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Abstract: We describe the StAC language which can be used to specify the orchestra-
tion of activities in long running business transactions. Long running business transac-
tions use compensation to cope with exceptions. StAC supports sequential and parallel
behaviour as well as exception and compensation handling. We also show how the B
notation may be combined with StAC to specify the data aspects of transactions. The
combination of StAC and B provides a rich formal notation which allows for succinct
and precise specification of business transactions. BPEL is an industry standard lan-
guage for specifying business transactions and includes compensation constructs. We
show how a substantial subset of BPEL can be mapped to StAC thus demonstrating
the expressiveness of StAC and providing a formal semantics for BPEL.
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1 Introduction

Business transactions involve hierarchies of activities whose execution needs to
be orchestrated. Business transactions typically involve interactions and coordi-
nation between multiple partners. The behavior of a transaction can depend on
data passed between partners and can involve the manipulation of data. Business
transactions also need to deal with faults that arise at any stage of execution.
In standard atomic transactions, such as database transactions, rollback mech-
anisms are used to protect against faults by providing all or nothing atomicity
for transactions [16]. In so-called long running business transactions rollback is
not always possible because parts of a transaction will have been committed or
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because parts of a transaction (e.g., communications with external agents) are
inherently impossible to undo. In such cases compensation can be used as a way
of dealing with faults.

In the context of business transactions, Gray [16] defines a compensation as
the action taken to recover from error or cope with a change of plan. Consider
the following example: a client buys some books in an on-line bookstore and the
bookstore debits the client’s account as the payment for the book order. The
bookstore later realises that one of the books in the client’s order is out of print.
To compensate the client for this problem, the bookstore can credit the account
with the amount wrongfully debited and send a letter apologising for their mis-
take. This example shows that compensation is more general than traditional
rollback in database transactions. Compensation is important when a system
cannot control everything, such as when interaction with humans is involved.
Garcia-Molina and Salem [15] used compensation to define the concept of sagas.
A saga partitions a long running transaction into a sequence of several smaller
subtransactions, where each of the subtransactions has an associated compen-
sation. If one of the subtransactions in the sequence aborts, the compensation
associated with those committed subtransactions is executed in reverse order.

In terms of the range of techniques used for system dependability [2], our
approach to compensation may be viewed as a forward error recovery mechanism.
For example, when a bookstore realises that a book that has been ordered by
a customer is out of print so is unable to deliver it (the error state), it recovers
from this error by performing various actions (offering a refund and sending
an apology). It does not recover by rolling back to some previous state. The
saga approach [15] requires that compensations represent a semantic undo of
the forward action in the usual database sense and so their approach may be
regarded as a form of backwards error recovery. Although our approach does
not require that compensations perform a semantic undo, it is fair to say that
the coordination of compensations has been influenced by the requirement for
semantic undo, i.e., in the case that compensations perform a semantic undo,
then invocation of compensations can be regarded as a backward error recovery
mechanism.

The StAC language (Structured Activity Compensation) was introduced
in [6] as a business process modelling language and includes constructs for mod-
elling compensation in business processes. StAC is based on process algebras
such as Milner’s Calculus for Communicating Systems (CCS) [20] and Hoare’s
Communicating Sequential Processes (CSP) [17]. Both CCS and CSP model pro-
cesses in terms of the atomic events in which they can engage. The languages
provide operators for defining structured processes such as sequencing, choice,
parallel composition, communication and hiding. StAC provides a similar pro-
cess term language along with operators for compensation and exceptions. StAC
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gives a precise interpretation to the mechanics of compensation, including the
combination of compensation with parallel execution, hierarchy and exceptions.

To facilitate modelling of data dependency and manipulation, a StAC pro-
cess has global data state associated with it and this state is changed by atomic
actions. Typically the data state of a StAC process is represented using state
variables and the effect of atomic activities on data is represented using assign-
ment to variables. Rather than inventing our own notation for specifying data
variables and operations for manipulating them, we have chosen to use the B
notation of Abrial’s B Method [1]. B provides a state based formal notation for
writing precise abstract specifications of data and data manipulation and makes
strong use of set theory and predicate logic. In our approach a business transac-
tion specification has two components: the StAC specification that describes the
orchestration of activities, including ordering of compensation activities, and a
B specification that describes an abstract model of the data of the transaction
along with atomic actions for manipulating the data.

The combination of StAC and B provides a clear and succinct notation for
writing precise specifications of long running business transactions. The notation
has a formal semantics ensuring specifications are unambiguous and amenable
to formal analysis. When business transactions are provided in the open web ser-
vices environment [3], we believe that the ability to write precise specifications
is particularly important. As well as providing the basis for rigorous implemen-
tation of business transactions, precise specifications can act as contracts for
business services. Such contracts may be shared with partners to provide them
with sufficient detail to be able to interact sensibly with a service, without having
access to all implementation details.

StAC was originally inspired by the BPBeans development framework [11]
that allows an application to be built by a nested hierarchy of business pro-
cesses. BPBeans supports orchestration of activities through parallel and se-
quential composition, as well as exception and compensation handling. Similar
orchestration mechanisms are also found in the BizTalk [19] and BPEL4WS [12]
languages. BPEL4WS (Business Process Execution Language for Web Services),
or BPEL for short, is a web services composition language that is jointly devel-
oped by Microsoft, IBM and others. It provides an XML syntax for writing
abstract and/or executable specifications of business processes which may be
provided as web services and may involve the invocation of other web services.

In this paper, as well as providing an overview of how StAC and its com-
bination with B may be used to write precise specifications of business trans-
actions, we show how the notations may be used to give a formal semantics to
the BPEL language. We take a substantial subset of the BPEL language and
define a mapping from that language subset to StAC. This mapping illstrates
the expressiveness of StAC and we also believe it makes BPEL semantics more
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P ::= skip (successful termination)
| N (call named process)
| A (atomic action label)
| b =⇒ P (conditional process)
| P ;Q (sequencing)
| P ‖

X

Q (parallel)

| P \ S (event hiding)
| P []Q (external choice)
| P � Q (internal choice)
| P{Q}R (attempt block)
| � (abnormal termination)
| P ÷ Q (compensation pair)
| � (reverse)
| �� (accept)
| [P ] (compensation scoping)

Table 1: StAC Syntax

accessible through a succinct but precise formal definition.
Section 2 introduces the StAC language and illustrates its expressiveness

through an example. Section 3 describes how StAC may be combined with the
B notation. Section 4 shows how StAC may be used to give a semantics to BPEL
activity constructs. Section 4 only supports a certain form of BPEL compensa-
tion. In Section 5 the StAC language is extended in a way that allows BPEL
compensation to be modelled more fully.

2 The StAC Language

The StAC language provides standard combinators for modelling sequential and
parallel processes, along with specific combinators to deal with compensation.
The syntax of StAC processes is presented in Table 1.

A process is specified by a set of equations of the form Ni = Pi, where
each Ni is a process name and Pi is a StAC process expression. The process
skip does nothing and immediately terminates successfully. For process name N ,
the process N calls the process named N returning if and when N terminates
successfully. Mutually recursive calls are possible.

