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1 Introduction

Several interesting and promising approaches to the constructivisation of general
topology have been suggested. Whereas the theory of metric spaces is well-
developed (Bishop and Bridges [2]), and caters well for the needs of mathematical
analysis, there is no general agreement of which of those approaches, to non-
metric topology, will be most fruitful. This can probably only be tested against
a development of a constructive theory of manifolds and algebraic topology, in
which quotient spaces play a fundamental role.

In Bridges and Vı̂ţă [4] it is argued that neighbourhood based topology does
not carry enough constructive information. By their introduction of apartness
spaces they take instead apartness of points and sets of points as a basic notion
of topology. See [9] for a generalisation of apartness spaces, and the relation to
neighbourhood spaces. A rather different approach is that of point-free topology,
specifically locale theory [10, 11], which takes the lattice of open sets and a
covering relation as basic notions, and then derives the notion of point and point-
function. The continuous functions R �� R turn out to agree with those of
BISH [16]. Also this approach carries around more constructive information than
the neighborhood based topology does. A connection between the two approaches
was given in [17], where it is shown that regular formal topologies (and so regular
locales) gives rise to apartness spaces. See [1, 20] for further discussion and
references.

Formal topology in the sense of Martin-Löf and Sambin [18, 19] may be con-
sidered as a predicative version of constructive locale theory [10, 11]. In order
for the theory to permit the usual topological constructions, such as quotienting,
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gluing subspaces and attaching maps, it is enough that the category of formal
topologies and continuous mappings has finite limits and finite colimits. See
[5, 6, 15] for surveys of earlier results, e.g. the construction of products, coprod-
ucts and equalisers. In this paper we provide the missing piece: construction of
coequalisers.

In the category of locales the coequaliser of a pair of morphisms can easily
be constructed as an equaliser in the dual category of frames (see e.g. [3]). The
straightforward translation of this construction into the terms of formal topology
is

{U ∈ P(Y ) : (∀a ∈ X)(a �F−1U ⇐⇒ a �G−1U)},
for a pair of continuous mappings F, G : X �� Y between formal topologies.
From a predicative point of view the problem with this construction is the use
of the full power set P(Y ). We show that it can be replaced by a restricted set
of subsets, which may indeed be constructed in, e.g., Martin-Löf type theory
[12, 14].

Together with known predicative constructions of products [5] and coprod-
ucts, and equalisers [15] the above result gives that the set-presented formal
topologies form a small complete and small co-complete category, just as the
classical topological spaces. This indicates that the category should be adequate
for constructing many of the spaces studied by methods of algebraic topology;
see Section 5.

Already in the setting of neighbourhood spaces (and thus with points) sur-
prisingly difficult predicativity problems appear when constructing quotient
spaces or coequalisers [8].

2 The category of set-presented formal topologies

Following Bishop and Bridges [2], and category-theoretic practise, a subset A =
(ι, I) of a given set X is an injective function ι : I �� X . An element x of X

is a member of the subset A, if x = ι(a) for some a ∈ A. Note that this a is
necessarily unique. We then write x ∈X A. Two subsets A and B of X are equal
if

x ∈X A ⇐⇒ x ∈X B.

From this membership definition arises easily notions of inclusion and the usual
set-theoretical operations.

For any family U of types T (t) (t : U) there is a notion of U-set, which is a
set A which is isomorphic to a set of the form (T (t), =e) where the equivalence
is

x =e y ⇐⇒ T (e(x, y))

and e : T (t) × T (t) �� U . For any set X there is then a notion of restricted
power set RU (X). This is a set consisting of subsets A = (I, ι) of X where I is
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a U-set. Such subsets are called U-subsets. Two such are identified if they are
equal as subsets. Unless the family of types have certain closure properties it
will not be possible to perform the usual set operations on the restricted power
set. We return to the question of what these properties might be later.

A set X is a projective set or a choice-set if the axiom of choice is valid on
X . The latter means that for any set Y and for any relation R between X and
Y if

(∀x ∈ X)(∃y ∈ Y )R(x, y)

then there is a function f : X �� Y so that

(∀x ∈ X)R(x, f(x)).

