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Abstract: A careful analysis of the original definition of formal topology led to the
introduction of a new primitive, namely a positivity relation between elements and
subsets. This is, in other terms, a direct intuitionistic treatment of the notion of closed
subset in formal topology. However, since formal open subsets do not determine formal
closed subsets uniquely, the new concept of positivity relation is not yet completely
clear. Here we begin to illustrate the general idea that positivity relations can be
regarded as a further, powerful tool to describe properties of the associated formal
space. Our main result is that, keeping the formal cover fixed, by suitably redefining
the positivity relation of a regular formal topology one can obtain any given set-indexed
family of points as the corresponding formal space.
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The original definition of formal topology [4] included among primitive data a
unary positivity predicate Pos. Its interpretation was that a formal basic neigh-
bourhood a is positive, that is Pos(a) is true, if it is inhabited by some formal
point. However, the presence of Pos was not sufficiently well motivated and
some scholars openly expressed their doubts about its introduction. Over ten
years later, rather than abandoning the predicate of positivity, a more careful
analysis of the primitive concepts led to its strenghtening, namely to the intro-
duction of a new positivity relation between elements and subsets [5]. The main
outcome of the new definition is a direct intuitionistic treatment of the notion
of closed set. In particular, it brings to the new notion of basic topology, which
contains a formal cover and a positivity relation compatible with it.

An obstacle to a satisfactory understanding of this new concept arises from
the fact that in general, for any fixed covering relation, there exist multitudes of
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positivity relations compatible with it. In other words, the formal open subsets
do not determine the formal closed subsets, at least if one tries to achieve this
by means of compatibility alone. So we are naturally led to the question of what
kind of information is carried by positivity relations.

Here we begin to illustrate the general idea that positivity relations can
be regarded as a natural tool to describe properties of the associated formal
space, such as capturing subspaces for instance. We are going to show this in a
somewhat general setting, also paving the way for future developments. In fact,
we show that keeping the formal cover fixed, by suitably redefining the positivity
relation of a regular formal topology one can obtain any given set-indexed family
of points as the corresponding formal space. We look at the simple results given
here as the starting point for a more accurate investigation into the meaning
of positivity relations and more generally into the possibilities allowed by the
introduction of existential statements in formal topology (cf. [5]). We refer the
reader to [5] for all the notions involved here.

1 Minimal Closed Subsets

Let S = (S, �, �) be a basic topology. We shall say that Fi ⊆ S (i ∈ I) is a
family of �-independent subsets if

1. for every i ∈ I, Fi is �-closed and inhabited;

2. for every i, j ∈ I, Fi ⊆ Fj implies Fi = Fj .

We also say that a subset F ⊆ S is �-minimal if it is �-closed, inhabited and if
G ⊆ F implies G = F for all �-closed inhabited subsets G of S.

Proposition1. Let S = (S, �, �) be a basic topology. Let Fi ⊆ S (i ∈ I) be a
family of �-independent subsets. Define �I by putting

a �I F ≡ (∃i ∈ I)(a ε Fi ∧ Fi ⊆ F ).

Then the following hold:

1. �I is a positivity relation compatible with �, that is (S, �, �I) is a basic
topology;

2. �I is weaker than �, that is a �I F implies a � F ;

3. the �I-minimal subsets are precisely the Fi’s, that is F is a �I-minimal
subset if and only if F = Fi for some i ∈ I.
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Proof. 1. The relation is coreflexive since if a �I F then a ∈ Fi ⊆ F for some i.
It is cotransitive since if {b : b �I F} ⊆ G, viz.

∀b ∈ S ∀j ∈ I ( b ε Fj ⊆ F ⇒ b ε G ),

then it follows immediately that Fj ⊆ F gives Fj ⊆ G for all j, and therefore
{b : b �I F} ⊆ {b : b �I G}. It is easy to see that it is also compatible with �,
since the Fi’s are assumed to be closed subsets in S.

