(logBn+t/B)
 (3-sided range)

d=2

O(νlogν/log(l
ogBn+1))

O(logBn+t/B)

d=3 O(ν(logν)k/(lo
g(logBn+1))k)

O(logBn+t/B)

844 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

5 Conclusions

Spatiotemporal information is increasingly becoming an integral part of databases and
knowledge bases. The need for its effective and efficient manipulation has motivated a
lot of research efforts in the DB and AI areas. These have yielded several formal
frameworks for the representation of binary spatiotemporal relations, which can be
exploited by query processors for the efficient handling of spatiotemporal retrieval.

In this work we have focused on mechanisms for the efficient processing of
spatiotemporal selection queries. Initially we formulated an innovative relation model
which allows the description of spatiotemporal relations at varying detail (resolution)
levels. The model is based on a binary string encoding of 1D relations and its
straightforward extension to multiple dimensions.

The relations which are characterised at every resolution level have an inherent
poset structure, called conceptual neighbourhood, which we exploit for the definition
of approximate relations. An approximate relation, called a convex relation, is an
interval in the lattice of such a poset structure and captures a continuous uncertainty in
the representation of a particular relationship. Approximate relations constitute
effective means to deal with approximate spatiotemporal selection queries. In
particular, we have mapped every approximate ND selection query (with exact queries
being a certain subset thereof) to an equivalent 2ND classic range query.

On these grounds we have described several main memory and secondary
memory structures that answer range queries in either optimal or the best known
asymptotic time. The table in the next page summarises the performance behaviour of
the proposed structures. The shaded fields indicate our described results for the static
2D range query problem and an extension of the techniques presented in [Gabow, 84]
for static range queries of higher dimensions. The rest consist of the state-of-the-art
structures for such problems. Unless explicitly stated otherwise, the time and space
complexities refer to problems for continuous space.

Overall, the techniques proposed in this work are significant for GIS, temporal
databases, spatial/ multimedia databases and other disciplines for which the handling
and efficient querying of multidimensional data is of primary importance.

Some of the proposed structures are currently being implemented and the results
so far are promising. Our next step for future continuation of this work is an extensive
experimental evaluation of various structures for several classes of selection queries.

Acknowledgements

The authors would like to thank the European Social Fund (ESF), Operational
Program for Educational and Vocational Training II (EPEAEK II) and particularly the
Program PYTHAGORAS, for funding the above work.

References

[Allen, 83] Allen, J., "Maintaining Knowledge About Temporal Intervals", CACM,
26(11):832-843, 1983.

845Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

[Alstrup, 00] Alstrup, S., Brodal, G.S., Rauhe T., "New Data Structures for
Orthogonal Range Searching". In Proc. 41st Annual Symposium on Foundations of
Computer Science, pp. 198-207, 2000.

[Alstrup, 01] Alstrup, S., Brodal, G.S., Rauhe T., " Optimal Static Range Reporting in
One Dimension". In Proc. 33rd Annual ACM Symposium on Theory of Computing,
pp. 476-482, 2001.

[Anderson, 96] Andersson, A., "Faster deterministic sorting and searching in linear
space" 37th Annual IEEE Symposium on Foundations of Computer Science, 135-141,
1996.

[Andersson, 00] Andersson A. and Thorup M. "Tight(er) worst-case bounds on
dynamic searching and priority queues". In Proc. 32th STOC, pp. 335-342, 2000.

[Arge, 99] Arge, L., Samoladas, V., Vitter, J.S., "Two dimensional indexability and
optimal range search indexing", Proceedings of the ACM Symposium on Principles of
Database Systems, 18:346-357, 1999.

[Arge, 96] Arge, L., Vitter, J.S., "Optimal dynamic interval management in external
memory", Proceedings of the IEEE Symposium on Foundations of Computer Science,
37:560-569, 1996.

[Berchtold, 96] Berctold, S., Keim, D., and Kriegel, H.P., "The X-tree: An index
structure for high-dimensional data", In Proceedings of the 22nd International
Conference on Very Large Data Bases, (Bombay) 28–39, 1996.

 [Beckmann, 90] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B, "The R*-
tree: an Efficient and Robust Access Method for Points and Rectangles", ACM
SIGMOD, 322-331, 1990.

[Bozanis, 97] Bozanis, P., Kitsios, N., Makris, C., and Tsakalidis, A., "New Results
on Intersection Query Problems", The Computer Journal, 40(1):22-29, 1997.