Another basic process is one that performs an atomic action labelled A. Each
activity label A has an associated action A→ representing an atomic change in
the data state: if Σ is the set of all possible data states, then A→ is a relation on
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Σ. In Section 3 we will show how B provides a rich notation for specifying data
states and atomic actions on data states. In this section we focus on the StAC
operators that provide the orchestration mechanisms for long running business
transactions.

In the conditional operator, a process P is guarded by a boolean expression
b. This expression function can consult the state, i.e., b : Σ → BOOL. Process
b =⇒ P behaves as P if b evaluates to true in the current state. Conversely, if
b is false, the conditional process will block.

The sequential construct combines two processes, P ;Q. In process P ;Q, P

is executed first, and only when P terminates successfully can Q be executed.
In parallel process P ‖

X

Q, the execution of the activities of P and Q is syn-

chronised over the activities in X, while the execution of the remaining activities
of P and Q is interleaved. Synchronisation can introduce deadlock, e.g., process
P may be waiting to synchronise with Q over an activity A and that activity
will never occur in Q. If set X is empty (no synchronisation) we will represent
the parallel process as P ‖ Q.

With hiding one can make the execution of activities invisible to the envi-
ronment: P \ C represents the process P with all the events in the set C hidden
from the environment.

The external choice P [] Q selects whichever of P or Q is enabled (i.e., not
blocked). If both P and Q are enabled, the choice is made by the environment
and it is resolved at the first activity. The environment could be a user selecting
one of the options in a menu, for example. Notice that the [] operator causes
nondeterminism in some cases. Consider the following example:

(A;B) [] (A;C).

When activity A occurs it is not possible to determine which one of the two
behaviours A;B or A;C will be chosen. In this case, the choice is made internally
by the system rather than by the environment. Internal nondeterminism may be
specified directly using the internal choice operator (�).

The parallel and choice operators may be extended to generalised versions
over (possibly infinite) sets of indexed processes. For example, a process that
allows a user to choose a book could be described in StAC as:

[] b ∈ BOOK • ChooseBook(b)

Details of the generalised versions of the operators may be found in [13]

2.1 Attempt Block and Early Termination

An important feature is the possibility of terminating processes before they
have concluded their main tasks. Early termination might arise if an exception
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occurs or a customer decides to abandon a transaction. It might also arise in
the case of speculative parallelism, where several tasks, representing alternative
ways of achieving a goal, are commenced in parallel and when one completes, the
remaining tasks may be abandoned. We have included in StAC what we call an
attempt block. An attempt block P{Q}R first executes Q, and if Q terminates
successfully it then continues with P . If an early termination operation (�) is
executed within Q, the block continues with R. For example, the process

C{A;�;B}D

will first execute A, then the early termination will cause B to be skipped over
and D to be executed. Any behaviour sequentially following the execution of
early termination within an attempt block will be skipped. So an attempt block
P{Q}R can be viewed as an exception construct, with early termination repre-
senting the raising of an exception and R representing the exception handler.

The effect of the early termination is limited to the attempt block so in the
following process, the early termination in the attempt block has no effect on
the process S running in parallel with the block:

{(P ;�;Q)} ‖ S

(We write {Q} as short for skip{Q}skip.)
In the case of parallel processes within an attempt block, a termination in-

struction within one of the parallel process also affects the other processes. For
example, in the process

{ (P ;�;Q) ‖ R }
the early termination after P allows R to terminate early. Our use of the term
‘allows’ is deliberate here. R is not required to terminate immediately. It may
continue for several more steps before terminating early, it may continue to
completion or it may execute forever if it is a non-terminating process. In any
case, if and when the main body of an attempt block terminates and at least
one of its constituent process has executed an early termination, then the whole
of the main body is deemed to have terminated early.

2.2 Compensation Operators

The next few StAC operators are related to compensation. In the compensation
pair P ÷Q, P is the primary process and Q is the compensation process. When
a compensation pair runs, it runs the primary process, and once the primary
process has successfully completed, the compensation process is remembered
(installed) for possible later invocation.

We refer to the invocation of compensation activities as reversal. If we reach
a point where compensation will no longer be required, compensation activities
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can be forgotten. We refer to this as acceptance. The reverse operation (�)
causes the currently installed compensation handlers to be invoked. For example
(A ÷ A′);� will execute A, install A′ and then the reverse operation will cause
A′ to be executed. The overall behaviour is A;A′.

The accept operation (��) indicates that currently installed compensations
should be cleared, meaning that after an accept the compensation task is set to
skip. The process (A÷A′);��;� executes A and when the � operation is called
the compensation task A′ has already been cleared by the �� operator so A′ will
not be executed.

In the case of activities composed using sequential composition, the com-
pensation process is constructed in the reverse order to the primary process
execution. Consider the process (A÷A′); (B÷B′). This process behaves as A;B
and has the compensation task B′;A′. A sequential compensation task can be
viewed as a stack where compensation processes are pushed on to the top of
the stack. The process (A ÷ A′); (B ÷ B′);� behaves as A;B, and then the �
operator causes the compensation task to be executed, so the overall behaviour
is (A;B); (B′;A′) (which we write as A;B;B′;A′).

In the case of parallel processes, execution of compensations is also performed
in parallel. The parallel process (A÷A′) ‖ (B ÷B′) executes A and B concur-
rently and the resulting compensation process is A′ ‖ B′.

Next we will consider the combination of compensation with choice. The
process (A÷A′) [] (B ÷B′) behaves either as A or as B with the choice between
A and B being made by the environment. The compensation task in the case
that A is chosen is A′ and in the other case is B′.

If the primary process terminates early, the compensation process will not
be installed. For example, in the process (A;�;B)÷C, compensation C will not
be installed because of the early termination in the primary process.

In the case that a compensation pair is running in parallel with a process
that executes an early termination, this early termination cannot affect the com-
pensation pair while the compensation pair is executing. So the compensation
pair will either not get executed at all or will be expected to execute to com-
pletion, including installation of the compensation handler. For example, the
process { (A ÷ B) ‖ � } will either behave as skip or as (A ÷ B).

2.3 Scoping of Compensation

The compensation scoping brackets [· · · ] provide nested compensation scoping
and are used to delimit the scope of the acceptance and reversal operators. All
StAC processes have an implicit outer compensation scope. The start of a scope
creates a new compensation task, and invoking a reversal instruction within that
scope will only execute those compensation activities that have been remembered
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since the start of the scope. In the process

(A ÷ A′); [ (B ÷ B′);� ],

the overall process would behave as A;B;B′. Compensation A′ is not invoked
because it is outside the scope of the reversal instruction. An acceptance instruc-
tion within a scope will only clear the compensation activities that have been
recorded since the start of the scope. For example, the process:

(A ÷ A′); [ (B ÷ B′);�� ]; (C ÷ C ′)

after A, B and C have been executed, has C ′;A′ as compensation. Since the ac-
ceptance instruction is within the compensation scope, it just clears the compen-
sation process B′ that is within the brackets. Another feature of compensation
scoping is that compensation is available beyond a scope if a reversal instruction
is not performed, as in the example:

(A ÷ A′); [ (B ÷ B′) ]; (C ÷ C ′).

