
On Atomicity and Software Development

Jörg Kienzle
School of Computer Science, McGill University, Montreal, Canada

Joerg.Kienzle@mcgill.ca

Abstract: This paper shows how the concept of atomicity can ease the development
of concurrent software. It illustrates by means of a case study how atomicity is used to
reduce the complexity of concurrency by presenting simplified models or views of the
system at certain stages of the development cycle. As the development process goes
on, the atomic views from the early stages are refined – broken up into smaller pieces
– to slowly introduce concurrency back into the system. Finally, at the design stage,
low-level concepts that provide atomicity, such as transaction or monitors, are used to
ensure consistent concurrent updating of the application state.
Key Words: Atomicity, Software Development, Concurrency, UML, OCL, Transac-
tions, Monitors
Category: D.2, D.1.3, D.1.5

1 Introduction

The concept of atomicity, from the Greek word atomos – indivisible, has many
meanings in the context of computer science. It has been used in the hard-
ware community to designate indivisible processor instructions. Implementors of
higher-level constructs, such as semaphores, rely on atomic machine instructions
to build efficient synchronization primitives to be used in concurrent program-
ming.

In the database world, transactions group a set of operations together and
execute them with the so-called ACID properties – A standing for atomicity.
From the perspective of the caller of a transaction, the execution of the trans-
action appears to move the system from its initial state directly to the result
state, without any observable intermediate state. If, however, the transaction can
not be completed for some reason, for instance, because of the failure of some
component, it appears as though the system had never left the initial state.
Atomicity guarantees that either all operations of a transaction are execute suc-
cessfully, or none is. Combined with structured exception handling, atomicity
can be used to confine erroneous information, and hence facilitates the provision
of fault tolerance [Romanovsky, 1999].

Many researchers rely on the concept of atomicity in developing structuring
approaches for system design. In this context, the execution of atomic units
is indivisible, and hence they provide an elegant way to encapsulate state and
behavior. No intermediate execution results can be seen from the outside. This
facilitates reasoning about the system, system understanding, verification and

Journal of Universal Computer Science, vol. 11, no. 5 (2005), 687-702
submitted: 30/11/04, accepted: 31/1/05, appeared: 28/5/05 © J.UCS

development. For instance [Best, 1996, Kurki-Suonio and Mikkonen, 1998] show
that concurrent object-oriented systems are easier to understand and to analyze
if their execution is built out of atomic units encapsulating several objects and
method calls. The design of process-oriented systems can also benefit from using
atomic actions (see section 5 for more details).

This paper shows how atomicity can simplify the development of concurrent
software throughout all stages of software development. The main focus of the
approach is to avoid interference of system operations. The ideas are presented
in the context of an object-oriented software development method called Fondue,
and illustrated by means of a case study application – an on-line auction system.
The paper is structured as follows. Section 2 introduces object-oriented software
development in general, the Fondue method in particular, and the auction system
case study. Section 3 shows how atomicity can be used by a developer to present
simplified views of the system when specifying its behavior during analysis, and
how these models can be refined to gradually introduce concurrency. Section 4
presents how low-level concepts such as transactions and monitors are used to
structure concurrent execution at the design level, and finally section 6 draws
some conclusions.

2 Object-Oriented Software Development

Object-orientation is a way of thinking about problems. It is an approach to
viewing the world and building software in terms of objects. Object-orientation
is built upon well established principles, namely abstraction, information hiding,
modularity and classification. These principles are achieved using the notion of
objects and classes.

Software development methods are well-defined processes that lead a devel-
opment team from the requirements elicitation process, over analysis, architec-
ture, design to implementation. Object-oriented ideas can be applied throughout
all these phases of software development [Meyer, 1997]. Several object-oriented
software development methods have been developed. Popular methods include
OMT [Rumbaugh et al., 1991], Booch [Booch, 1994] and the newer unified pro-
cess [Jacobson et al., 1999].

