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Abstract: We consider real sequences in I = [0, 1) and real functions on I . It is
first shown that, as for real sequences from I , R-computability (computability with
respect to the Euclidean topology) implies “weak Fine-computability.” Using this re-
sult, we show that “Fine-sequential computability” and “L∗-sequential computabil-
ity” are equivalent for effectively locally Fine-continuous functions as well as for Fine-
continuous functions.
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1 Introduction

The standard notion of computability of a real number or of a sequence of real
numbers as well as that of computability of a continuous function or of a sequence
of continuous functions on the real line is generally agreed. As for a continuous
real function f defined on a compact interval, for example, f is called computable
if the two conditions below are satisfied [Pour-El, Richards89].

(i) (Sequential computability) Given a computable sequence {xm}, {f(xm)} is
a computable sequence of real numbers.

(ii) (Effective uniform continuity) There is a recursive function α with which
holds that |x− y| < 1

2α(p) implies |f(x) − f(y)| < 1
2p .

This definition can easily be extended to a function which is continuous on
the whole real line.

We would also like to attribute a certain kind of computability to some
discontinuous functions. In that case, the conditions (i) and (ii) above have to
be modified.
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There are many theories of computation of discontinuous functions. We too
have proposed some approaches to this problem. Among them, one is to express
the value of a function at a jump point in terms of a “limiting recursive” modulus
of convergence instead of a recursive one [Yasugi et al.01]. Another is to change
the topology of the domain of a function [Tsujii et al.01]. In some cases, these two
approaches are equivalent [Yasugi, Tsujii02] [Tsujii et al.05]. As for a sequence
of functions with varying jump points, we took up, as an example, the system
of Rademacher functions {φl} [Yasugi, Washihara03]. In [Yasugi, Washihara03],
it was claimed that {φl} admits a “weak computation” in the following sense:
input a recursive information of a computable sequence of real numbers {xm},
a recursive sequence of rational numbers {slmn} converging to {φl(xm)} with a
“limiting recursive” modulus of convergence can be found. Such a property of a
function (function sequence) has been called “L∗-sequentially computable.”

In [Tsujii et al.05] and [Yasugi et al.05], we presented an alternative way of
expressing a notion of computability of a function sequence like the Rademacher
function system by changing the topology of the real interval I = [0, 1), first
by decomposing it into {[ k

2ν ,
k+1
2ν )}k for each ν (0 ≤ k ≤ 2ν − 1), and then

taking a kind of the limit with respect to ν. In this way, we obtain an “effective
uniform space” as the limit of an “effective sequence of uniform spaces.” The
computability of a sequence from I with respect to this limit space is called
“diagonal-computatbility.” It is based on our theory of the effective uniform
space (cf. [Tsujii et al.01], [Yasugi et al.02], [Yasugi, Tsujii02], [Yasugi et al.05]).

On the other hand, Brattka [Brattka02] and Mori [Mori01] worked on the
computability in the space of Fine metric. In fact, diagonal-computability and
Fine-computability coincide.

In [Yasugi et al.05], it is shown that, input a Fine-computable sequence of real
numbers, {xm}, the double sequence of values {φl(xm)} of Rademacher functions
is R-computable (computable in the Euclidean topology). Such a property of a
function (function sequence) will be called “Fine-sequentially computable.”

The two notions of sequential computability of a function (a function
sequence) appear quite apart, but they can be related as in the case of
[Tsujii et al.05] and [Yasugi, Tsujii02].

The aim of this article is to relate these two notions of sequential computabil-
ity, one with respect to the Fine metric topology and one with respect to limiting
recursive functions. The domain of discourse is restricted to I = [0, 1).

We first define the notion of “weak Fine-computability” and “right com-
putability” of a sequence of real numbers, and show their equivalence. It is also
shown that an R-computable sequence of real numbers is weak Fine-computable
(Section 3: Theorem 1).