Here, after executing A;B;C the compensation process is C ′;B′;A′, which in-
cludes the compensation process B′ of the inner scope. B′ is retained because
there is no acceptance instruction within the brackets.

2.4 Example: Order Fulfillment

To illustrate the use of StAC we present the order fulfillment example described
in [9] and [10]. ACME Ltd distributes goods which have a relatively high value
to its customers. When the company receives an order from a customer, the first
step is to verify whether the stock is available. If not available the customer
is informed that his/her order can not be accepted. Otherwise, the warehouse
starts preparing the order for shipment, and a courier is booked to deliver the
goods to the customer. Simultaneously with the warehouse preparing the order,
the company does a credit check on the customer to verify that the customer can
pay for the order. The credit check is performed in parallel because it normally
succeeds, and in this normal case the company does not wish to delay the order
unnecessarily. If the credit check fails the preparation of the order is stopped.
Here we present a very simple representation of the order acceptance and focus
on the order fulfillment part in more detail.

Before presenting the ACME process, we introduce the following syntactic
sugar:

TRY P THEN Q ELSE R = Q{P}R
IF G THEN P ELSE Q = G =⇒ P [] ¬G =⇒ Q
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At the top level the application is defined as a sequence as follows:

ACME = AcceptOrder ÷ RestockOrder;
TRY FulfillOrder THEN �� ELSE �

The first step in the ACME process is a compensation pair. The primary ac-
tion of this pair is to accept the order and deduct the order quantity from
the inventory database. The compensation action simply adds the order quan-
tity back to the total in the inventory database. Following the compensation
pair, the FulfillOrder process is invoked. If the order has been fulfilled cor-
rectly (FulfillOrder terminates sucessfully), the order is accepted, otherwise
(FulfillOrder terminates early) the order is reversed.

The bold font, e.g., AcceptOrder, indicates an atomic action. In Section 3
the effect of these and other actions on a data state will be specified using the
B notation.

The order is fulfilled by packaging the order at the warehouse while con-
currently doing a credit check on the customer. If the credit check fails, the
FulfillOrder process is terminated early:

FulfillOrder = WarehousePackaging
‖ (CreditCheck; IF ¬okCreditCheck THEN � ELSE skip )

Here okCreditCheck is a boolean expression that will be specified in terms of a
data state in Section 3. Because WarehousePackaging is within the scope of the
early termination, a failed credit check allows WarehousePackaging to terminate
early, possible before all the items in the order have been packed.

The WarehousePackaging process consists of a compensation pair in parallel
with the PackOrder process:

WarehousePackaging = (BookCourier ÷ CancelCourier) ‖ PackOrder

This compensation pair books the courier, with the compensation action being
to cancel the courier booking. CancelCourier might result in a second message
being sent to the courier. The PackOrder process packs each of the items in
the order in parallel. Each PackItem activity is reversed by a corresponding
UnpackItem:

PackOrder = ‖ i ∈ order • (PackItem(i) ÷ UnpackItem(i))

In the case that a credit check fails, the FulfillOrder process terminates early with
the courier possibly having been booked and possibly some of the items having
being packed. The reversal instruction will then be invoked and will result in
the appropriate compensation activity being invoked for those activities that
did take place. Because the AcceptOrder ÷ RestockOrder pair is composed
sequentially with the FulfillOrder process, RestockOrder will not happen
until all appropriate compensations of FulfillOrder have been completed.
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2.5 Overview of StAC Formal Semantics

We do not present the formal semantics of StAC here since they already appear
in [7, 13]. Instead we briefly provide an overview of the nature of the formal
semantics. [7, 13] use a so-called Plotkin style of operational semantics [22] to
define StAC where a set of transition rules are used to define transitions between
configurations. For the operational semantics of StAC, a configuration is a tuple:

(P,C, σ) ∈ Process × (I → Process) × Σ

In the above tuple, C is a function that returns the compensation process C(i),
for each compensation index i. Scoping of compensation is modelled using com-
pensation indices, with each scope having its own index. Σ represents the data
state and Σ is included in our model of StAC processes since we want to model
the ability of a basic activity to change the data state. In Section 5 we will show
how compensation indices may be introduced explicitly into the language to
provide a multiple compensation facility.

A process gives rise to a labelled transition system with configurations being
the nodes of the system and activity labels being the transition labels. The
labelled transition

(P, C, σ) A−→ (P ′, C ′, σ′) (1)

denotes that the execution of a basic activity A may cause a configuration tran-
sition from (P, C, σ) to (P ′, C ′, σ′).

A set of transition rules define the conditions under which labelled transitions
may occur. An atomic action is a relation from Σ to Σ, and we write σ

A→ σ′

when σ is related to σ′ by A→. The following transition rule shows that execution
of an atomic action leads to successful termination (skip) with a new data state
σ′ and an unchanged compensation function:

σ
A→ σ′

(A, C, σ) A−→ (skip, C, σ′)

This rule should be read as: if σ is related to σ′ by A→, then there is an A-labelled
transition from process configuration (A, C, σ) to configuration (skip, C, σ′).

The next rule shows the execution of activities within the first process of a
sequential composition:

(P, C, σ) A−→ (P ′, C ′, σ′)

(P ; Q, C, σ) A−→ (P ′ ; Q, C ′, σ′)

If the first process in the sequence has terminated successfully, then the second
process can be executed immediately:

(skip ; Q, C, σ) τ−→ (Q, C, σ)
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The label τ is a special label that represents an operation not visible to the
external environment.

As mentioned above, each compensation scope is given an explicit compen-
sation index. To define the semantics of compensation, each occurrence of a
compensation operator in a term is decorated with the index corresponding to
the scope in which it appears. The following rule for the compensation pair op-
erator adds the compensation process Q to the compensation function C when
the primary process has terminated sucessfully:

(skip ÷i Q, C, σ) τ−→ (skip, C[ i := (Q;C(i)) ], σ)

C[ i := (Q;C(i)) ] denotes that compensation task i is set to Q in sequence with
the previous compensation for task i. In this manner, the compensation process
is built in the reverse order of the execution of the primary processes.

In the next rule, the operator �i causes the compensation task i to be exe-
cuted, and also resets that compensation task to skip:

(�i, C, σ) τ−→ (C(i), C[i := skip], σ)

The full set of transition rules for StAC may be found in [7].

3 Describing State and Activities in B

The B notation is a state based formal notation that is part of the B method
developed by Abrial [1]. In the B method, a system is defined as an abstract
machine consisting of some state and some operations acting on the state. An
abstract machine has the structure presented in Figure 1. The abstract machine
M consists of some variables V , an invariant I and some atomic actions on the
variables. Operations act on the variables while preserving the invariant and can
have input and output parameters. The given sets S declare some basic types
that may be used to type the variables. The type constructors of B are standard
constructors of set theory such as powersets, relations and functions. These set
theoretic constructors allow for models of the states of a system that abstract
from implementation detail.