2. Assume that a �I F . By definition, there exists i such that a ε Fi ⊆ F .
Since every Fi is a �-closed subset, we get a � Fi which together with Fi ⊆ F

yields a � F .
3. First we show that each Fi is minimal closed for �I . Clearly each Fi is

closed for �I , since a ε Fi implies a�I Fi by definition. That every Fi is inhabited
is among our assumptions on the family of subsets Fi (i ∈ I). Suppose that we
have G ⊆ Fi where G is inhabited and closed for �I , and let a ε G for some
a ∈ S. Then also a �I G, and by definition of �I this implies that we can find
j such that Fj ⊆ G, hence Fj ⊆ Fi, and by our assumptions on the family,
Fj = Fi, which yields Fi = G.

Next suppose that F ⊆ S is minimal closed for �I . Then a ε F for some
a ∈ S because F is inhabited, and hence a �I F because F is �I -closed. By
definition, this says that a ε Fi ⊆ F for some i ∈ I; as observed previously, Fi is
closed for �I , thus by �I -minimality of F we get F = Fi.

An alternative indirect proof of the fact that (S, �, �I) is a basic topology is
interesting enough to be given here. Given the family Fi ⊆ S (i ∈ I), since I is a
set the structure (I, �, S), where i � a ≡ a ε Fi, is a basic pair. One can see that
the positivity relation induced on S (as described in [5]) is exactly �I as defined
above. The corresponding cover is given by a �I U ≡ ∀i ∈ I(a ε Fi ⇒ Fi � U),
and so a � U implies a �I U because each Fi is closed. Then, since �I is
compatible with �I , it is a fortiori compatible also with �.

2 Regular Formal Topologies

Recall that S = (S, �, �) is regular if ∀a ∈ S a � wc(a), where

wc(a) = {c : S � {a} ∪ c∗},

c∗ denoting {b : b ↓ c � ∅}. Unless otherwise stated, throughout the present
section S is a fixed regular formal topology. We shall be using the following
generalization of a well-known property of regular formal topologies (compare
with [5]) which says that if α ⊆ β are any formal points then α = β; it holds in
particular for the formal continuum:

Lemma2. Let α be a formal point of S. Then α is minimal closed for �.
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Proof. Clearly, α is inhabited and �-closed by definition, since it is a formal
point. Suppose G ⊆ α for some inhabited �-closed subset G of S, and let a ε α.
Then since α is a point there is some c ε α∩wc(a). Since S � {a}∪ c∗, choosing
d ε G (which is possible since G is inhabited) we get d � {a} ∪ c∗, which yields
G � {a}∪ c∗ by closedness of G and by compatibility. Now, assume G � c∗: then
we find some b ε α∩c∗ (because G ⊆ α), but this gives b ↓ c � ∅ by definition of
c∗, which cannot hold since b, c ε α and α is a formal point. Therefore we must
have G � {a}, that is a ε G. This shows that α ⊆ G, and concludes the proof.

We make an observation before we come to our main result. Recall that Pt(S)
is the collection of formal points, that is the formal space associated with S.

Lemma3. Let S = (S, �, �) be an arbitrary formal topology. Let �′ be a posi-
tivity predicate weaker than � (that is a�′ F implies a�F ) and compatible with
�; let S′ be the formal topology (S, �, �′). Then Pt(S′) ⊆ Pt(S). Moreover, if
the �′-closed subset F ⊆ S is �-minimal, then it is also �′-minimal.

Proposition4. Suppose Fi, i ∈ I is a �-independent family of closed subsets
of S. Then if α is a point of the formal topology

SI = (S, �, �I),

there exists some i ∈ I such that α = Fi.

Proof. Let α be a point for �I ; then α is also a point for � (Lemma 3), hence
a minimal closed subset for � (by Lemma 2), hence a fortiori a minimal closed
subset for �I (again by Lemma 3): thus α = Fi for some i, by Proposition 1.