In Section 4, we introduce two notions of sequential computability of a func-
tion, “Fine-sequential computability” and “L∗-sequential computability,” cit-
ing from [Tsujii et al.05]. We state that L∗-sequential computability implies
Fine-sequential computability (without any condition): Theorem 2. For an ef-
fectively Fine-uniformly continuous function, the converse has been proved in
[Tsujii et al.05] (stated as Theorem 3 here).

We then show that, for an “effectively locally Fine-uniformly continu-
ous” function, Fine-sequential computability implies L∗-sequential computabil-
ity (Section 5: Theorem 4). The L∗-sequential computability is defined here in
terms of an auxiliary notion of “weak R-representation” of a sequence of real
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numbers.
Modifying the proof of Theorem 4, a stronger result can be derived, that

is, for an “effectively Fine-continuous function,” Fine-sequential computability
implies L∗-sequential computability (Section 6: Theorem 5).

Some examples of functions relevant to Sections 4∼6 are given in Section 7.
In Section 2, we list some definitions and notations from preceding references

for the reader’s convenience.
As a way of Appendix, we include a proof of the fact that the family of lim-

iting recursive functions is closed under substitution for an “isolated” argument
(Section 8). This fact is tacitly assumed in the proof of Theorem 5.

We cite only those references which have direct applications to the present
work. We have consulted [Kawada, Mimura65] for the uniform space and
[Schipp et al.90] for the Rademacher functions. As for some notions of com-
putable functions on I, we have also consulted [Mori01] and [Mori02].

2 Preliminaries

For details of basic definitions below, see [Pour-El, Richards89] and
[Tsujii et al.01]. In the following, N and R respectively denote the set of natural
numbers and the set of real numbers.

A sequence of rational numbers {rm} is called recursive if there is a recursive
way to compute rm for eachm. A real number x is called computable with respect
to the Euclidean topology (R-computable) if it is approximated by a recursive
sequence of rational numbers {rm} with a recursive modulus of convergence α,
that is, |x − rm| < 1

2p for m ≥ α(p). We will express such a circumstance as
x � 〈rm, α(p)〉, or for short, x � 〈rm, α〉. These definitions can be extended to a
computable sequence of real numbers.

We will henceforth confine the domain of discourse to the interval I = [0, 1).
For n = 0, 1, 2, · · · and 0 ≤ k ≤ 2n − 1, define subintervals of I, {In

k }, as
well as a sequence of maps Un : I → P (I) as follows, where P (I) denotes the
powerset of I. Put

In
k = [

k

2n
,
k + 1
2n

)

for 0 ≤ k ≤ 2n − 1. Next define Un(x) as follows. Let k be the unique k such
that x ∈ In

k , and define
Un(x) = In

k .

{Un} forms an “effective uniformity” on I, hence I = 〈I, {Un}〉 is an effective
uniform space (cf. [Tsujii et al.01]). It can easily been shown that it is topolog-
ically equivalent to the effective Fine-metric space, that is, {Un} is a system of
fundamental neighborhoods for the Fine-metric topology.

Definition 2.1 (Fine-computable sequence of real numbers) A sequence of
real numbers {xm} ⊂ I is called Fine-computable if there is a recursive sequence
{qmp} ⊂ I of rational numbers which converges to {xm} effectively with respect
to {Un} in a manner that, for a recursive function γ and for l ≥ γ(m, p), qml ∈
Up(xm). We will write this property as xm �F 〈qml, γ〉 . The definition can be
extended to multiple sequences. For example, xnm �F 〈qnml, γ〉 will express the
property that, for l ≥ γ(n,m, p), qnml ∈ Up(xnm).

A real number x is called Fine-computable if {x, x, x, · · ·} is Fine-computable.
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Corollary 1 1) A Fine-computable sequence is R-computable, but not con-
versely. For a single real number in I, it is R-computable if and only if it is
Fine-computable (cf. [Brattka02], [Mori01],[Yasugi et al.05]).