As any type in Martin-Löf type theory can be equipped with an equality relation
(given by an Id-type) so that it becomes a projective set X, the above choice
principle is sometimes referred to as type-theoretic choice. The principle is fre-
quently used in Bishop-style constructivism. We thus assume that for every set
X there is a projective set X and a surjective function pX : X �� X . Then we
get the following choice principle which is sometimes useful

(∀x ∈ X)(∃y ∈ Y )R(x, y) =⇒ (∃f : X �� Y )(∀x ∈ X)R(pX(x), f(x)). (1)

There is a dependent version of this principle as well

(∀x ∈ X)(∃y ∈ Yx)R(x, y) =⇒
(
∃f ∈

∏
u∈X

YpX (u)

)
(∀u ∈ X)R(pX(u), f(u)).

(2)

Definition 1 Let S be a set, and let � be a relation between elements of S

and subsets of S, i.e. � ⊆ S × P(S). Extend � to a relation between subsets
by letting U �V if and only if a �V for all a ∈ U . For a preorder (X,≤) and
a subset U ⊆ X , the downwards closure U≤ consists of those x ∈ X such that
x ≤ y for some y ∈ U . Write a≤ for {a}≤. When the preorder is obvious from the
context we write U ∧V for U≤∩V≤. A further abbreviation is a∧b for {a}∧{b}.

Definition 2 A formal topology S is a pre-ordered set S = (S,≤) (of so-called
basic neighbourhoods) together with a relation � ⊆ S × P(S), the covering
relation, satisfying the four conditions

(R) a ∈ U implies a �U , (L) a �U , a �V implies a �U ∧ V ,
(T) a �U , U � V implies a �V , (E) a ≤ b implies a � {b}.

The topology is set-presented if there is a family of subsets C(a, i) of S, where
i ∈ I(a) and a ∈ S such that

a �U ⇐⇒ (∃i ∈ I(a))C(a, i) ⊆ U.
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Equivalently, we may express this as: there is a family C(w) (w ∈ I) of subsets
of S and a function c : I �� S so that

a �U ⇐⇒ (∃w ∈ I) c(w) = a & C(w) ⊆ U. (3)

A continuous mapping between formal topologies is a certain relation between
their basic neighbourhoods. To define the concept we introduce some notation.
For a relation R ⊆ S × T the inverse image of V ⊆ T under the relation R is,
as usual,

R−1[V ] =def {a ∈ S : (∃b ∈ V ) a R b}

Notice that, in general, R−1[U ] ⊆ R−1[V ] whenever U ⊆ V , and

R−1[∪i∈IUi] = ∪i∈IR
−1[Ui]. (4)

The relation R is naturally extended to subsets as follows. For U ⊆ S, let
U R b mean (∀u ∈ U)uRb, and for V ⊆ T , we let a R V mean a �R−1[V ].

Definition 3 Let S = (S,≤, � ) and T = (T,≤′, � ′) be formal topologies. A
relation R ⊆ S × T is a continuous mapping, or continuous morphism, from S
to T (and we write R : S �� T ) if

(A1) a R b, b � ′V implies a R V ,

(A2) a �U , U R b, implies a R b,

(A3) a R T , for all a ∈ S,

(A4) a R V , a R W implies a R (V≤′ ∩ W≤′).

Remark. Note that by b � ′{b}, (A1) and (A2)

{a}Rb ⇐⇒ a R b ⇐⇒ a �R−1{b} ⇐⇒ a R {b}.

Moreover (A4) may be replaced by the condition

(A4’) a R b, a R c =⇒ a R (b≤′ ∩ c≤′).

The next properties are useful for checking closure under composition. Denote
by Ũ = {a : a �U} — the saturation of U in the topology.