Initialisation and operations are written in the generalised substitution no-
tation of B, which includes constructs such as assignment, guarded statements,
and choice. In the assignment statement x := E, x is a variable and E is an
expression that may use any of the available variables. Simultaneous assignment
x := E ‖ y := F is equivalent to x, y := E,F . In the guarded statement

G =⇒ S
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MACHINE M

SETS S

VARIABLES V

INVARIANT I

INITIALISATION init

OPERATIONS
· · ·

END

Figure 1: B abstract machine

the guard G is a condition on the state variables and S is a generalised substitu-
tion. This statement will be enabled only when G holds. The nondeterministic
choice between two statements is written

CHOICE S OR T END

The choice is enabled when either S or T is enabled. The unbounded choice

ANY x WHERE P THEN S END

nondeterministically chooses some value x satisfying P and then behaves like S.
The ANY statement has an implicit guard: it is only enabled if there is some x

satisfying P .
A business transaction may be specified as a combination of a B machine and

a StAC process. The B machine defines a data state and atomic actions on that
state. The StAC part orchestrates the order in which actions are executed and
has access to the data state in defining conditional behaviour. Guarded atomic
actions can further constrain the orchestration. For example, if A is an atomic
event of the form G =⇒ S, then the StAC process A;P will only be enabled if
G holds.

Recall from Section 2.5 that we assume a data space Σ and a set of labelled
relations on Σ. When the data is defined by a B machine, the cartesian product of
the types of each of the machine variables represents the space Σ. The operations
of the machine define relations on the state space. Details of this may be found
in [14]. Our approach to combining StAC and B is similar to the approach taken
in [5] to combining CSP and B.
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MACHINE ACME

SETS
ITEM

VARIABLES
stock , order , courierBooking , creditStatus , packaging

DEFINITIONS
inStock(s) == ∀i · (i ∈ s ⇒ stock(i) > 0)

INVARIANT
stock ∈ ITEM → N ∧
order ⊆ ITEM ∧
courierBooking ∈ BOOL ∧
creditStatus ∈ BOOL ∧
packaging ⊆ order

Figure 2: ACME machine state

3.1 Order fulfillment example

The abstract machine for the ACME transaction is shown in Figure 2. This
has a single set ITEM that represents all items available to the customers. The
VARIABLES clause declares the variables of the abstract machine such as stock,
order, courierBooking, okCreditCheck, and packaging. In the INVARIANT we
specify the types of the variables introduced in the previous clause. Variable
stock is a total function abstractly modelling the stock inventory. The stock
variable maps each item identifier to the remaining quantity of that item. Vari-
able order represents the items chosen by the client, and is defined as a subset of
ITEM. The variables courierBooking and okCreditCheck are boolean variables:
courierBooking says whether or not the courier was booked; okCreditCheck rep-
resents the outcome of the credit check. The last variable, packaging, is a subset
of order that contains those items in the order already packed. In the DEF-
INITIONS clause we have defined the boolean expression inStock that checks
whether all the items ordered by the client are available.

The machine operations define the atomic actions used in the ACME pro-
cess. The AcceptOrder action uses the ANY construct to nondeterministically
choose a set of items that satisfy the condition inStock, assuring that all the
items chosen are available in stock. Three simultaneous substitutions are spec-
ified using the selected set of items: the stock for each of the selected items
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is decreased by one; the set items is assigned to the customer order; and the
packaging of the items in the customer order is initialised to the empty set:

AcceptOrder =̂
ANY items WHERE items ⊆ ITEM ∧ inStock(items) THEN

stock := stock �−λ (item) . (item ∈ items | stock(item) − 1) ‖
order := items ‖
packaging := {}

END

The expression f �− λ(x).(x ∈ X |h(x)) describes a multiple update of a function
f such that each x ∈ X is mapped to a new value h(x).

In the RestockOrder action, provided the packaging is empty, the stock for
all items in the customer order is increased by one, making those items available
to other customers. Simultaneously with the stock update, the customer order
is emptied:

RestockOrder =̂
packaging = {} =⇒

stock := stock �−λ (item) . (item ∈ order | stock(item) + 1) ‖
order := {}

The CreditCheck action sets the variable okCreditCheck. This is used by
the FulfillOrder process to trigger an early termination when the client’s credit
card is rejected:

CreditCheck =̂
BEGIN

CHOICE
okCreditCheck := true

OR
okCreditCheck := false

END
END

The CreditCheck action is described as a choice between assigning the value
true or false to the variable okCreditCheck depending on the credit card being
accepted or rejected. This a simple abstraction of the real processing which may
involve getting authorisation from a credit card company.

The BookCourier action represents the booking of the courier, which is
done by setting the variable courierBooking to true. The CancelCourier action
is similar except that it sets courierBooking to false:

BookCourier =̂
courierBooking := true
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CancelCourier =̂
courierBooking := false

The PackItem action adds an item to the set packaging and removes it from
the order, while UnpackItem reverses this:

PackItem(i) =̂
i ∈ order =⇒

packaging := packaging ∪ {i} ‖
order := order \ {i}

UnPackItem(i) =̂
i ∈ packaging =⇒

order := order ∪ {i} ‖
packaging := packaging \ {i}

4 Formalising BPEL process behaviour

4.1 Overview of BPEL

A BPEL process performs hierarchically orchestrated activities including receiv-
ing messages from other services and sending messages to other services. The
other services which interact with a BPEL process are referred to as partners and
the process communicates messages with its partners through ports. The BPEL
language provides constructs for declaring message types, port types, partner
types, and process variables for storing messages. It also provides constructs for
defining basic activities and structured activities. Examples of basic activities
include message receipt and sending, variable assignment, and throwing an ex-
ception. Examples of structured activities include sequencing, parallel flows and
conditional branching.

The main activity structuring mechanism for declaring hierarchical units of
work is the BPEL scope. A BPEL scope is partitioned into four sections (Fig-
ure 3):

1. The main body which contains the description of the normal behaviour. The
main body can consist of any basic or structured activities (including scopes).

2. The event handlers which will are invoked when certain events occur. An
event might be the receipt of a particular type of message from a partner or
a timeout.

3. The compensation handler contains activities which are intended to com-
pensate the effect of the main body. A compensation handler is installed on
successful completion of the main body for possible later execution.
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Fault Handler
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Event Handler

Figure 3: BPEL Scope.

4. The fault handlers catch faults that are thrown by the main body or by one
of the event handlers.

Previously installed compensation handlers are invoked through the BPEL
compensate activity. The compensate activity can only appear in a fault handler
or a compensation handler, that is, a fault or compensation handler for a scope
S may invoke compensations on scopes directly within the main body of S. The
compensate activity comes in two forms. In the first form (the named form), a
scope name is provided which means that the installed compensation handler for
the scope identified by the argument should be invoked. In the second form (the
name-free form), no scope argument is provided and the default compensation is
applied. Default compensation means that the installed compensation handlers
for all the direct inner scopes will the invoked. In this section we will only model
the name-free form of compensation invocation. In section 5 we will describe an
extension to StAC and we will show how this allows us to model the named form
of explicit compensation.