2) The family of Fine-computable sequences of real numbers (in I), say C, forms
a “computability structure” for 〈I, {Un}〉 (cf. [Tsujii et al.01], for example,
for the computability structure of an effective uniform space). This com-
putability is equivalent to “Fine-computability” in [Mori01].

Definition 2.2 (Effective Fine space) The triple 〈I, {Un}, C〉 will be called the
effective Fine space.

Let r, s ≥ 0 be integers and let g and φ1, · · · , φr be recursive functions, where
g : Nr+s+1 → N and φi : N → N, i = 1, 2, · · · r. The function h defined as
follows will be called limiting recursive according to Gold [Gold65]:

h(p1, · · · , ps) = lim
n
g(φ̃1(n), · · · , φ̃r(n), p1, · · · , ps, n),

where φ̃(n) is a code for the finite sequence

〈φ(0, p1, · · · , ps), · · · , φ(n, p1, · · · , ps)〉 ,
presuming that the limit exists.

Subsequently when we mention a sequence (of numbers or functions), it may
be a multiple sequence. For example, a recursive sequence of rational numbers
may mean a single sequence {rj}j or a multiple sequence {rj}j (j = j1j2 · · · jn),
as the case may be.

3 R-computability and weak Fine-computability

We will henceforth work in the effective Fine space 〈I, {Un}, C〉 (cf. Definition
2.2).

We will first relate R-computability and “weak Fine-computability” of a real
sequence.

The following lemma will be useful.

Lemma 1 A recursive sequence of rational numbers is Fine-computable.

Definition 3.1 (Weak Fine-computability) Let {xm} be a sequence from I.
Suppose that there is a recursive sequence of rational numbers {zmp} such that
xm < zmp for all p, and that there is a limiting recursive function ν(m,n)
such that, for all m,n, and for all q ≥ ν(m,n), zmq ∈ Un(xm). Then we call
{xm} weakly Fine-computable, and ν a weak modulus of convergence (of {zmq}
to {xm}). We express this property by

xm �wF 〈zmp, ν〉 ,
and call any such pair 〈zmp, ν〉 a weak Fine-representation of {xm}.
Corollary 2 1) A Fine-computable sequence is weakly Fine-computable with

a “recursive” (weak) modulus of convergence.
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2) Weak Fine-computability can be equivalently stated as follows. {xm} is weak
Fine-computable if there is a recursive sequence of rationals, say {tmp}, which
is nonincreasing and xm �wF 〈zmp, ν〉 .

Proof of 2) Given xm �wF 〈zmp, ν〉, define another recursive sequence of
rational numbers {tmp}, which is nonincreasing and converges to {xm} from
above, as follows. tm1 = zm1. tm(l+1) = tml if zm(l+1) > tml, and = zm(l+1)

otherwise. Then {tmp} is nonincreasing and Fine-approximates {xm} from above.
Define λ(m, q) as follows. λ(m, 1) = 1. λ(m, l + 1) = λ(m, l) if tm(l+1) = tml

and = λ(m, l)+ 1 otherwise. Then ν0(m, p) = ν(m,λ(m, p)) is limiting recursive
and serves as a modulus of convergence of {tmp} to {xm}.
Remark If xm �wF 〈zmp, ν〉, then 0 < zmq − xm < 1

2n for all q ≥ ν(m,n),
especially

0 < zmν(m,n) − xm <
1
2n
. (1)

The definition below applies to sequences of real numbers which are not
necessarily from I. It is the sequential version of an idea by Zheng and Weihrauch.

Definition 3.2 (Right computability: cf. [Zheng, Weihrauch00]) A sequence of
real numbers {xm} is called right computable if there is a recursive sequence of
rational numbers, say {rmp}, which converges (classically) to {xm} from above.

Corollary 3 A sequence of real numbers {xm} can be equivalently called right
computable if there is a recursive sequence of rational numbers which is nonin-
creasing and converges (classically) to {xm} from above.

The proof is the same as the first part of the proof of 2), Corollary 2.