2.1 The Fondue Method

To illustrate how the use of atomicity can simplify the development of concur-
rent software, this paper presents a case study that uses the object-oriented
software development method Fondue , developed at the Swiss Federal Insti-
tute of Technology, Lausanne (EPFL) [Sendall and Strohmeier, 1999]. Fondue
uses a consistent approach to cover all development phases, from requirements
elicitation on to analysis, design and implementation. Fondue has its origins

688 Kienzle J.: On Atomicity and Software Development

in the well-known Fusion method [Coleman et al., 1994]; it adopts its process,
but uses the UML notations. In addition to Fusion, Use Cases are proposed for
requirements elicitation and are taken into account during the analysis phase
[Sendall and Strohmeier, 2000]. The Fondue method not only provides an inter-
nal view of the class model and the behavior of individual classes, but it includes
modeling of system-wide functionality and a step-by-step process that leads the
development team from an initial requirements document through to the im-
plementation of an object-oriented software system. Fondue defines a number
of deliverables: a Domain Model and a Use Case Model during requirements
elicitation, an Environment Model, a Concept Model, a Protocol Model and an
Operation Model during analysis, a Design Class Model, an Inheritance Model,
an Interaction Model and a Dependency Model during design, and an Imple-
mentation Class Model during implementation. For more details on Fondue, the
interested reader is directed to [Sendall, 2002].

Some of these models, in particular the Environment Model, the Operation
Model and the Interaction Model, make use of atomicity to reduce the system
complexity. The main advantage of this is that atomicity drastically reduces
the system complexity. Abstracting away from complex interactions, the atomic
models present a simpler view of the system, which allows the developer to focus
on the essential system functionality. As the development process goes on, the
atomic views presented in one model are refined, or broken up into smaller pieces,
to slowly introduce concurrency back into the system.

2.2 The Auction System Case Study

The auction system case study used in this paper, adapted from [Kienzle, 2003],
allows members to negotiate over the buying and selling of goods using English
style auctions. The application is similar to Internet auction sites such as eBay
(www.ebay.com). The main difference is that members debit their credit card
to deposit money into an account controlled by the auction system itself. That
way, the auction system can guarantee that bidders always have enough money
to pay for their bids.

From a concurrency point of view, developing an auction system is non trivial.
It is a highly dynamic system, featuring competitive and collaborative concur-
rency. The concurrency stems from the fact that a customer can participate in
multiple auctions simultaneously, and that the system must be able to serve
multiple customers at a given time.

689Kienzle J.: On Atomicity and Software Development

3 Atomicity in Analysis

3.1 The System as an Indivisible Black-Box

Fondue is designed for developing reactive systems. Every change to the system
state is caused by the execution of a system operation. A system operation is
triggered by an event that is generated with the reception of an input message
sent by some actor or by an internally generated time event.

One of the first steps when specifying the behavior of a system using Fondue
is to establish the Environment Model. At this stage, the system is viewed as a
black-box, as an indivisible, atomic component. Details of the system are hidden
– the focus is on defining the system boundaries, and showing how the system
interacts with its environment. The environment is represented by a set of actors,
which are autonomous entities external to the system. For example, humans that
interact with the system under development are represented by actors, but also
sensors or other computerized systems.

The environment model of the auction system case study is shown in Fig. 1.
There are two external actors: the User and the CreditInstitution. The input
events sent to the system by the customer and the credit institution, as well
as the output events generated by the system are depicted as asynchronous
messages. When receiving an input event, the system processes it by executing
the corresponding system operation.

From a concurrency point of view, the interesting information in this diagram
is the multiplicity of the actors1. The diagram states that there can be any
number of customers interacting with the system at a given time. Each customer
is autonomous, and can spontaneously send input messages to the system. This
is an example of inherent concurrency in the environment. Our system must be
capable of handling requests issued by different customers concurrently.

3.2 Opening the Black-Box

Now that the system boundary has been determined, the system black-box view
is abandoned. As a next step, the conceptual state of the system is specified in
the Concept Model. It takes the form of a UML class diagram. Exactly how the
Concept Model is constructed is out of the scope of this paper, but it is based
on the Use Case Model and the Domain Model obtained during requirements
elicitation. The Concept Model contains all information required for the purpose
of fulfilling the system’s responsibilities over time, i.e., the necessary information
to process an input message or send out a notification.

Fig. 2 depicts the complete concept model for the AuctionSystem.
1 In UML, the multiplicity on the actors requires that they are in a composition

association. The underlying container is the environment, which is implicit and thus
not shown for reasons of conciseness.