In this paper we focus on formalising the basic and structured activity con-
structs of BPEL. We will not be concerned with formalising BPEL message,
partner nor variable types. We will see that all the significant activity constructs
of BPEL can be mapped easily to StAC. Before we present the mapping from
BPEL activities to StAC, we describe a modest extension to StAC which sup-
ports throwing and handling of different types of exception. This extension is
necessary to model BPEL fault handling.

4.2 Extending StAC with Parameterised Throw

Although StAC deals with error handling in a similar way to BPEL, StAC
does not distinguish between different faults as BPEL does. This section dis-
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cusses how StAC could be extended to deal with parameterised throw and catch
of exceptions so that early termination attempt and attempt block constructs
can distinguish the type of exception raised and execute an exception handler
tailored for each exception. Constructs that deal with exception handling are
parameterised by the exception identifier:

P ::= · · ·
| �f (early termination of attempt)
| P{Q}( []e ∈ E · e =⇒ Re ) (attempt block)
| · · ·

where E is a set of exception identifiers and f is an exception identifier. Further-
more, the attempt block now provides a choice of exception handlers instead of
a single handler.

An extended attempt block P{Q}( []e ∈ E · e =⇒ Re ) first executes Q, and if
Q terminates successfully it continues with P . Otherwise, if an early termination
�f occurs within Q, there are two possible outcomes. Either the exception f has
an exception handler Rf (with f ∈ E), in which case the block continues with Rf ,
or f does not have an exception handler (f /∈ E), in which case the exception �f

is thrown again to the surrounding block. Appendix A shows how the semantic
rules for StAC in [7] may be extended to deal with parameterised throw.

4.3 Mapping BPEL to StAC

To define a mapping from BPEL to StAC, we have defined an abstract syntax for
a simplified subset of the activity description language of BPEL. This abstract
syntax for BPEL activities is shown in Table 2. We have assumed some basic sets
such as Partner, representing a set of identifiers for partners, and Operation,
representing a set of operation identifiers. In the remainder of this section we will
go through each syntactic construct in Table 2 and explain how it is mapped to
StAC. We introduce a function T that maps each syntactic construct of BPEL
to an appropriate corresponding StAC construction. For simplicity we are not
modelling BPEL process variables nor assignment to variables in this paper since
we want to focus on formalising the orchestration of activities in BPEL. Another
important feature of BPEL that we do model in this paper is the creation of
process instances. In BPEL a receive activity can be defined so that receipt of a
message creates a new process instance. Correlation rules can be defined which
correlate messages with the appropriate instance of a process. We do not treat
correlation sets or time related features in our formalisation of BPEL.

The receive activity allows a process to receive a message from a partner.
The receive operation specifies which partner it expects to receive the message
from and the operation it expects the partner to invoke. Thus, a receive is of
the form receive(p, op), where p ∈ Partner, op ∈ Operation. A BPEL receive
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Act ::= receive(Partner,Operation) (receive a message)
| reply(Partner,Operation) (reply to a message)
| invokeS(Partner,Operation) (synchronous operation invoke)
| invokeA(Partner,Operation) (asynchronous operation invoke)
| sequence(Act1, . . . , Actn) (sequence)
| while(Cond,Act) (conditional loop)
| switch(CAct1, . . . , CActn, Act) (choice of conditional activities)
| pick(GAct1, . . . , GActn) (choice of guarded activities)
| flow(Act1, . . . , Actn) (parallel flow)
| linkedActivity(Linksin, Act, Linksout) (activity with incoming

and outgoing links)
| scope(ScopeName,Act, EH,FH,CH) (scope)
| throw(FaultName) (throw a fault)
| compensate(ScopeName) (compensate a scope)

CAct ::= conditionalActivity(Cond,Act)
GAct ::= guardedActivity(receive(Partner,Operation, V arin), Act)
EH ::= eventHandler(GAct1, . . . , GActn)
FH ::= faultHandler( catch(FaultName1, Act1), . . . ,

catch(FaultNamen, Actn) )
CH ::= compensationHandler(Act)

Table 2: Abstract syntax for BPEL subset

is modelled simply as an atomic event in StAC, thus the results of translating a
receive is defined simply as follows:

T( receive(p, op) ) = receive.p.op

A reply specifies a partner and an operation with which the reply is concerned:

T( reply(p, op) ) = reply.p.op

Invocation is used by one BPEL process to request an operation on another
BPEL process. Invocation comes in two forms, asynchronous, in which the re-
quester does not wait for a reply, and synchronous, in which the requester does
wait for a reply. In the asynchronous case, the invoked process replies to the
original request by invoking the original requestor. A synchronous invokeS ac-
tivity consists of two StAC activities, sending a request to a partner followed by
getting a response from the partner:

T( invokeS(p, op) ) = request.p.op ; response.p.op
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Although not defined in this paper, our assumption is that a request.p2.op event
initiated by partner p1 would result in a corresponding receive.p1.op event oc-
curring in partner p2. Similarly for reply.p1.op and response.p2.op. These as-
sumptions represent the way in which we intend BPEL processes to interact. An
asynchronous invokeA activity simply involves sending a request to a partner:

T( invokeA(p, op) ) = request.p.op

Given a group of activities A1, . . . , An, the structured activity sequence(A1,

. . . , An) represents the execution of these activities in sequential order. Sequen-
tial composition of activities is defined in terms of the sequential composition
operator of StAC:

T( sequence(A1, . . . , An) ) = T(A1) ; · · · ; T(An)

Looping behaviour is defined in BPEL using the while construct. This has the
usual semantics for while: while(C,A) continues to execute A while condition
C holds. For simplicity we assume that conditions are expressed in the same
language as StAC boolean conditions. The while construct is defined in terms of
a recursive StAC definition:

T( while(C,A) ) = W

where
W = C =⇒ (T(A) ;W ) [] ¬C =⇒ skip

Here process W will execute T(A) and then continue as W provided condition
C holds, otherwise it terminates immediately.

The BPEL switch selects one of a group of activities for execution. Each
activity has an associated selection condition. Conditions are evaluated in order
of appearance and the first branch whose condition is true is evaluated. If no
activity satisfies its selection condition, the default activity is executed. The
switch is translated to StAC as follows:

T( switch(conditionalActivity(C1, A1), . . . , conditionalActivity(Cn, An), A) )
= C1 =⇒ T(A1) []

¬C1 ∧ C2 =⇒ T(A1) []
· · ·
¬C1 ∧ · · · ∧ ¬Cn−1 ∧ Cn =⇒ T(An) []
¬C1 ∧ · · · ∧ ¬Cn−1 ∧ ¬Cn =⇒ T(A)

The BPEL pick is similar to the switch except that instead of being guarded
by a condition, each activity is guarded by a message receipt event. The pick

waits until it receives a message matching one of the activity guards. When it
receives a matching message, it executes the corresponding activity. The pick
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Figure 4: Example BPEL flow with links.

corresponds to the StAC choice, where each branch is guarded by an event, and
is translated to StAC as follows:

T( pick(guardedActivity(R1, A1), . . . , guardedActivity(Rn, An)) )
= T(R1); T(A1) [] · · · [] T(Rn); T(An)

The BPEL syntax allows multiple simultaneous receives on the same message
type from the same partner though the meaning of such behaviour is said to be
undefined in [12]. StAC supports multiple simultaneous receives though it can
lead to nondeterministic choice of behaviour.