Corollary 5. Suppose αi, i ∈ I is a set-indexed family of formal points of S.
Then the αi’s are precisely the formal points of a formal topology SI = (S, �, �I),
with �I weaker than �.

Proof. We apply Proposition 1 to the family αi, i ∈ I, which is immediately seen
to be a �-independent family, by observing that formal points are inhabited �-
closed and by regularity of S (Lemma 2). So consider the positivity relation �I

on S associated to this family as in Proposition 1. It is clear that all the αi’s are
formal points for �I , since they are both formal points of S and closed subsets
for �I (as before, by Proposition 1). The converse is an immediate consequence
of Proposition 4.

In this corollary, the assumption that S is regular is used only to prove that
αi ⊆ αj implies αi = αj , for i, j ∈ I. So the corollary applies to formal topologies
S in which the ordering of Pt(S) is discrete, or also to every formal topology S,
by restricting to families αi, i ∈ I, in which each αi is minimal.
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Before we come to the next corollary, a few observations are in order. Recall
that if f : S → T is a morphism of formal topologies and F ⊆ S is a closed
subset then the image f(F ) is closed. Moreover, if f = g : S → T are equal
morphisms (equality of morphisms is defined as f−b � g−b and g−b � f−b for
every b ∈ T ) then f(F ) = g(F ) for every closed subset F ⊆ S (see [6] for a
detailed proof). Therefore if f is an isomorphism, the rule

F 
→ f(F )

gives a bijection between the collection of closed subsets of S and those of T ,
in particular a bijection between the minimal closed subsets. It follows that the
cardinality of the collection of minimal closed subsets of a formal topology is
invariant under isomorphism.

One more observation concerning regular topologies. For any points α, β let
α#β abbreviate that there exist a ε α, b ε β such that a ↓ b � ∅.

Proposition6. The relation # is an intuitionistic apartness relation, i.e. it
enjoys the following properties:

1. ¬α#β ⇔ α = β;

2. α#β ⇒ β#α;

3. α#β ⇒ α#γ ∨ β#γ.

Proof. If α, β are any points of a regular formal topology S and a ε α, then there
is c ε α ∩ wc(a) such that β � {a} ∪ c∗ (see the proof of lemma 2).

To prove the first property (the non-trivial implication ⇒), assume a ε α:
since c∗ � β cannot hold under the assumption ¬α#β, we must have β � {a},
that is a ε β; this shows α ⊆ β, hence α = β. The second property is trivial.

To prove the third property, let a ↓ b � ∅ for some a ε α and b ε β: then
there are c ε α∩wc(a) and d ε β ∩wc(b) such that γ � {a}∪ c∗ and γ � {b}∪ d∗;
but since c∗ � γ ⇒ α#γ, d∗ � γ ⇒ β#γ and a, b ∈ γ cannot hold, in any case
we conclude α#γ or β#γ.

In particular # is classically equivalent to �=, which amounts to the well-
known fact that the space Pt(S) is Hausdorff when S is regular.

Corollary 7. By varying only the positivity relation, it is possible to derive sev-
eral non-isomorphic formal topologies from the given formal topology S (unless
S is too small), none of them having points.

Proof. The idea is clear: choose any �-independent family of closed subsets of
S such that no point of S occurs among the Fi’s, and apply proposition 4. In
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practice, such a family can be obtained from a nice doubly-indexed family of
points

αj : Pt(S) i ∈ I, j ∈ J(i)

such that ∀i ∈ I ∃j, j′ ∈ J(i) αj#α′
j , by setting, for every i ∈ I,

Fi =
⋃

j∈J(i)

αj .

This is a closed inhabited subset, but not convergent, and hence not a point.

For the topology of real numbers, every (�-independent) family of closed sub-
sets comes from a (nice) doubly-indexed family of formal points by the method
explained in the proof of the corollary, cf. Lemma 9.