Proposition 3.1 (From right computability to weak Fine-computability) Sup-
pose {xm} ⊂ I is right computable, that is, (by virtue of Corollary 3) there is a
recursive, nonincreasing sequence of rational numbers {tml} ⊂ I which (classi-
cally) converges to {xm}. Then {xm} is weakly Fine-computable.

Proof Define a recursive function κ(m,n, l) by κ(m,n, l) = the k such that
tml ∈ In

k = [ k
2n ,

k
2n + 1

2n ). Notice that κ(m,n, l) ≤ 2n − 1, and {κ(m,n, l)}l is
nonincreasing. κ(m,n, l) will be eventually constant, and, with its value kmn =
liml κ(m,n, l), xm ∈ In

kmn
holds.

Define next a recursive function ν(m,n, l) as follows.

ν(m,n, 1) = 1;

ν(m,n, l + 1) = ν(m,n, l) if κ(m,n, l + 1) = κ(m,n, l);
= l + 1 if κ(m,n, l + 1) < κ(m,n, l).

Define
ν(m,n) = lim

l
ν(m,n, l).

The limit exists and ν(m,n) is limiting recursive. Further, kmn =
κ(m,n, ν(m,n)) holds. If l ≥ ν(m,n), then tml ∈ In

κ(m,n,ν(m,n)), and hence
tml ∈ Un(xm). This means that {xm} is weakly Fine-computable, that is,
xm �wF 〈tml, ν〉.
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Proposition 3.2 (From weak Fine-computability to right computability) If
{xm} is weakly Fine-computable, then it is right computable.

Proof Suppose {xm} is weakly Fine-computable with xm �wF 〈zmq, ν〉. Then,
by definition, {zmp} converges to {xm} from above.

Proposition 3.3 (From R-computability to weak Fine-computability) If {xm}
is R-computable, then it is weakly Fine-computable.

Proof Suppose xm � 〈rmp, α〉. Define zmp = rmα(m,p) + 1
2p . Then {xm} is right

computable by {zmp}. So, by Proposition 3.1, {xm} is weakly Fine-computable.

Note The notion of “weak Fine-computability” is slightly different from the
corresponding notion of weak D-computability in [Tsujii et al.05], although in
effect the present definition of weak Fine-computability is treated there. A direct
proof of Proposition 3.3 is given in the proof of Theorem 3.3 of [Tsujii et al.05].

Summing up, we have the following.

Theorem 1 (Notions of computability) In I, the weak Fine-computable se-
quences of real numbers and the right computable ones coincide, and the R-
computable real sequences form a subset of either of them. In fact, the inclusion
is a strict one, since it is known that there is a real number x which is right
computable but is not R-computable.

4 Sequential computability of a function

In [Tsujii et al.05], we defined two notions of sequential computability of a real
function on I, one with respect to the Euclidean topology and one with respect
to {Un}, and then related them for “effectively {Un}-uniformly continuous func-
tions.” We will cite the definitions of these notions by replacing {Un} by “Fine”
and with slight modification (cf. Section 4 of [Tsujii et al.05]).

We first define an auxiliary notion of “weak R-representaion” of a sequence
of real numbers.

Definition 4.1 (Weak R-representation) Let {ym} be a sequence of real num-
bers. If {ym} is approximated by a recursive sequence of rational numbers, say
{tmq}, with a modulus of limiting recursive convergence, say δ, then we will say
that {ym} has a weak R-representation, and such a relation will be expressed as
ym �wR 〈tmq, δ〉.
Definition 4.2 (Sequential computability of a function) Let f : I → R be a
real function defined on I.

1) f is called Fine-sequentially computable if, for every Fine-computable se-
quence of real numbers {xm} ⊂ I, {f(xm)} is R-computable.