The BPEL flow construct is used to specify a group of activities running
in parallel. Synchronisation dependencies between activities may be specified in
BPEL flows using dependency links. Each link has exactly one source and one
target. For example, consider the dependent flow illustrated in Figure 4. This
flow contains five parallel activities. The arrows represent synchronisation depen-
dencies. The arrow from A1 to A3 indicates that activity A3 cannot commence
until A1 has completed. When an activity has multiple incoming links, then it
must wait until all the source activities of its incoming links have completed.
For example, A3 in Figure 4 must wait until both A1 and A2 complete. In our
abstract syntax for BPEL we can attach incoming and outgoing links to an ac-
tivity using the linkedActivity construct. If L1 and L2 are sets of links, then
linkedActivity(L1, A, L2) represents an activity A with incoming links L1 and
outgoing links L2. The example of Figure 4 would be represented in our BPEL
syntax as:

flow(
linkedActivity({}, A1, {l1}),
linkedActivity({}, A2, {l2}),
linkedActivity({l1, l2}, A3, {l3, l4}),
linkedActivity({l3}, A4, {}),
linkedActivity({l4}, A5, {})

)

We assume that links do not cross the boundaries of a flow nor the boundaries
of a while-loop.
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We model synchronisation links in StAC by using synchronisation variables
shared between processes. Each link has a boolean variable associated with it.
Initially the variable is assumed to be false. When the activity at the source of
a link completes, it sets the link variable to true. A linked activity must wait
until all its incoming links are true before proceeding. An atomic action which
sets a set of links to true is defined in B as follows1:

Set(L) = (‖l∈L · l := true)

Waiting for all incoming links to become true is modelled using a guarded atomic
action defined in B as follows:

Wait(L) = (∀ l ∈ L · l = true) =⇒ skip

Thus, for example, the linked activity containing A3 in our example is translated
to StAC as:

Wait({l1, l2}) ; T(A3) ; Set({l3, l4})
When this process is run in parallel with the appropriate translations of the
other linked activities of our example, A3 cannot occur until A1 and A2 have
completed and have set l1 and l2 to true.

A flow is translated into a parallel composition in StAC:

T( flow(A1, . . . , An) ) = (‖l∈L · l := false) ; ( T(A1) ‖ · · · ‖ T(An) )

Here the links used in the flow are initialised to false. Although not defined
formally here, the set L represents the set of link identifiers contained in the
flow excluding those contained in nested flows or loops.

To achieve the desired link dependency, the translation rule for linked activ-
ities uses the Wait and Set actions as follows:

T( linkedActivity(L1, A, L2) ) = Wait(L1) ; T(A) ; Set(L2)

BPEL link sources may have transition conditions and linked activities may have
join conditions which are expressions of the incoming transition conditions. We
do not model link conditions in this paper which represents a big simplification
of the BPEL link semantics.

We now consider how to model the BPEL scope construct. Recall that as
well as a main body, a BPEL scope has an event handler, a fault handler and a
compensation handler. We model compensation handling using the StAC com-
pensation pair operator and fault handling using the StAC attempt block. We
1 Here we are taking some syntactic libertes with the B notation. A valid B represen-

tation would be to model the link variables a a function l ∈ Link → Bool and define
Set(L) using function update.
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model the event handler as a process that runs in parallel with the main body.
A scope of the form

scope(S,A,EH,FH,CH)

will be modelled with the following StAC construction:

[ skip { (A ‖ EH) ÷ CH } FH ]

This is a compensation scope containing an attempt block. The main body of
the attempt block consists of the scope body A in parallel with the event handler
EH. If A ‖ EH terminates normally, the compensation handler CH is installed
and the whole scope terminates. A fault may be thrown by A or by EH in which
case control is passed to the fault handler FH and CH is not installed.

Each event handler is guarded by a receive event and can be executed multiple
times. An event handler is disabled when the main body terminates (normally
or through a fault). We model this in StAC using a looping construct that on
each iteration is either willing to terminate immediately or to execute process
P . This is defined as follows:

LOOP (P ) = X

where
X = skip [] (P ;X)

A scope may contain a group of event handlers for different messages and these
should be available in parallel:

eventHandler(guardedActivity(R1, A1), . . . , guardedActivity(Rn, An))

Here each Ri is a receive activity which is bocked until an appropriate message
is received in which case the corresponding Ai activity is executed. The event
handlers are modelled in StAC by looping over the handlers in parallel:

LOOP (R1;A1) ‖ · · · ‖ LOOP (Rn;An)

As well as message receipt, BPEL also allows event handlers to be guarded by
timeout alarms. We have not modelled alarms here.

A BPEL fault handler is of the form2

faultHandler(catch(f1, F1), . . . , catch(fn, Fn))

Here fi is a fault type and Ai is the corresponding handler for fi. This will be
modelled in StAC using the parameterised exception operators introduced in
Section 4.2.
2 We do not deal with the catchall form of handler.
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When the compensation handler for a BPEL scope is installed it overrides
any compensation handlers installed by nested inner scopes. We use the StAC ��

operator to clear inner compensations when installing the outer compensation.
[P ;��]÷Q will clear any compensations installed by P before installing Q. If P

throws an exception, then the compensations installed by P will remain available
and Q will not be installed. We believe this corresponds to the informal BPEL
semantics defined in [12] in the case that the name-free form of compensation is
used.

The rule for translating a BPEL scope is as follows:

T( scope(S,A,EH,FH,CH) ) = [ skip { [ (A′ ‖ EH ′);�� ] ÷ CH ′ } FH ′ ]
where

A′ = T(A)
EH = eventHandler(guardedActivity(R1, A1), . . . ,

guardedActivity(Rn, An) )
EH ′ = LOOP (T(R1); T(A1)) ‖ · · · ‖ LOOP (T(Rn); T(An))
FH = faultHandler(catch(f1, F1), . . . , catch(fn, Fn))
FH ′ = f1 =⇒ T(F1) [] . . . [] fn =⇒ T(Fn)
CH = compensationHandler(C)
CH ′ = T(C)

The compensation handler is optional in StAC. In the case that a compen-
sation handler is not present, the default compensation for a scope is to run the
compensations of the enclosed scopes. To model this in StAC, inner compensa-
tions are not cleared and no compensation handler is installed:

T( scope(S,A,EH,FH, ) ) = [ skip { A′ ‖ EH ′ } FH ′ ]
where A′, EH ′ and FH ′ are as defined above.

The fault handler is also optional in BPEL. If it is not present, the default
is to invoke the default compensation for the scope and throw the exception to
the outer level. If the fault handler is not present, the above definition of FH ′

should be replaced by the following:

FH ′ = []e ∈ E · e =⇒ �;�e

Here E represents the set of all possible exceptions types. The above construc-
tion defines a handler for every exception type, the effect of which is to invoke
compensation and then re-throw that exception.