3 Subspaces of the Formal Continuum

In what follows, we let R denote the formal topology (Q × Q, �, �) of real
numbers (also referred to as the real line, or continuum [5] ); here � is the
standard co-inductively generated positivity relation [3].

Substantially, the following fact already appeared in [2]; here we state it in
the general language of formal topology.

Lemma8. Let (pn, qn), for n natural number, be a sequence of pairs of rational
numbers such that for all n we have pn < pn+1 < qn+1 < qn, and assume that
the length qn − pn goes to zero as n tends to infinity. Let

α = {(p, q) ∈ Q × Q : p < pn < qn < q for some n}.

Then α is a formal point.

Proof. Of course α is inhabited and upward closed. It is also convergent, since
if (p, q), (r, s) ε α where p < pn < qn < q and r < pm < qm < s, then clearly

max{p, r} < pmax{n,m} < qmax{n,m} < min{q, s}.

Assume that we are given a covering U of (p, q) ε α: we want to prove that α

splits U , i.e. that α � U . It is no loss of generality to assume that U is either
wc(p, q) = {(p′, q′) : p < p′ < q′ < q} or {(p, s), (r, q)} for some p < r < s < q.
In the first case, by definition of α there is n such that p < pn < qn < q, hence
for this choice of n we shall have (pn, qn) ε α ∩ U and therefore α � U . If on the
other hand U = {(p, s), (r, q)}, by selecting n large enough we can assume that
qn − pn < s − r and p < pn < qn < q; the middle point of (pn, qn) will be either
not greater or not smaller than the middle point of (r, s): if, say, it is not greater,
then it must be p < pn < qn < s and therefore (p, s) ε U ∩ α by definition of α.

It is not necessary to prove that α enters �, since this property is redundant
when � is coinductively generated.
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The proof of the next lemma shows that the converse is true: given a point of
R, it is the point associated to some converging sequence of intervals as above.
This says that the collection Pt(R) is set-indexed. The lemma is also meant for
purposes not directly related to the present exposition (see [6]).

Lemma9. Let F be a formal closed subset of R, and let (p1, q1) ε F . Then there
exists a formal point α ⊆ F lying in (p1, q1).

Proof. First of all, we note that for any (p, q) ε F it is possible to find (p′, q′) ε F

such that p < p′ < q′ < q and (q′ − p′) < 2
3 (q − p); indeed, if (p, q) ε F , then by

closedness of F either (p, q− 1
3 (q− p)) ε F or (p + 1

3 (q− p), q) ε F : by closedness
of F again, in the first case there is a (p′, q′) ε F such that p < p′ < q′ <

q − 1
3 (q − p), while in the second case there exists some (p′, q′) ε F such that

p + 1
3 (q − p) < p′ < q′ < q.

Next, we start from our (p1, q1) ε F ; by the above observation, there exists
(p2, q2) ε F such that p1 < p2 < q2 < q1 and q2−p2 < 2

3 (q1−p1); by means of the
type-theoretic choice principle, one constructs inductively a sequence (pn, qn) ε F

such that pn < pn+1 < qn+1 < qn and qn+1 − pn+1 < (2
3 )n(q1 − p1) for every n.

We now apply Lemma 1 to this sequence in order to produce the required
point α (clearly α ⊆ F since (pn, qn) ε F for all n and F is upward closed, being
closed).

By the above considerations, every subcollection of Pt(R), ie every predicate
P(α) prop α : Pt(R), does in fact correspond to a set-indexed family of points
αi, i ∈ I. Therefore for formal reals we can assert the following stronger version
of Corollary 5:

Proposition10. Every subcollection of Pt(R) coincides with Pt(R′) for some
formal topology

R′ = (Q × Q, �, �′).

The fact that the collection of points of the real line is set-indexed in Type
Theory is already well-known [1], but we think it is nonetheless worthwhile to
state the above elementary observations carefully.

References

1. G. Curi, Compact Hausdorff spaces are data types, Annals of Pure and Applied
Logic, to appear.
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