2) f is called L∗-sequentially computable if, for any R-computable sequence
{xm} ⊂ I, {f(xm)} has a weak R-representation, say f(xm) �wR 〈tmq, δ〉
(cf. Definition 4.1), where δ is recursive in ν, presuming that xm �wF

〈zmp, ν〉 (cf. Definition 3.1 and Proposition 3.3).
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Note 1) L∗-sequential computability is stated slightly differently from the
corresponding notion in [Yasugi, Tsujii02], although the two definitions are es-
sentially the same.

2) It is not even required that f(xm) is R-computable for each m. Even if
we required it, the subsequent argument needs not be changed.

3) The Fine-sequential computability of a function in 1) of Definition 4.2 is
the same as the usual definition of sequential computability in a metric space.

Remark Fine-sequential computability of a function f on I means that the
sequence of values preserves computability only for Fine-computable sequences
(of real numbers), while L∗-sequential computability means that for any input
of an R-computable sequence, the output can only be claimed to have a weak
R-representation. Notwithstanding that these two notions differ in nature, it
can be shown that the two notions of sequential computability in Definition 4.2
coincide for functions satisfying a certain effective continuity.

One direction is immediate: we will reproduce the statement and the proof
from [Tsujii et al.05], modified to the language in this article.

Theorem 2 (From L∗-sequential computability to Fine-sequential computabil-
ity: Theorem 4.2 in [Tsujii et al.05]) If f is L∗-sequentially computable, then f
is Fine-sequentially computable.

Proof Let {xm} ⊂ I be Fine-computable. Then, it is weakly Fine-computable
with a recursive modulus of convergence ν (Corollary 2). Suppose f is L∗-
sequentially computable. Since {xm} is R-computable, {f(xm)} has a weak R-
representation, say f(xm) �wR 〈tmq, δ〉, where δ is recursive in ν. As above, ν is
in fact recursive, and hence δ can be recursive, and so {f(xm)} is R-computable.

Notice that no particular condition (of continuity) is imposed on f in this
direction.

We have considered in [Tsujii et al.05] the family of functions which are “ef-
fectively Fine-uniformly continuous.” A function in this family is, in the Eu-
clidean topology, not necessarily continuous. In fact, it is not even necessarily
piecewise continuous. (An example of non-piecewise continuous but is effectively
Fine-uniformly continuous function will be given in Section 7.) Of these func-
tions, the following has been shown in [Tsujii et al.05].

Theorem 3 (Fine-uniformly continuous case: [Tsujii et al.05]) If f is an “effec-
tively Fine-uniformly continuous” and “Fine-sequentially computable” function,
then f is L∗-sequentially computable (cf. Definition 4.3 and Theorem 4.4 in
[Tsujii et al.05] for details).

Some examples are seen in [Tsujii et al.05]. The result also holds for a se-
quence of Fine-uniformly continuous functions such as the Rademacher function
system.

5 Locally Fine-uniformly continuous function

Our primary objective in this article is to extend Theorem 3 to locally Fine-
uniformly continuous functions as well as to Fine-continuous functions.
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Let {ei} be a recursive enumeration of dyadic rational numbers. We will fix
such an enumeration.

Note The subsequent argument goes through for any such enumeration.

Definition 5.1 (Effective local Fine-uniform continuity) A function f : I →
R is called effectively locally Fine-uniformly continuous, if there are recursive
functions γ and α such that

∪∞
i=1Uγ(i)(ei) = I;x, y ∈ Uγ(i)(ei) ∧ y ∈ Uα(i,p)(x) → |f(x) − f(y)| < 1

2p
. (2)

Theorem 4 (From Fine-sequential computability to L∗-sequential computabil-
ity: locally Fine-uniformly continuous function) Let f be an effectively locally
Fine-uniformly continuous function on I. If f is Fine-sequentially computable,
then it is L∗-sequentially computable.

Proof Recall that, for any real number in I, say r, Un(r) denotes the funda-
mental neighborhood of r of size n, say [e, e+ 1

2n ). Since f is effectively locally
Fine-uniformly continuous, there are recursive γ and α as in (2).