The event handler is also optional in BPEL. When it is absent, EH ′ is simply
skip.

A BPEL throw activity may appear anywhere in a scope. The BPEL throw
activity is modelled in StAC as follows:

T(throw(f)) = �f
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The BPEL compensate activity can only appear in a compensation handler
or a fault handler. As mentioned at the beginning of the section, for the moment
we provide a translation for the name-free compensate activity. The name-free
compensate activity causes all the immediately enclosed scopes to be compen-
sated, similar to the default case where no handler is present. The name-free
compensate is translated as follows:

T(compensate) = �

The BPEL standard [12] says that when the default compensation is applied
to a scope, the compensation handlers should be be run in reverse order of
completion of the scopes to which they are attached. Because of the semantics
of StAC, we give a less constrained semantics to default compensation, that is,
compensations for sequentially composed scopes are executed in reverse order
while compensations for scopes composed in parallel can be run in parallel.
Though our interpretation allows for more parallelism when compensating, it
may not be appropriate in the presence of link dependencies in flows.

In the next section we introduce a modified form of the StAC language that
supports multiple compensation threads. This will allow us to model the named
compensate activity.

5 Multiple Compensation in StAC

In this section we present some extensions to the StAC language. The most
important of these extensions is that a process can have several simultaneous
compensation tasks associated with it. A process decides which task to attach
the compensation activities to, and each individual compensation task can be
reversed or accepted. This contrasts with the language presented in Section 2,
where scoping of compensation is hierarchical and each scope has a single implicit
compensation task. To distinguish different compensation tasks, the operators
that deal with compensation, i.e., compensation pair, acceptance and reversal,
are indexed by the compensation task index to which they apply. The syntax of
StACi is presented in Table 3.

The original motivation for extending the StAC language was that StACi

had a clear semantics for compensation and made it easier to describe parallel
compensation. It is easier to define the operational semantics of multiple com-
pensation tasks, than a hierarchy of compensation scopes, because with multiple
compensation it is possible to refer directly to a compensation task by its index,
while with nested compensations this is not possible. Later, when applying StAC
to some case studies it emerged that some features that were difficult to model
in StAC could be easily modeled in StACi using multiple compensation tasks.
This suggests that multiple compensation is a useful concept.
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P,Q ::= · · ·
| P ÷i Q (indexed compensation pair)
| �i (indexed reverse)
| ��i (indexed accept)
| J � i (merge)

Table 3: StACi Syntax

5.1 Extended Compensation Operators

Most of the StACi operators are retained from StAC without any alterations.
The new operators deal with compensation (Table 3) and reflect the modifica-
tions to the StAC language. These replace the compensation operators of StAC
presented in Section 2. In the extended language, process P ÷i Q has P as its
primary process and, when P completes, compensation Q is installed on compen-
sation task i, where i is an index. Note that compensation indices are constants
and not expressions that can be evaluated. The instruction to accept compen-
sation task i is given by ��i while the instruction to reverse compensation task i

is given by �i. To help illustrate indexed compensation, consider the process:

(A ÷1 A′); (B ÷2 B′);�1; (C ÷2 C ′);�2.

This process will start by invoking A, followed by B and then the reversal causes
compensation A′ to be invoked. Compensation B′ will not be invoked at this
stage as it is on compensation task 2 and only compensation task 1 is invoked
by the first reversal operator. After the first reversal, activity C is performed.
Reversal is then invoked on compensation task 2 which causes C ′ followed by B′

to be executed.
The compensation information of a process is maintained by a compensation

function that for each compensation task index, returns the associated com-
pensation process. When the primary task of a compensation pair concludes
its execution, the compensation task is composed in sequence with the original
compensation process for that task.

An important operator in StACi is the merge operator. The expression J � i,
where J is a set of indices, merges all compensation tasks belonging to J into the
compensation task i. When merging compensation tasks, those tasks are merged
in parallel. In the process

(A ÷1 A′); (B ÷2 B′); {1, 2} � 3

the merge operator will compose compensation task 1 (A′) and compensation
task 2 (B′) in parallel and add the result (A′ ‖ B′) to the front of compensation
task 3. Tasks 1 and 2 will be cleared.
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The StAC process

(A ÷ A′); [(B ÷ B′);�; (C ÷ C ′)]

can be represented in StACi as

(A ÷1 A′); (B ÷2 B′);�2; (C ÷2 C ′); {2} � 1

Here the inner compensation scope is represented as a ‘new’ compensation task.
When the reversal instruction is invoked on compensation task 2 it will only
execute B′. Compensation process A′ that in StAC was outside the braces, in
StACi is in a different compensation task, and does not get invoked. The merge
is used to preserve any compensations not reversed within the scoping brackets.

Utilising the facility of multiple interleaved compensation tasks, [10] intro-
duced the selective compensation and alternative compensation. With selective
compensation, the reversal selects some activities to be compensated, while pre-
serving the compensations for other activities. With alternative compensation,
several alternative compensation tasks may be attached to an activity and the
reversal selects one of these alternatives for invocation. These two multiple com-
pensation mechanisms are discussed in detail in [10] where selective compensa-
tion is used in a travel agency business process to compensate those parts of a
client itinerary that fail to get reserved.

5.2 Modelling Named Compensation in BPEL

The multiple compensation provided by StACi allows us to model named com-
pensation in BPEL. We write named compensation in BPEL as compensate(S),
where S is the name of the scope to be compensated. The meaning of the
compensate(S) activity is to run any compensation handler installed for scope
S. To deal with this, we associate a compensation task with each scope, iden-
tified using the name of the scope. Now a compensation handler for scope S is
installed on a compensation task labelled by S and that compensation can later
be invoked by compensating task S. Consider the nested scopes illustrated in
Figure 5 with an outer scope S1 and inner scopes S2 and S3. This will give rise
to three compensation tasks, S1, S2 and S3. When A2, the body of scope S2,
completes successfully, then compensation handler CH2 will be installed in com-
pensation task S2. Similarly for S3 and S1. Fault and compensation handlers
FH1 and CH1 may contain compensate(S2) or compensate(S3) activities and
these will be translated into the corresponding compensate operations in StACi.

As well as adding named compensation to our BPEL semantics, we will also
continue to model name-free compensation. For example, FH1 in Figure 5 may
contain a name-free compensate activity. In this case both S2 and S3 should
be compensated provided their compensation handlers have been installed. To
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Figure 5: Example nested BPEL scopes.

model name-free compensation, as well as installing CH2 on compensation task
S2, we will also introduce a compensation task S1′ to model default compensa-
tion for S1 (S1′ is a distinct identifier from S1 and all other scope identifiers and
is used to identify the default compensation task for scope S1). In the example
of Figure 5, both CH2 and CH3 would be installed on S1′. Now a name-free
compensate activity in FH1 or CH1 is translated into compensation of task
S1′.