690 Kienzle J.: On Atomicity and Software Development

: Customer : CreditInstitution

: Auction System

<<time-triggered>>
closeAuction

Register
Deregister
LogOn
LogOff
BrowseAuctions
JoinAuction
ProposeAuction
CancelAuction
PlaceBid
AddCredit
RemoveCredit

AuctionOpened
AuctionCancelled
AuctionClosed
SucceededBuy
GoodsSold
FailedBuy_e
InvalidReg_e
FailedLogOn_e
InvalidBid_e

SucceededTransfer
TransferFailed_e

Transfer

0..* 0..*

0..* 0..*

Figure 1: Environment Model of the Auction System

<<system>> AuctionSystem
currentDate: Date
creditDetail: CreditInfo

1
0..*

<<rep>> CreditInstitution

1

1

<<rep>> User

Auction
description: GoodsInfo
startingDate: Date
duration: Period
startingPrice: Money
reservePrice: Money
minimumIncrement: Money
/started: boolean
closed: boolen

0..*

ArePlacedIn

JoinedTo

currentMbrs
joinedAuctions

0..*
 0..*

/HasHighBid

0..1

Bid
amount: Money

0..1highBid

SellsInmyAuctions

0..*
1

seller
Customer

customerDetail: CustomerInfo
loggedOn: boolean

Has

wins

Account
actualBalance: Money
creditDetail: CreditInfo
/guaranteedBalance: Money

1

1

Makes

myBids

0..*

bidder 1

Figure 2: Concept Model of the Auction System

691Kienzle J.: On Atomicity and Software Development

Classes stereotyped with < <rep>> are classes whose instances represent ex-
ternal actors. In the auction system, a user object is instantiated for each real-
world user, and a credit institution object is created for each credit institution
that interacts with the system.

One interesting detail is the derived attribute guaranteedBalance. In our sys-
tem we want to guarantee that a bidder can always pay for his bids. The guaran-
teed balance represents the maximum amount that a customer has available for
bidding. It can be calculated by taking the actual balance of his credit with the
auction system and subtracting all high bids he has placed in active auctions.
Using OCL, the derived attribute is defined in the following way:

context: Account::guaranteedBalance : Money
derive: self.actualBalance - self.customer.myBids→select

(b | b.wins→exists(a | not a.closed))→sum(amount);

3.3 Each System Operation as an Indivisible Operation

Since we are developing a reactive system, internal state changes are always
triggered by external stimuli. Every input event sent to the system triggers the
execution of a corresponding system operation. The complete behavior of the
system under development can therefore be specified by describing the effects
of each system operation on the conceptual state. In Fondue this is done in the
Operation Model.

In the Operation Model, each system operation is described in a separate op-
eration schema. As a first simplification step, system operations are considered
to be executed atomically: they lead the system from some state that satisfies the
operation’s precondition to a state that satisfies the operation’s postcondition.
In other words, the execution of a system operation is instantaneous : no interme-
diate state can be observed from the outside. This means also that there can be
no interference between system operations: since they execute instantaneously,
they are always processed in some sequential order. Hence, it is not necessary to
address concurrency issues yet; the developer can focus on the conceptual state
changes only.

For the auction system, 13 operation schemas have to be written, one for each
of the input messages shown in the environment model (Fig. 1). For space reasons
we are going to concentrate on one operation only: the operation placeBid. Its
operation schema is shown in Fig. 3.

The first line, starting with Operation, specifies the context of the operation,
here the AuctionSystem, the name of the operation, and the parameters.

The Scope clause lists all those classes and associations from the concept
model that define the name space of the operation, i.e. all classes and associations
that are used in the following pre- and post-conditions. The placeBid operation

692 Kienzle J.: On Atomicity and Software Development

Operation: AuctionSystem:placeBid
(a: Auction, c: Customer, bidAmount: Money);

Description: A customer requests to place a bid in the given auction. The
system must decide whether the bid is valid (i.e. higher than the current bid,
above the increment, and that the customer is solvent), and if so make the
bid the current high bid.