[Chavez, 01] Chavez, E., Navarro, G., Baeza-Yates, R., and Marroquin, J.L.,
"Searching in Metric Spaces", ACM Computing Surveys, 33(3), pp. 273-321, 2001.

[Chazelle, 86] Chazelle, B., Guibas, L., "Fractional cascading I, A data structuring
technique; II, Applications", Algorithmica 1, 133-162, 163-191, 1986.

[Chvatal, 83] Chvatal, V., "Linear Programming", W. H. Freeman, 1983.

[Ciaccia, 97] Ciaccia, P., Patella, M., Zezula, P., "M-tree: An efficient access method
for similarity search in metric spaces. In Proceedings of the 23rd Conference on Very
Large Databases (VLDB’97), 426–435.

[Comer, 79] Comer, D., "The ubiquitous B-tree", ACM Computing Surveys,
11(2):121-137, 1979.

[Delis, 99] Delis, V., Hadzilacos, Th., "Binary String Relations: A Foundation for
Spatiotemporal Knowledge Representation", Technical Report TR99-02-01, Computer
Technology Institute, Patras, Greece, 1999 (available at
http://www.cti.gr/RD3/People/delis/tr990201.pdf.

846 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

[Edelsbrunner, 81] Edelsbrunner, H., "A note on dynamic range searching", Bull.
EATCS 13, 1981.

[Egenhofer, 97] Egenhofer, M.J., "Spatial Relations: Models and Inferences", Tutorial
2, International Symposium on Large Spatial databases (SSD'97), 27-37, 1997.

[Egenhofer, 91] Egenhofer, M.J., Herring, J., "Categorizing Binary Topological
Relationships Between Regions, Lines and Points in Geographic Databases",
Technical Report, Department of Surveying Engineering, University of Maine, Orono,
ME, 1991.

[Ferhatosmanoglu, 00] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., Abbadi, A.,
"Vector Approximation Based Indexing for Non-Uniform High Dimensional Data
Sets", CIKM, pp. 202-209, 2000.

[Freksa, 92] Freksa, C., "Temporal Reasoning based on Semi Intervals", Artificial
Intelligence, 54:199-227, 1992.

[Gabow, 84] Gabow, H.N., Bentley J.L., and Tarjan, R., E., "Scaling and related
techniques for geometry problems" l6th Annual ACM Symp. on the Theory of
Computing, 135-143, 1984.

[Gaede, 95] Gaede, V., "Optimal Redundancy in Spatial Database Systems",
International Symposium on Spatial Databases (SSD), pp.96-116, 1995.

[Gaede, 98] Gaede, V., Gunther, O., "Multidimensional Access Methods”, ACM
Computing Surveys, 30(2);170-231, 1998.

[Grossi, 98] Grossi, R., Italiano, G., F., "Efficient cross-trees for external memory", In
J.Abello and J.S. Vitter, editors, External Algorithms and Visualization 87-106, 1998.

[Guttman, 84] Guttman, A., "R-trees: A Dynamic Index Structure for Spatial
Searching", ACM SIGMOD International Conference on Management of Data, 47-
57, 1984.

 [Harel, 94] D. Harel, R. E. Tarjan, "Fast algorithms for finding nearest common
ancestor", SIAM J. Comp. 13(2):338-355, 1994.

[Hoel, 95] Hoel, E., Samet, H., "Benchmarking Spatial Join Operations with Spatial
Output", VLDB Conference, 1995.

[JaJa, 04] Joseph JáJá, Christian Worm Mortensen, Qingmin Shi: “Space-Efficient
and Fast Algorithms for Multidimensional Dominance Reporting and Counting”.
ISAAC 2004

 [Kanellakis, 96] Kanellakis, P.C., Ramaswamy, S., Vengroff, D.E., Vitter, J.S.,
"Indexing for data models with constraints and classes", Journal of Computer and
System Sciences, 52(3):589-612, 1996.

[Kautz] Kautz, H. A., "Temporal Reasoning", MIT Encyclopedia of Cognitive Science
(forthcoming), http://www.research.att.com/~kautz/papers-ftp/index.html.

[Ligozat, 91] Ligozat, G., "On Generalised Interval Calculi", American Association of
Artificial Intelligence International Conference, pp. 234-240, 1991.

847Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

[Ladkin, 88] Ladkin, P., Maddux, R., "The Algebra of Binary Constraint Networks",
Kestrel Institute Technical Report KES.U.88.9, 1988.