Proposition 1 Let R : S �� T be a continuous mapping. Then:

(i) U �V implies R−1[U ] �R−1[V ],

(ii) b R U iff b RŨ ,

(iii) R−1[U ]˜ = R−1[Ũ ]˜. ��
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Let FTops be the following category of set-presented formal topologies and
continuous mappings. For a formal topology S = (S,≤, � ) we define a contin-
uous mapping I : S �� S (the identity) by

aIb ⇐⇒ a � {b}.

For continuous mappings, R1 : S1
�� S2 and R2 : S2

�� S3, between formal
spaces, define the composition

a(R2 ◦ R1)b ⇐⇒ a �R−1
1 [R−1

2 {b}].

This is a continuous mapping (R2 ◦ R1) : S1
�� S3.

3 Construction of coequalisers

Let F and G be continuous mappings X �� Y in FTops. A set R(Y )of subsets
of Y is said to be adequate for F and G if (H1) – (H3) below are satisfied.

(H1) Y ∈ R(Y ).

(H2) U, V ∈ R(Y ) implies U ∧ V ∈ R(Y ). Here ∧ is taken with respect to
the preorder of Y.

(H3) For any subset U of Y with b ∈ U such that U satisfies the equivalence

(∀a ∈ X)(a �XF−1U ⇐⇒ a �XG−1U)

there is already some V ∈ R(Y ) with b ∈ V ⊆ U satisfying the equivalence.

Lemma1. Let F, G : X �� Y be a pair of continuous morphisms in FTops. If
R(Y ) is adequate for the pair F and G, then the following defines a coequaliser
of the pair: the formal topology Q = (Q,≤Q, � Q) where

Q = {U ∈ R(Y ) : (∀a ∈ X)(a �XF−1U ⇐⇒ a �XG−1U)}

and U ≤Q V iff U � YV , and where U � QU iff U � Y ∪ U for U ⊆ R(Y ).
Moreover the coequalising morphism P : Y �� Q is given by: a P U iff a � YU .

Proof. By (H2) it follows that Q is closed under ∧. Using this it is straightforward
to check that Q is a formal topology. It is as well set-presented since, if C(a, i)
(i ∈ I(a)) is the set-presentation of Y, then we get a set-presentation (D, J) for
Q by letting for U ∈ R(Y )

J(U) =def {(f, g) : f ∈ Φ, g ∈
∏
x∈U

∏
y∈C(pU (x),f(x))

Qp′
x(y)}
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where Φ = (Πx ∈ U)I(pU (x)), Qu = {U ∈ Q : u ∈ U}, and p′x(y) =
pC(pU (x),f(x))(y). Moreover, let

D(U, (f, g)) =def {g(x)(y) : x ∈ U, y ∈ C(pU (x), f(x))}.

Here, as before, pS : S �� S is the surjection associated with the choice-set of
S. Set-presentability now follows. Indeed, using the choice principle (2) we get
the equivalences

U �QU ⇐⇒ (∀a ∈ U) a � ∪ U
⇐⇒ (∀a ∈ U)(∃i ∈ I(a)) C(a, i) ⊆ ∪U
⇐⇒ (∃f ∈ Φ)(∀a ∈ U) C(pU (a), f(a)) ⊆ ∪U

⇐⇒ (∃f ∈ Φ)(∀a ∈ U)
(
∀b ∈ C(pU (a), f(a))

)
p′a(b) ∈ ∪U

Note that p ∈ ∪U is equivalent to (∃V ∈ Qp)V ∈ U . Now abbreviating
C(pU (a), f(a)) as E(a, f) and then using type-theoretic choice twice, we obtain
further equivalences:

⇐⇒ (∃f ∈ Φ)(∀a ∈ U)(∀b ∈ E(a, f))(∃V ∈ Qp′
a(b)) V ∈ U

⇐⇒
(
∃f ∈ Φ

)(
∃g ∈ (Πx ∈ U)(Πy ∈ E(x, f))Qp′

x(y)

)
(
∀a ∈ U

)(
∀b ∈ E(a, f)

)
g(a)(b) ∈ U .

⇐⇒ (∃(f, g) ∈ J(U)) D(U, (f, g)) ⊆ U .