Scope: Auction; Bid; Customer; Account; ArePlacedIn; Makes; Has; HasHigh-
Bid; JoinedTo;

Messages:¨User::{InvalidBid_e};
New: newBid: Bid;
Pre: a.currentMbrs→includes(c) & a.started & not a.closed;

Post: if bidAmount≥a.highBid.amount + a.minimumIncrement then
if c.account.guaranteedBalance≥bidAmount then �

newBid.oclIsNew(bidAmount) &
a.bid→includes(newBid) &

c.myBids→includes(newBid)

else

sender^invalidBid_e(Reason::insufficientFunds)

endif

else

sender^invalidBid_e(Reason::bidTooLow)

endif

Figure 3: Sequential Operation Schema for placeBid

uses the Customer, Bid and Account classes, and navigates through ArePlacedIn,
JoinedTo, Makes and Has.

The Message clause declares the possible output messages that can be output
with the execution of the operation. The type and the destination actors of the
messages must be specified. In our example, an invalidBid_e exception message
might be propagated to the calling user.

The New clause provides a declaration of all those names in the operation
schema that refer to concept objects of the system that are possibly created
with the execution of the operation. These objects are declared to be new in
the post clause using the predefined operation oclIsNew. The placeBid operation
potentially creates a new bid.

The Pre clause contains an OCL predicate that defines the assumed state
of the system and / or parameters before the execution of the operation. In the

693Kienzle J.: On Atomicity and Software Development

proposeAuction joinAuction placeBid cancelAuction closeAuction

proposeAuction - N N N N
joinAuction N Y Y N Y

placeBid N Y Y N Y
cancelAuction N N N N N
closeAuction N Y Y N N

Table 1: Concurrent Input Events of Auctions

example, the pre-condition states that in order to place a bid, the customer that
wants to place the bid must be already joined to the auction, and the auction
must be started and not closed.

Finally, the Post clause defines the required state of the system after the ex-
ecution of the operation. Only changes to the conceptual system state must be
mentioned here, any unmentioned state remains the same. The post-condition
asserts that if the customer has enough money (the guaranteedBalance is used
here in order to ensure that the customer can pay for all pending bids (see � in
Fig. 3) and the bid is higher than the current highest bid plus the minimum in-
crement, then the bid is made. Otherwise, the user is informed of the exceptional
outcome of his request.

3.4 Refining Atomicity of System Operations

The assumption made in the previous section, namely that system operations
execute instantaneously, is of course not realistic: as soon as time is taken into
consideration, the execution of system operations might overlap. Fortunately, not
all operations can occur simultaneously due to constraints of the environment
and of the problem domain. For example, a single customer can not send multiple
concurrent messages, or, an auction can not be closed before it is started. In
Fondue, the sequencing of input messages can be specified using UML state
diagrams in the Protocol Model.

For space reasons, the Protocol Model for the auction system has been omit-
ted. The essential concurrency information for the placeBid operation has been
extracted and presented in a table shown in Table 1.

The table states that the placeBid operation might execute concurrently
with other placeBid, joinAuction and closeAuction operations. 2To take this
into account, the sequential operation schema has to be elaborated.
2 CancelAuction, for instance, can never execute concurrently with placeBid, because

once an auction starts, it can not be cancelled anymore.

694 Kienzle J.: On Atomicity and Software Development

The key issue is to identify the conceptual state that is accessed concurrently.
The Scope section of the sequential operation schema specifies all conceptual
state that an operation accesses. For placeBid, the accessed concepts are Auction,
Bid, Customer, Account, and the relations ArePlacedIn, Makes, Has, HasHighBid
and JoinedTo (see Fig. 3). From the protocol model we know that placeBid
potentially runs concurrently with a placeBid issued by a different user. However,
the Bid concept is not shared, since each placeBid creates a new bid! Likewise,
the Customer is not shared, since each placeBid is issued by a different customer.
Hence, the Makes relation is not shared either. The started and closed attributes
of the Auction concept are accessed in “read-mode” only, so we do not have to
worry about them for now. The same argument holds for JoinedTo. ArePlacedIn,
however, is modified, since each new bid is added to the list of bids of an auction.
HasHighBid is also updated concurrently. Account is the most tricky one. One
might think that it is not shared, since each placeBid operation accesses the
account of the customer that places the bid only. But this is not true. The
placeBid operation modifies the HasHighBid relation, and therefore modifies the
guaranteedBalance of the account of the customer that previously was holding
the highest bid. The Account.guaranteedBalance concept is therefore shared as
well.