The installation of CH2 and CH3 on compensation task S1′ also deals with
default compensation. Recall that default compensation arises when a scope has
no defined compensation handler or when the compensation handler is not in-
stalled because of an exception. With our proposed scheme, if CH1 is not present
or does not get installed because of an exception, then the default compensation
task will be used if S1 needs to be compensated.

To recap, given a scope S2 which is directly contained within scope S1, when
the body of S2 completes successfully, then CH2, the compensation handler for
S2, is installed on two compensation tasks, S1′ and S2. This double installation
in modelled in StACi as follows:

((A2 ‖ EH2) ÷S2 CH2) ÷S1′ CH2

This translation of a scope requires two scope names, that of the scope being
translated (S2) and that of the immediately enclosing scope (S1). To deal with
this, we add a scope name as an extra argument to the translation function:
T(A,S) translates BPEL activity A contained within scope S. All of the trans-
lation rules for BPEL activities given in Section 4.3, except those for scopes and
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compensate activities, are modified so that they simply pass this argument on
to recursive calls of T, e.g.,

T( sequence(A1, . . . , An), S ) = T(A1, S) ; · · · ; T(An, S)

We replace the translation rules for BPEL scopes given in Section 4.3 by the
following rule. On successful completion of the scope, the compensation handler
is installed in two places as discussed above:

T( scope(S2, A,EH,FH,CH), S1 ) =
skip { ((A′ ‖ EH ′) ÷S2 CH ′) ÷S1′ CH ′ } FH ′

where
A′ = T(A,S2)
EH = eventHandler(guardedActivity(R1, A1), . . . ,

guardedActivity(Rn, An) )
EH ′ = LOOP (T(R1, S2); T(A1, S2)) ‖ · · · ‖

LOOP (T(Rn, S2); T(An, S2))
FH = faultHandler(catch(f1, F1), . . . , catch(fn, Fn))
FH ′ = dCH ; ( f1 =⇒ T(F1, S2) [] . . . [] fn =⇒ T(Fn, S2) )
dCH ′ = skip ÷S2 (�S2′)
CH = compensationHandler(C)
CH ′ = T(C,S2)

Notice that the first step (dCH) of the fault handler FH ′ is to install an in-
vocation of the default compensation handler on compensation task S2. This is
because in the case of a fault, the given compensation handler CH will not be
installed and the default compensation will apply instead.

If the fault handler is not present, the above definition of FH ′ should be
replaced by the following:

FH ′ = []e ∈ E · e =⇒ ( �S2′ ; �e )

If the compensation handler is not present, the above definition of CH ′ should
be replaced by the following:

CH ′ = �S2′

A named BPEL compensate activity is translated to a StAC compensate
operator indexed by the named scope, while a name-free compensate is indexed
by the default handler for the containing scope:

T(compensate(S2), S1) = �S2

T(compensate, S1) = �S1′

The translation scheme just described allows us to model named and name-
free compensation invocation. However, the semantics of default compensation
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in this new scheme is not quite the same as in the scheme defined in Section 4.3.
With the previous scheme, default compensation was based on the StAC ap-
proach which is that compensations for sequentially composed scopes are exe-
cuted in reverse order while compensations for scopes composed in parallel can
be run in parallel. In the new scheme, the compensation handlers will be run
in reverse order of their installation. This is exactly the definition for default
compensation order in BPEL [12].

6 Conclusions

The combination of explicit and implicit compensation supported by BPEL is
quite complicated and it is unclear to what extent this complexity is required for
application to business transactions. A downside of the complexity is that it may
hinder reasoning, both formal and informal, about BPEL designs. [8] describes a
trace semantics for a simplified version of the StAC language. In that work, the
simplified language does not contain � or ��. Instead the invocation of installed
compensations for a transaction block is automatic in the case of an exception
in the block while installed compensations are discarded in the case of successful
termination of a transaction block. While this is more restrictive than StAC and
BPEL, it does lead to a cleaner compositional semantics and a language that
appears to be more amenable to modular verification than StAC or BPEL.

Bruni et al [4] have developed an operational semantics for a language with
similar operators to StAC, including compensation pairs and transaction blocks
(or sagas as they call them). Like the work of [8], and unlike StAC, the invocation
of compensation in a saga is automatic depending on failure or success which
leads to a neater operational semantics.

Other researchers have worked on formalising notions of compensation. In
[18], a compensation is formalised in terms of the properties it has to guarantee.
However, [18] does not provide a modelling language as StAC does, rather it pro-
vides a characterisation of properties of compensation. ConTracts [23] attempt
to provide a structured approach to compensation. In ConTracts the invocation
of a particular compensation has to be made explicitly within a conditional in-
struction (if the outcome of a step is false, then a specific task is executed to
compensate for this). ConTracts do not have the notion of installing a compen-
sation handler nor acceptance nor reversal found in StAC.

Recently Misra [21] has developed the Orc language for so-called wide area
computing. This language provides operators for service composition and the
intended application is the orchestration of web services. The language is declar-
ative in nature with a strong emphasis on algebraic properties of the operators.
A key idea of Orc is the use of angelic nondeterminism to model multiple ways
in which a service might be achieved. Such angelic nondeterminism could be
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implemented using speculative parallelism whereby multiple possible ways of
achieving a service are attempted in parallel. The link between compensation
and speculative parallelism has been investigated in [8] where it show that com-
pensation can be used to ‘tidy-up’ those speculative branches that fail or are not
availed of.

We believe that the combination of a process oriented notation such as StAC
with a state oriented notation such as B, provide a very rich way of describing
both the orchestration and the data aspects of long running business transac-
tions. Compensation is an important feature of long running transactions and
we believe that StAC was the first process oriented language to introduce com-
pensation operators. Because of the closeness of StAC to BPEL we were able to
define a straightforward mapping from BPEL to StAC. We believe this mapping
makes the semantics of BPEL activities more accessible as well as giving them
a formal semantics. This suggests that combinations such as StAC and B pro-
vide a good basis for specification of contracts and formal analysis of business
transactions.
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A Semantics of Parameterised Throw

The transition rules dealing with early termination are easily extended to deal
with parameterised throw. For most rules, one just has to add the exception
identifier to � and early operators. For example, consider the non-parameterised
rule below:

(�, C, σ) �−→ (early, C, σ)

This rule is extended by adding the exception identifier f to operators � and
early stating that exception f has occurred:

(�f , C, σ) �f−→ (earlyf , C, σ)
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The only rule that cannot be extended by parametrisation of the exception
operators is the rule below:

(P{early}R, C, σ) τ−→ (R, C, σ)

In this case the rule has to be replaced by two new rules. The rule on the left-hand
side states that, if an attempt block terminates prematurely by the occurrence
of exception f and there is a handler (Rf ) for that exception, then the exception
handler Rf will be executed. While the rule on the right-hand side, models the
situation where no handler exists for exception f causing that same exception
to be thrown again.

f ∈ E

(P{earlyf}( []e ∈ E · e =⇒ Re ), C, σ) τ−→ (Rf , C, σ)

f /∈ E

(P{earlyf}( []e ∈ E · e =⇒ Re ), C, σ) τ−→ (�f , C, σ)
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