This proves set-presentability.
Next, to check that P is a continuous morphism is easy. For instance, to verify

condition (A3): Trivially, for any a ∈ Y we have a � YY . By (H1), Y ∈ R(Y )
and then by (A3) for F and G we have Y ∈ Q. It follows that a � QP−1[Q].
Thus condition (A3) for P is verified.

The equation P ◦ F = P ◦ G is clear by the definition of Q.
To verify the universal property of P , suppose that H : Y �� Z is a

continuous morphism such that H ◦F = H ◦G. Thus we have for all a ∈ X and
b ∈ Z

a �XF−1[H−1b] ⇐⇒ a � XG−1[H−1b]. (5)

Now define K : Q �� Z by

U K c ⇐⇒def (∀a ∈ U) a H c. (6)

We first prove that K is a morphism.
(A1): Let U ∈ Q and suppose U K c and c � ZW . The property to be shown

is U �QK−1W , i.e. U � Y ∪ K−1W . Let a ∈ U be arbitrary. Then, since H is
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a morphism, a � YH−1W . Consider any c ∈ H−1W . Thus there is b ∈ W with
c ∈ H−1b. Applying (5) and the adequacy condition (H3), we obtain V ∈ Q

with c ∈ V ⊆ H−1b. Thus by definition (6) we have V K b, so V ∈ K−1W

and c � Y ∪ K−1W . Since c was arbitrary, H−1W � Y ∪ K−1W , and thereby
a � Y ∪ K−1W .

(A2): immediate.
(A3): this follows since Y ∈ Q by (H1).
(A4’): Suppose U K c and U K d. Thus U � YH−1c and U � YH−1d. From

this follows, using (A4’) for H , that U � YH−1[c ∧ d]. Let y ∈ H−1[c ∧ d], i.e.
assume that there is e ≤ c and e ≤ d with y H e. By (H3) and (5) (with b = e)
we find W ∈ Q satisfying W ⊆ H−1e and y ∈ W . Thus W K e and so W ∈
K−1[c∧d]. Since y ∈ W , we get y � QK−1[c∧d]. Thus H−1[c∧d] � QK−1[c∧d],
since y was arbitrary. Now U �QK−1[c ∧ d] follows.

We finally need to prove that K is the unique morphism such that K◦P = H ,
that is

a � YP−1[K−1c] ⇐⇒ a � YH−1c. (7)

The direction ⇒ is clear by the definition of P and K. To prove ⇐, assume
a � YH−1c. Thus a ∈ H−1c. By (H3) and (5) there is U ∈ Q with a ∈ U ⊆ H−1c.
Hence U � YH−1c, i.e. U K c, so in particular we have a � Y ∪ K−1c. Thereby
a � YP−1K−1c.

The uniqueness of K is proved as follows. Suppose K2 : Q �� Z is another
morphism satisfying (7). For U ∈ Q and c ∈ Z we have

U K2 c ⇔ U � QK−1
2 c

⇔ (∀a ∈ U)a � Y ∪ K−1
2 c

⇔ (∀a ∈ U)a � YP−1K−1
2 c

⇔ (∀a ∈ U)a � YH−1c

⇔ U K c.

Thus K2 = K. ��

4 Existence of adequate, restricted power sets

Let F, G : X �� Y be continuous morphisms between set-presentable formal
topologies. Let C(a, i) (i ∈ I(a), a ∈ X) be a set-presentation of X . Consider
its equivalent form C(w) (w ∈ I) with c : I �� X as in (3). Now let U be a
type-theoretic universe T(t) (t : U), closed under Σ-constructions, and which is
such that X, Y, I are U-sets, the relation ≤X is a U-subset of X × X , and the
relations F and G are U-subsets of X × Y . Moreover C(w) is an U-subset of X

2002 Palmgren E.: Quotient Spaces and Coequalisers in Formal Topology



for each w ∈ I. Further, we assume the universe to contain the positive natural
numbers Z+.