We must now take into account that the placeBid operation also runs con-
currently with joinAuction. joinAuction (operation schema not shown for space
reasons) modifies the relation JoinedTo, and placeBid consults this relation, so
JoinedTo is shared as well.

At any time, the time-triggered event closeAuction might fire, resulting in
closing the auction. placeBid consults the closed attribute, so it is shared as well.

Once the shared concepts have been identified, they are recorded in a new
section of the operation schema entitled Shared, as shown in Fig. 4.

Next, the precondition has to be re-examined. In the sequential version, where
every operation executes atomically, a precondition such as not a.closed is suf-
ficient to guarantee that a bid is placed while the auction is still active. This
is different if we consider concurrency. We have to make sure that the auction
does not close while we are processing the bid. In implementation terms, this
can be achieved by either preventing the auction from closing while there is still
bidding activity, by preventing bids if the auction is about to close, or else by
undoing whatever partial bid has been made if ever the auction is to close dur-
ing a bid. Since we do not want to unduly constrain the solution space in the
analysis phase, we must allow for all possible (correct) outcomes.

In terms of changes to the operation schema, we remove the precondition not
a.closed and move it, encapsulated by a rely statement [Jones, 1983], to the post
condition section (see Fig. 4). The rely statement rely A then B fail C endre
asserts that either the condition A was true during the realization of all the state

695Kienzle J.: On Atomicity and Software Development

Operation: AuctionSystem:placeBid
(a: Auction, c: Customer, bidAmount: Money);

Description: A user requests to place a bid in the given auction. The system
must decide whether the bid is valid and if so make the bid the current high
bid.

Scope: Auction; Bid; Customer; Account; ArePlacedIn; Makes; Has; HasHigh-
Bid; JoinedTo;

Shared: Account.guaranteedBalance; Auction.closed; HasHighBid; Are-
PlacedIn; JoinedTo;

Messages:¨User::{InvalidBid_e};
New: newBid: Bid;
Pre: a.currentMbrs→includes(c) & a.started;

Post: rely not a.closed then
rely bidAmount≥a.highBid.amount + a.minimumIncrement then �1
rely c.account.guaranteedBalance≥bidAmount then �2
newBid.oclIsNew(bidAmount) &
a.bid→includes(newBid) &

c.myBids→includes(newBid)

fail

sender^invalidBid_e(Reason::insufficientFunds)

endre

fail

sender^invalidBid_e(Reason::bidTooLow)

endre

fail

sender^invalidBid_e(Reason::auctionClosed)

endre

Figure 4: Concurrent Operation Schema for placeBid

changes specified in B, or else the state changes specified in C have been realized.
In our example this translates to: either a bid has been successfully placed and
during that time the auction did not close, or the auctionClosed message has
been sent to the customer that has requested to place a bid.

It is also important to note that the if statements in the sequential operation
schema have been transformed into rely statements to take into account the
interpretation for shared resources. For example, we must make sure that no

696 Kienzle J.: On Atomicity and Software Development

other placeBid operation modifies the highest bid while we are accepting a new
high bid (�1), and that we continuously have sufficient funds according to our
guaranteed balance (�2).

It is interesting to note here also that, when introducing concurrency, we
had to add the sending of a new error message auctionClosed to the operation
schema. In the sequential version, such a message was not necessary.

4 Designing with Atomicity

During design, a blue print of a solution that satisfies the requirements defined
in the analysis phase must be devised. In object-oriented design, the concep-
tual state has to be mapped to objects, and then the developer has to decide
how the conceptual state changes specified in every system operation are to be
implemented by interacting objects at run-time. In Fondue this is done in the
Interaction Model.

When designing concurrent systems, an additional aspect has to be consid-
ered: shared state. In object-oriented programming languages that support con-
currency, like for example Java [Gosling et al., 1996] or Ada [ISO, 1995], consis-
tent access to shared data is usually provided by monitor objects [Hoare, 1974].
They provide atomic, or in this case uninterruptable, execution of methods.
Changes made by different threads simultaneously are serialized, and hence ex-
ecuted in isolation.

In addition to protecting shared state, we must make sure that the rely
conditions stated in the concurrent operation schema hold during the execution
of the respective state changes they belong to. In our example, for instance, we
must make sure that the auction does not close, that the bid is higher than the
current bid, and that there is enough money in the customer’s account, while
a bid is placed. In other words, the checking and the changing must be made
atomic.