[Lin, 94] Lin, K.I., Jagadish, H., Faloutsos, C., "The TV-tree: An index structure for
high-dimensional data", VLDB J. 3, 4, 517-543, 1994.

 [Makris, 98] Makris, C., Tsakalidis, A., "Algorithms for three-dimensional
dominance searching in linear space" Information Processing Letters, 66(6):277-283,
1998.

[Mehlhorn, 84] Mehlhorn K., "Data Structures and Algorithms 3--Multidimensional
Searching and Computational Geometry", Springer Verlag, 1984.

[Mortensen, 03a] C. W. Mortensen, “Fully-dynamic orthogonal range reporting on
RAM”, Technical Report, TR-22, IT University of Copenhagen, April 2003.

[Mortensen, 03b] C. W. Mortensen, “Fully-dynamic two dimensional orthogonal
range and line segment intersection reporting in logarithmic time”, ACM/SIAM
SODA'03.

[Mortensen, 05] C. W. Mortensen, R. Pagh, M. Patrascu, “On Dynamic Range
Reporting in One Dimension”, STOC'05

[Overmars, 88] Overmars, M. H., "Efficient data structures for range searching on a
grid", J. Algorithms 9(2):254-275, 1988.

[Papadias, 98] Papadias, D., Mamoulis, N., Delis, B. "Algorithms for Querying by
Spatial Structure", VLDB Conference, 1998.

[Papadias, 94] Papadias, D., Sellis, T., "Qualitative Representation of Spatial
Knowledge in Two-Dimensional Space", VLDB Journal, 3(4), pp 479-516, 1994.

[Papadias, 97] Papadias, D., Theodoridis, Y., "Spatial Relations, Minimum Bounding
Rectangles, and Spatial Data Structures", International Journal of Geographic
Information Science, Vol. 11(2), pp. 111-138, 1997.

[Ramaswamy, 94] Ramaswamy, S., Subramanian, S., "Path Caching: a technique for
optimal external searching" in Proceedings of the 13th ACM Conference on
Principles of Database Systems, 13:25-35, 1994

[Sellis, 87] Sellis, T., Roussopoulos, N., Faloutsos, C., "The R+-tree: A Dynamic
Index for Multidimensional Objects", Proceedings of Very Large Data Bases, pp. 3-
11, Brighton, England, 1987.

[Sioutas, 04] Sioutas, S., Makris C., Kitsios, N., Lagogiannis, G., Tsaknakis, J.,
Tsichlas, K., Vassiliadis, B., "Geometric Retrieval for Grid Points in the RAM
Model", Journal of Universal Computer Science, to appear.

[Subramanian, 95] Subramanian, S., Ramaswamy, S., "The P-range tree: a new data
structure for range searching in secondary memeory", ACM-SIAM Symposium on
Discrete Algorithms, 6:378-387, 1995.

848 Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

[Theodoridis, 98] Theodoridis, Y., Papadias, D., Stefanakis, E., Sellis, T., "Direction
Relations and Two-Dimensional Range Queries: Optimization Techniques", Data &
Knowledge Engineering, vol. 27(3), pp. 313-336, 1998.

[Theodoridis, 96a] Theodoridis, Y., Sellis, T., "A Model for The Prediction of R-Tree
Performance”, ACM PODS, 1996.

[Theodoridis, 96b] Theodoridis, Y., Vazirgiannis, M., Sellis, T., "Spatio-Temporal
Indexing for Large Multimedia Applications", 3rd IEEE Conference on Multimedia
Computing and Systems, 1996.

[van Beek, 90] van Beek, P., Cohen, R., "Exact and Approximate Reasoning about
Temporal Relations", Computational Intelligence, 6, 1990.

[Vitter, 01] Vitter, J.S., "External Memory Algorithms and Data Structures: Dealing
with Massive Data" ACM Computing Surveys, 33(2):209-271, 2001.

[Vengroff, 96] Vengroff, D.,E., Vitter, J.,S., "Efficient 3-d range searching in external
memory", ACM Symposium on Theory of Computation, 28:192-201, 1996.

[Weber, 98] Weber, R., Schek, H.J., Blott, S., "A quantitative analysis and
performance study for similarity-search methods for high dimesional spaces. In
Proceedings of the Int. Conf. On Very Large Data Bases, pages 194-205, 1998.

849Delis V., Makris C., Sioutas S.: A Provably Efficient Computational Model...