Suppose {xm} is an R-computable sequence. Then, by Proposition 3.3, there
are a recursive sequence of rational numbers {zmp} and a limiting recursive
function ν so that

q ≥ ν(m,n) → zmq ∈ Un(xm). (3)

Since {zmp} is a recursive sequence of rational numbers, it is Fine-computable
by Lemma 1, and hence, if f is Fine-sequentially computable, then there are a
recursive sequence of rational numbers {smql} and a recursive function β so that
f(zmp) � 〈smql, β〉, or

l ≥ β(m, q, n) → |f(zmq) − smql| < 1
2n
. (4)

Define a recursive sequence of rational numbers {tmn} by

tmn = smnβ(m,n,n). (5)

Suppose xm ∈ Uγ(i)(ei). For the time being, we assume that i(= im) can be
computed from m. (For the simplicity of notation, we will simply write i instead
of im in the subsequent proof.) Putting n = γ(i) in (3), we have

q ≥ ν(m, γ(i)) → zmq ∈ Uγ(i)(xm) = Uγ(i)(ei). (6)

Putting n = α(i, p+ 1) in (3), we obtain

q ≥ ν(m,α(i, p+ 1)) → zmq ∈ Uα(i,p+1)(xm). (7)

If we put x = xm and y = zmq in (2), and if we take p+ 1 instead of p, then
by (6) and (7), we obtain

q ≥ ν(m, γ(i)), ν(m,α(i, p+ 1)) → |f(zmq) − f(xm)| < 1
2p+1

. (8)
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Now define a function δ as follows.

δ(m, p) = max(ν(m, γ(i)), ν(m,α(i, p + 1)), p+ 1). (9)

Suppose q ≥ δ(m, p). Then by (8), (5) and (4), we have

|f(xm) − tmq| ≤ |f(xm) − f(zmp)| + |f(zmp) − tmq|

<
1

2p+1
+ |f(zmp) − smqβ(m,q,q)| < 1

2p+1
+

1
2q

≤ 1
2p+1

+
1

2p+1
=

1
2p
.

Summing up,

q ≥ δ(m, p) → |f(xm) − tmq| < 1
2p
. (10)

If we can show that i = im = ι(m) is limiting recursive in ν, then δ(m, p)
is recursive in ν. (See Note below.) So, {f(xm)} has a weak R-representaion,
〈tmq, δ〉, where δ is recursive in ν, from the equation (9).

By the first condition of (2), for eachm, there is an i such that xm ∈ Uγ(i)(ei),
or Uγ(i)(ei) = Uγ(i)(xm). To find such an i, check if

zm,ν(m,γ(i)) ∈ Uγ(i)(ei)

holds for i = 1, 2, 3, · · · successively. (There is such an i, and the process of
finding i is effective in ν.) Once such an i is hit, put ι(m) = im = i. ι is recursive
in ν. It holds, for such i,

Uγ(i)(ei) = Uγ(i)(zmν(m,γ(i))).

Since zmν(m,γ(i)) ∈ Uγ(i)(xm),

Uγ(i)(xm) = Uγ(i)(zmν(m,γ(i))),

and hence Uγ(i)(ei) = Uγ(i)(xm). So, the ι as above will do.

Note To claim that δ is recursive in ν from (9) when im is recursive in ν, we
need to know that the operation of substituting a limiting recursive function for
a variable of another one can be reduced to a single limit (“merger of limits”). In
fact it is a known fact (cf. [Nakata, Hayashi01], for example), but we will present
a proof in Section 7 for the reader’s convenience.

It is now reasonable to define a function to be “locally Fine-uniformly com-
putable” as follows, which is the same as the definition in existing references (cf.
[Brattka02], [Mori01],[Mori02],[Mori et al.05]). Namely, a function f : I → R is
called locally Fine-uniformly computable if it is effectively locally Fine-uniformly
continuous, and furthermore it is Fine-sequentially computable. From Theorems
2 and 4, the last condition can be replaced by “L∗-sequentially computable.”