There are essentially two different ways of achieving isolation and atomicity
during execution: using transactions or using monitors.

4.1 Transaction-Oriented Design

If the application modifies sensitive or important data, data that persists, or
data that must be kept consistent even in the presence of crash failures, then
transactions [Gray and Reuter, 1993]should be used to regulate access to shared
objects. As mentioned in the introduction, a transaction groups together a set
of operations, and gives them the so-called ACID properties. Atomicity – either
all operations are executed, or none is; consistency – transactions move the
application from one consistent state to another one; isolation – concurrently

697Kienzle J.: On Atomicity and Software Development

<<transactional>>
previous: Account

<<transactional>>
current: Account

<<transactional>>
myState:

AuctionState

<<transactional>
>currentBid: Bid

a: Auction

:User
placeBid

isOpen

getBid

isGuaranteed(bidAmount)

setBid(bidAmount)

releaseBid(lastBidAmount)

transaction

Figure 5: Transaction-based Execution of placeBid

executing transactions do not see intermediate results of other transactions; and
durability – state changes made by a transaction are recorded on stable storage.

The transaction-oriented design of the placeBid operation is shown in a se-
quence diagram in Fig. 5. In order to provide maximum concurrent execution,
the auction state and the current bid have been encapsulated in separate objects.

When executing placeBid, the auction object starts a new transaction. This
is shown in the sequence diagram by a frame labelled transaction. As a first step,
the auction state is checked. Then, the validity of the bid is checked. Third the
bid is deducted from the account, and the current bid is updated. Finally, the
account of the previous bidder is credited. All these operations are executed as
part of the transaction.

AuctionState, Bid and Account are transactional objects, shown in the dia-
gram by the <<transactional> > stereotype. Their state is made persistent, i.e.
it can even survive crash failures. If any one of the conditions is not satisfied,
or if any failures occur during the execution of placeBid, the transaction will be
rolled back, i.e. all state changes made so far are undone. It can never happen,
for instance, that a bid is placed without crediting the account of the previous
bidder. Thanks to the isolation property, no other operations will be affected
in case of a rollback. Interestingly, the actual way of ensuring isolation is still
not specified. It depends on the kind of concurrency control that is used by the
underlying transaction support.

In pessimistic, lock-based concurrency control [Gray and Reuter, 1993], shared
resources are locked once they have been accessed, and the lock is only released
when the transaction ends. In our example, this means that, for instance, the
closeAuction operation would be blocked until all pending placeBid operations
have terminated and released their locks on the auction state. On the other hand,
optimistic concurrency control [Kung and Robinson, 1981], such as time-stamp

698 Kienzle J.: On Atomicity and Software Development

<<monitor>>
previous: Account

<<monitor>>
current: Account

<<monitor>>
myState:

AuctionState

<<monitor>>
currentBid: Bid

a: Auction

:User
placeBid

readLock()

succ := checkAndUpdate(bidAmount)

 isGuaranteed(bidAmount)

releaseLock()

[succ] releaseBid(lastBidAmount)

[not succ] releaseBid(bidAmount)

Figure 6: Monitor-based Execution of placeBid

based versioning, might decide to let the auction close, and abort all concurrently
executing placeBid operations.

4.2 Monitor-Based Design

Transactions require extensive run-time support, and slow down execution sig-
nificantly. If persistence and tolerance to crash failures is not needed, then a
simple monitor-based design can provide the same behavior, with considerably
better performance.

The monitor-based design is similar to the transaction-based design. Trans-
actional objects are now monitors, i.e. their methods provide multiple readers
/ single writers semantics (synchronized methods in Java, protected objects in
Ada). The atomicity needed for implementing the rely conditions is achieved by
acquiring read or write locks when checking the condition (similar to lock-based
pessimistic concurrency control3). A lock prevents other threads from changing
the condition while the operation executes. After the state changes that rely on
the condition, the locks are released again.

The monitor-based design of placeBid is shown in Fig. 6. AuctionState, Bid
and Account are now monitors, highlighted in the sequence diagram by the
< <monitor> > stereotype. When checking the auction status, a read lock is
acquired (shown in the figure by a dotted gray activation rectangle). This would
block an attempted concurrent closeAuction operation (which would have to
acquire a write lock).