Then form the restricted power set RU (Y ) with respect to the family U . The
following is a set-theoretic collection principle.

Lemma2. Suppose U is as above. Let H be a U-subset of X × Y , and let A be
a U-subset of X. Then for any subset B of Y with

A ⊆ H−1B,

there is a U-subset Z of Y with A ⊆ H−1Z and Z ⊆ B.

Proof. Suppose A ⊆ H−1B. This is equivalent to

(∀x ∈ A)(∃y ∈ B) xH y.

Thus by principle (1) there is some f : A �� B with (∀x ∈ A) pA(x)H f(x).
The image of this function Z = {y ∈ B : (∃x ∈ A) f(x) = y} is a U-subset of Y

since U is closed under Σ. It is clear that A ⊆ H−1Z, by the surjectivity of pA,
and Z ⊆ B. ��

Lemma3. Suppose R(Y ) = RU (Y ) is as above. Take a subset U of Y such that

(∀a ∈ X)(a �F−1U ⇒ a �G−1U). (8)

Then for any V ∈ R(Y ) with V ⊆ U , there is W ∈ R(Y ) with W ⊆ U and

(∀a ∈ X)(a �F−1V ⇒ a �G−1W ). (9)

Moreover, the above holds with F and G interchanged in both (8) and (9).

Proof. First note that by reflexivity (R) and transitivity of covers (T) we may
replace the left hand a � · · · by a ∈ · · · in both (8) and (9). This modified
statement is what we shall prove.

Let V ∈ R(Y ) with V ⊆ U . Then by (8) and transitivity of covers we get

(∀a ∈ F−1V ) a �G−1U.

Using the set-presentation of the cover this may be rephrased as

(∀a ∈ F−1V )(∃w ∈ I) (c(w) = a & C(w) ⊆ G−1U).

By Lemma 2, and since C(w) ∈ R(X), the statement C(w) ⊆ G−1U is equivalent
to (∃Z ∈ R(Y )) (C(w) ⊆ G−1(Z) & Z ⊆ U). Thus we have

(∀a ∈ F−1V )(∃Z ∈ R(Y ))(a � G−1Z & Z ⊆ U). (10)

2003Palmgren E.: Quotient Spaces and Coequalisers in Formal Topology



Let S = F−1V . By the principle (1), we get H : S �� R(Y ) so that

(∀s ∈ S)(pS(s)� G−1H(s) & H(s) ⊆ U). (11)

Let
W =

⋃
s∈S

H(s).

Now W ∈ R(X) and by transitivity

(∀s ∈ S)(pS(s)� G−1W & W ⊆ U).

Since pS is surjective this means that

(∀a ∈ F−1V ) a �G−1W,

proving (9) by transitivity of covers. ��

Lemma4. The restricted power set R(Y ) = RU (Y ) as constructed above is
adequate for F and G.

Proof. Condition (H1) is trivial since the subset Y = {x ∈ Y : x = x} belongs
to R(Y ). Condition (H2) follows since the relation ≤Y is a U-subset of Y × Y

and U is closed under Σ.
To prove (H3) suppose that U ⊆ Y satisfies the equivalence

(∀a ∈ X)(a �F−1U ⇐⇒ a �G−1U).

Let b ∈ U . We construct Vn (n ∈ Z+) with Vn ∈ R(Y ) and Vn ⊆ U as follows.

(base) V1 = {b}

(suc0) (∀a ∈ X)[a �F−1Vn ⇒ a �G−1V2n]

(suc1) (∀a ∈ X)[a �G−1Vn ⇒ a � F−1V2n+1]

By Lemma 3 we can find such V2n and V2n+1 as in (suc0) and (suc1). Now put

V∞ =
⋃

n∈Z+

Vn.

Then V∞ ∈ R(Y ) since U is contains Z+. Clearly, V∞ ⊆ U .
Suppose now that a ∈ F−1[V∞]. Thus by (4) we have a ∈ F−1Vn for some

n ∈ Z+. Hence by (suc0) a �G−1V2n, and hence a �G−1V∞. We have shown

(∀a ∈ X)(a ∈ F−1V∞ ⇒ a �G−1V∞),
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and by transitivity of covers, in fact,

(∀a ∈ X)(a �F−1V∞ ⇒ a �G−1V∞).