2187Yasugi M., Tsujii Y., Mori T.: Sequential Computability of a Function



6 Fine-continuous function

We will next deal with functions of yet weaker continuity.

Definition 6.1 (Effective Fine-continuity) A function f : I → R is called
effectively Fine-continuous if there is a recursive function γ such that

∪∞
i=1Uγ(i,p)(ei) = I;x ∈ Uγ(i,p)(ei) → |f(x) − f(ei)| < 1

2p
. (11)

Theorem 5 (From Fine-sequential computability to L∗-sequential computabil-
ity: Fine-continuous function) Let f be an effectively Fine-continuous function
on I. If f is Fine-sequentially computable, then it is L∗- sequentially computable.

Note Since an effectively locally Fine-uniformly continuous function is effec-
tively Fine-continuous, Theorem 4 is a special case of Theorem 5. For the proof
of Theorem 5, part of the proof of Theorem 4 can be adopted.

Proof of Theorem 5 By the assumption, the conditions in (11) hold for f .
Suppose {xm} is an R-computable sequence from I. We will use (3,4,5) in

the proof of Theorem 4.
Due to (11), for each m and for each p, there is an i(= imp) such that

xm ∈ Uγ(i,p+2)(ei). (For the simplicity of notation, we will write simply i instead
of im.) Then Uγ(i,p+2)(xm) = Uγ(i,p+2)(ei). As in the proof of Theorem 4, such
an i can be found recursive in ν. Then put n = γ(i, p+ 2) in (3) to obtain

q ≥ ν(m, γ(i, p+ 2)) → zmq ∈ Uγ(i,p+2)(xm) = Uγ(i,p+2)(ei). (12)

From (12) and (11) with x = zmq and p+ 2 in the place of p, we have

q ≥ ν(m, γ(i, p+ 2)) → |f(zmq) − f(ei)| < 1
2p+2

. (13)

From (11) with x = xm and p+ 2 follows

|f(xm) − f(ei)| < 1
2p+2

. (14)

From (4) with l = β(m, q, q), we have

|f(zmq) − smqβ(m,q,q)| < 1
2q
. (15)

Define
δ(m, p) := max(ν(m, γ(i, p+ 2)), p+ 2). (16)

Assume q ≥ δ(m, p). Then q ≥ ν(m, γ(i, p+2)), p+2. So we have, from (14),
(13) and (15),

|f(xm) − tmq| ≤ |f(xm) − f(ei)| + |f(ei) − f(zmq)| + |f(zmq) − tmq|

<
1

2p+2
+

1
2p+2

+
1
2q

≤ 3
2p+2

<
1
2p
.
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So, {f(xm)} is approximated by a recursive sequence of rational numbers
{tmq} with a modulus of convergence δ(m, p), which is recursive in ν and i,
where ν is limiting recursive.

Now, i = ι(m, p) can be defined in a manner similar to ι(m) in the previous
section with p added as another argument.

Similarly to the previous case, it is reasonable to define “Fine-computable
function “ as follows, which is the same as the definition in existing references (cf.
[Brattka02], [Mori01], [Mori02], [Mori et al.05]). Namely, a function f : I → R
is called Fine-computable if it is effectively Fine-continuous, and furthermore it
is Fine-sequentially computable. As before, the last condition can be replaced
by “L∗-sequentially computable.”

7 Some examples

Let us first give an example of a Fine-uniformly computable function of inter-
esting nature, taken from Example 5.1 in [Mori et al.05].

Define first a function on I:

χ̃c(x) = χ[0,c)(x),

where χA(x) is the characteristic function of the set A. Using χ̃c(x), define next

fn(x) =
n∑

i=1

2−iχ̃ei(x) and f(x) =
∞∑

i=1

2−iχ̃ei(x).