An informal analysis reveals that, since the same customer can not place two
bids simultaneously, or try to remove credit while placing a bid, the balance of
3 If read and write locks are not provided by the programming language, they can

easily be implemented on top of semaphores.

699Kienzle J.: On Atomicity and Software Development

a customers account can only grow while the placeBid operation is executing4.
Therefore we do not have to acquire a lock to guarantee the balance when ac-
cessing the account of the customer that is placing the bid. We can simply check
and withdraw the bid amount from the account in one operation (which itself
is atomic because accounts are monitors), and then in a similar way check and
update the current high bid. Subsequently, we release the read lock on the auc-
tion state, and finally release the bid of the previous high bidder. Alternatively,
if the bid is invalid, the money has to be put back on the bidders account.

5 Related Work

The approach presented in this paper essentially deals with concurrency at the
object-level. An alternative approach proposed in [Zorzo et al., 1999] uses the
concept of Coordinated Atomic Actions (CA Actions) [Xu et al., 1995] to struc-
ture the execution of a safety-critical production cell system.

In CA action-based design, an application is composed of a set of cooperating
processes. Processes that want to work together will enter a CA action. Inside
the action, the processes can freely communicate with each other, i.e. exchange
messages or work on local shared data structures. Objects external to the action
can also be accessed in a transactional way. To the outside, the execution of a
CA action looks like a transaction, i.e. no intermediate system state is visible:
the action executes atomically. If an exception occurs during the execution of
a CA action (due to the detection of erroneous state or behavior), then all the
participants of the action are involved in cooperative recovery.

The CORRECT project is currently investigating possible ways of extending
UML to support CA action-driven development [Guelfi et al., 2004].

Similar to the approach presented in this paper, but focusing more on de-
sign, COMET (Concurrent Object Modeling and architectural design mEThod)
[Gomaa, 2000] is a development method for concurrent applications, with a par-
ticular emphasis on distributed and real-time applications. COMET also starts
requirements elicitation with use cases, which are then refined during analysis.
During design, the architecture of the system is elaborated, i.e. the system is
divided into subsystems, and finally classes, objects and relationships are de-
fined. For concurrent systems, such as real-time or client-server applications,
concurrent tasking concepts, such as synchronization and communication, are
considered as well.
4 The guaranteed balance can grow during the operation placeBid if, for instance, a

customer A bids in auction a, and then, while bidding in auction b, a customer B
overbids A in a.

700 Kienzle J.: On Atomicity and Software Development

6 Conclusion

Modern applications must respond to an increasing amount of demands. Dis-
tributed systems, systems serving hundreds of clients simultaneously, systems
that interact with real-time devices, or systems that provide interactive user in-
terfaces are forced to operate in a concurrent environment. Complex concurrent
and interacting activities, however, make the development, i.e. understanding,
analyzing, designing, and implementing, of such systems extremely difficult.

This paper shows that the use of atomicity can considerably ease the de-
velopment of concurrent software. Atomicity allows the developer to selectively
hide the complexity of concurrency by presenting simplified models or views of
the system at certain stages of the development cycle. In the auction system
example, atomicity is used when establishing the system boundaries and spec-
ifying the input and output messages in the Environment Model. Atomicity is
considered during initial system operation specification in the Operation Model
to abstract away the complexity of concurrency. As the development process goes
on, the Operation Model is refined – the system operations are broken up into
smaller pieces – to slowly introduce concurrency back into the system. Finally, at
the design stage, low-level concepts that provide atomicity, such as transaction
or monitors, are used in the Interaction Model to ensure consistent concurrent
updating of the application state.

Acklowledgements

I would like to thank the participants of the Dagstuhl Seminar 04181 for the
interesting discussions and feedback. The work presented here has been partially
supported by the Natural Sciences and Engineering Research Council (NSERC)
of Canada.

References

[Best, 1996] Best, E. (1996). Semantics of Sequential and Parallel Programs. Prentice
Hall, New York, NY.

[Booch, 1994] Booch, G. (1994). Object-Oriented Analysis and Design with Applica-
tions. Benjamin Cummings, Redwood City, 2nd edition.

[Coleman et al., 1994] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H.,
Hayes, F., and Jeremaes, P. (1994). Object-Oriented Development: The Fusion
Method. Prentice-Hall, Englewood Cliffs.