The proof of the converse implication is the same, exchanging F and G, and
using (suc1) instead of (suc0). This establishes the lemma with V∞ as the set
satisfying the required equivalence. ��

A universe forming operator is a type construction which over any family of
types builds a type universe closed under Π , Σ, W , I and +-constructions [14].

Theorem 5. Under the assumption of universe forming operators, coequalisers
exists in the category FTops.

Proof. The result follows by Lemma 1 and Lemma 4, noting that with the help
of the universe operator we can build the required universe U for given maps F

and G. ��

We note that the closure of the universe under Π , W , + and I-types is not
actually used.

5 Examples

By reformulating standard topological constructions in terms of limits and col-
imits, we may now perform them in the category of formal topologies.

1. The two-dimensional T
2 torus may be constructed as the coequaliser of the

followings maps R
2 × Z

2 �� R2

(x,n) �→ x,

(x,n) �→ x + n.

2. The n-dimensional real projective space RPn may be constructed as a co-
equaliser of two maps R

n+1 × R �=0
�� Rn+1

(x, λ) �→ x,

(x, λ) �→ λx.

3. The Möbius band may be constructed as the coequaliser of the maps �, r : [0, 1]
�� [0, 1]2 where �(x) = (0, x) and r(x) = (1, 1 − x).
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4. Pushouts may be constructed using sums and coequalisers. Various glued
spaces may be constructed using pushouts. For A ↪→ X and f : A �� Y , the
pushout gives the attaching map construction:

X Y ∪f X��

A

X

� �

��

A Y
f �� Y

Y ∪f X
��

5. The special case of 3, where Y = 1 is the one-point space, gives the space
X/A where A in X is collapsed to a point.
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spaces. University of Auckland, CDMTCS Research Report 260, March 2005.

10. P.T. Johnstone. Stone Spaces. Cambridge University Press 1982.
11. A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck.

Memoirs Amer. Math. Soc. 309 (1984).
12. P. Martin-Löf. Intuitionistic Type Theory. Notes by Giovanni Sambin of a series of

lectures given in Padua, June 1980. Bibliopolis 1984.

2006 Palmgren E.: Quotient Spaces and Coequalisers in Formal Topology



13. S. Negri and D. Soravia. The continuum as a formal space. Arch. Math. Logic 38
(1999), no. 7, 423 – 447.

14. E. Palmgren. On universes in type theory, in: G. Sambin and J. Smith (eds.)
Twenty-Five Years of Constructive Type Theory. Oxford Logic Guides, Oxford
University Press 1998, pp. 191 – 204.

15. E. Palmgren. Predicativity problems in point-free topology. In: V. Stoltenberg-
Hansen and J. Väänänen eds. Proceedings of the Annual European Summer Meeting
of the Association for Symbolic Logic, held in Helsinki, Finland, August 14-20,
2003, Lecture Notes in Logic 24, ASL. (To appear).

16. E. Palmgren. Continuity on the real line and in formal spaces. In: L. Crosilla, P.
Schuster, editors, From Sets and Types to Topology and Analysis: Towards Prac-
ticable Foundations of Constructive Mathematics, Oxford Logic Guides, Oxford
University Press, to appear.

17. E. Palmgren and P. Schuster. Apartness and formal topology, New Zealand Journal
of Mathematics, to appear.

18. G. Sambin. Intuitionistic formal spaces — a first communication. In: D. Skordev
(ed.) Mathematical logic and its applications, Plenum Press 1987, pp. 187 – 204.

19. G. Sambin. Some points in formal topology. Theoretical Computer Science,
305(2003), 347 – 408.

20. P. Schuster. What is continuity, constructively? Preprint.

2007Palmgren E.: Quotient Spaces and Coequalisers in Formal Topology