According to [Mori et al.05], {fn} is a “uniformly Fine-computable” sequence
of functions and “Fine-converges effectively uniformly” to f . So, f is Fine-
uniformly computable (uniformly Fine-computable in [Mori et al.05]) by The-
orem 1 in [Mori et al.05]. While it is continuous at every irrational number, it is
discontinuous at every dyadic rational with respect to the Euclidean metric, since
f(x) − f(ei) > 2−i for any x < ei. So, f is, though Fine-uniformly continuous,
not even piecewise continuous in the Euclidean topology.

There are many functions on I which are not Fine-uniformly continuous,
that is, not uniformly continuous in the space 〈I, {Un}〉, but are locally Fine-
uniformly continuous or Fine-continuous. They are listed in [Tsujii et al.05], but
we reproduce them here.

The following are some examples of locally uniformly Fine-computable func-
tions which are not uniformly Fine-continuous.

Pick up disjoint intervals {In
2n−2}n=1,2,···, where In

2n−2 = [2
n−2
2n , 2n−1

2n ). Then
it holds that ∪∞

n=1I
n
2n−2 = [0, 1) = I. Define a function by φ(x) = n if x ∈ In

2n−2.
φ is not Fine-uniformly continuous, but it is locally Fine-uniformly computable.
ψ(x) = n + x, x ∈ In

2n−2 is also an example of this sort. Another such example
is the following function: µ(x) = 1

1−2x if 0 ≤ x < 1
2 and µ(x) = 1 if 1

2 ≤ x < 1.
These functions are locally Fine-uniformly computable.

An example of a Fine-computable function which is not locally Fine-
uniformly continuous has been constructed by Brattka in Theorem 12 of
[Brattka02]. It has been generalized in [Mori et al.05].
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Note In [Tsujii et al.01], notions of “computability” and “uniform computabil-
ity” have been defined for the effective uniform space. Fine-computability satis-
fies the condition of “computability” in [Tsujii et al.01], and Fine-uniform com-
putability satisfies the condition of “uniform computability” in [Tsujii et al.01].
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Appendix: Merger of limits

Here we show the property of “merger of limits” as announced in the previous
section.

Theorem 6 (Merger of limits) Let f(y, t, x) and g(s, x) be recursive functions.
Suppose limt f(y, t, x) and lims g(s, x) exist. Then

lim
t
f(lim

s
g(s, x), t, x) = lim

t
f(g(t, x), t, x). (17)

Note We say that the substituted term lims g(s, x) is “isolated” (in the left
side of (17)) due to the fact that it does not contain the “bound variable” t of
another limit.

Proof

lim
t
f(lim

s
g(s, x), t, x) = a↔ ∃t1∀t ≥ t1.f(lim

s
g(s, x), t, x) = a, (18)

and
lim

t
f(g(t, x), t, x) = a↔ ∃t0∀t ≥ t0.f(g(t, x), t, x) = a. (19)

We show that the right hand sides of (18) and (19) are equivalent.
Note first that

lim
s
g(s, x) = b↔ ∃s1∀s ≥ s1.g(s, x) = b.

Suppose lims g(s, x) = b. Then the right hand side of (18) can be expressed
as follows.

∃s1∀s ≥ s1.g(s, x) = b ∧ ∃t1∀t ≥ t1.f(b, t, x) = a. (20)

This is equivalent to the following.

∃s1∀s ≥ s1∃t1∀t ≥ t1.g(s, x) = b ∧ f(b, t, x) = a. (21)

Taking t0 = max(s1, t1), (21) implies

∃t0∀t ≥ t0.g(t, x) = b ∧ f(b, t, x) = a,

hence
∃t0∀t ≥ t0.f(g(t, x), t, x) = a.

This shows that the right hand side of (18) implies that of (19).
For the converse, take in particular t ≥ t0, s1 (cf. (19) and 20). Then g(t, x) =

b. So, putting t1 = max(t0, s1), we obtain from (19)

∃t1∀t ≥ t1.f(b, t, x) = a,

or
∃t1∀t ≥ t1.f(lim

s
g(s, x), t, x) = a,

which is the right hand side of (18).
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