[Gomaa, 2000] Gomaa, H. (2000). Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison–Wesley.

[Gosling et al., 1996] Gosling, J., Joy, B., and Steele, G. L. (1996). The Java Language
Specification. The Java Series. Addison Wesley, Reading, MA, USA.

[Gray and Reuter, 1993] Gray, J. and Reuter, A. (1993). Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann Publishers, San Mateo, California.

701Kienzle J.: On Atomicity and Software Development

[Guelfi et al., 2004] Guelfi, N., Razavi, R., Romanovsky, A., and Vandenbergh, S.
(2004). Drip catalyst: An mde/mda method for fault-tolerant distributed software
families development. In OOPSLA & GPCE 2004 Workshop on Best Practices for
Model Driven Software Development, Vancouver, Canada, 2004.

[Hoare, 1974] Hoare, C. A. R. (1974). Monitors: An operating systems structuring
concept. Communications of the ACM, 17(10):549 – 557.

[ISO, 1995] ISO, editor (1995). International Standard ISO/IEC 8652:1995(E): Ada
Reference Manual. Number 1246 in Lecture Notes in Computer Science. Springer
Verlag.

[Jacobson et al., 1999] Jacobson, I., Rumbaugh, J., and Booch, G. (1999). The Unified
Software Development Process. Object Technology Series. Addison–Wesley, Reading,
Massachusetts, USA.

[Jones, 1983] Jones, C. B. (1983). Tentative steps towards a development method for
interfering programs. ACM Transactions on Programming Languages and Systems,
5(4):596 – 619.

[Kienzle, 2003] Kienzle, J. (2003). Open Multithreaded Transactions — A Transaction
Model for Concurrent Object-Oriented Programming. Kluwer Academic Publishers.

[Kung and Robinson, 1981] Kung, H. T. and Robinson, J. T. (1981). On optimistic
methods for concurrency control. ACM Transactions on Database Systems, 6(2):213
– 226.

[Kurki-Suonio and Mikkonen, 1998] Kurki-Suonio, R. and Mikkonen, T. (1998). Lib-
erating object-oriented modeling from programming-level abstractions. (1357):195 –
199.

[Meyer, 1997] Meyer, B. (1997). Object-Oriented Software Construction. Prentice
Hall, Englewood Cliffs, NJ 07632, USA, 2nd edition.

[Romanovsky, 1999] Romanovsky, A. (1999). On structuring cooperative and compet-
itive concurrent systems. The Computer Journal, 42(8):627 – 637.

[Rumbaugh et al., 1991] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. (1991). Object-Oriented Modeling and Design. Prentice Hall, En-
glewood Cliffs, New Jersey, USA.

[Sendall, 2002] Sendall, S. (2002). Specifying Reactive System Behavior. PhD thesis,
Swiss Federal Institute of Technology, Lausanne, Switzerland.

[Sendall and Strohmeier, 1999] Sendall, S. and Strohmeier, A. (1999). Uml-based fu-
sion analysis. In UML’99, Fort Collins, CO, USA, October 28-30, 1999, number 1723
in Lecture Notes in Computer Science, pages 278–291. Springer Verlag.

[Sendall and Strohmeier, 2000] Sendall, S. and Strohmeier, A. (2000). From use cases
to system operation specifications. In Kent, S. and Evans, A., editors, UMLÕ2000
- The Unified Modeling Language: Advancing the Standard, York, UK, October 2-
6, 2000, number 1939 in Lecture Notes in Computer Science, pages 1–15. Springer
Verlag.

[Xu et al., 1995] Xu, J., Randell, B., Romanovsky, A., Rubira, C. M. F., Stroud, R. J.,
and Wu, Z. (1995). Fault tolerance in concurrent object-oriented software through
coordinated error recovery. In FTCS-25: 25th International Symposium on Fault
Tolerant Computing, pages 499 – 509, Pasadena, California.

[Zorzo et al., 1999] Zorzo, A. F., Romanovsky, A., Xu, J., Randell, B., Stroud, R. J.,
and Welch, I. S. (1999). Using coordinated atomic actions to design safety-critical
systems: a production cell case study. Software - Practice & Experience, 29(8):677 –
697.

702 Kienzle J.: On Atomicity and Software Development

