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Abstract: We present a constructive proof of the Stone-Yosida representation theorem
for Riesz spaces motivated by considerations from formal topology. This theorem is
used to derive a representation theorem for f-algebras. In turn, this theorem implies
the Gelfand representation theorem for C*-algebras of operators on Hilbert spaces as
formulated by Bishop and Bridges. Our proof is shorter, clearer, and we avoid the use
of approximate eigenvalues.
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1 Introduction

This paper illustrates the relevance of locale theory for constructive mathemat-
ics. We present a constructive proof of the Stone-Yosida representation theorem
for Riesz spaces motivated by considerations from formal topology. This the-
orem is used to derive a representation theorem for f-algebras. In turn, this
theorem implies the Gelfand representation theorem for C*-algebras of opera-
tors on Hilbert spaces as formulated by Bishop and Bridges [BB85]. Our proof
is shorter, clearer and we avoid the use of approximate eigenvalues.

The article is organized as follows. After dealing with some preliminaries we
prove a pointfree Stone-Yosida representation theorem for Riesz spaces. In the
next section this is used to obtain a representation theorem for f-algebras, which
in turn is used to prove the Gelfand representation theorem. Next we discuss
the similarity between Bishop’s notion of compactness, i.e. complete and totally
bounded, and compact overt spaces in formal topology. Finally we show that the
axiom of dependent choice is needed to construct points in the formal spectrum.

We would like to stress that the present theory needs few foundational com-
mitments, we work within Bishop-style mathematics. Moreover, the mathemat-
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ics is predicative, even finitary, and we will not use the axiom of choice, even
countable choice, unless explicitly stated.

2 Riesz spaces

We present a Stone-Yosida representation theorem for Riesz spaces. This theorem
states that a Riesz space with a strong unit may be represented as a Riesz space
of functions. In fact, one can even start with an l-group, or lattice ordered group,
with a strong unit and construct a Riesz space from this, see [Coq05](sec. 3).

2.1 General definitions

Definition 1. A Riesz space is a � vector space with a binary sup operation.

As usual we define a+ := a ∨ 0, a− := (−a) ∨ 0, |a| := a+ + a− and a ∧ b :=
−(−a ∧ −b). One can prove that a Riesz space is a lattice and that the lattice
operations are compatible with the vector space operations, see [Bir67] [LZ71]
[Bou64].

Definition 2. A strong unit 1 in an ordered vector space R is a positive element
such that for all a ∈ R there exists a natural number n such that a ≤ n1.

We will now consider a Riesz space R with a strong unit.

Definition 3. A representation of R is a linear map σ : R → � such that
σ(1) = 1 and σ(a ∨ b) = σ(a) ∨ σ(b).

Such a representation automatically preserves all the Riesz space structure.

Example 1. If X is a compact space, then C(X), its space of continuous functions,
is a Riesz space where the supremum is taken pointwise. Each point of x defines
a representation σx(f) := f(x).

In Example 2 we show that a complete commutative algebra of Hermitian
operators on a Hilbert space is a Riesz space.

2.2 Spectrum

Let P denote the set of positive elements of a Riesz space R. For a, b in P

we define a � b to mean that there exists n such that a ≤ nb. The following
proposition is proved in [Coq05] and involves only elementary considerations on
Riesz spaces.
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Proposition4. L(R) := (P,∨,∧, 1, 0, �) is a distributive lattice. In fact, if we
define D : R → L(R) by D(a) := a+, then L(R) is the free lattice generated by
{D(a)|a ∈ R} subject to the following relations:

1. D(a) = 0, if a ≤ 0;

2. D(1) = 1;

3. D(a) ∧ D(−a) = 0;

4. D(a + b) � D(a) ∨ D(b);

5. D(a ∨ b) = D(a) ∨ D(b).

We have D(a) � D(b) if and only if a+ � b+ and D(a) = 0 if and only if
a � 0.

We write a ∈ (p, q) := (a − p) ∧ (q − a). Notice that this is an element of R.

Lemma5. a ∈ (p, q) � a ∈ (p, s) ∨ a ∈ (t, q), whenever t < s. Since our Riesz
space has a strong unit, for each a, there exists p and q such that p < q and
a ∈ (p, q) = 1. Moreover, if I0, . . . , In are open intervals covering (p, q), then
∨

a ∈ Ii = 1.

Lemma6. If 1 = D(b1) ∨ . . . ∨D(bn), then there exists r > 0 such that D(b1 −
r) ∨ . . . ∨ D(bn − r) = 1.

Proof. Since 1/N � b+
1 ∨ . . . ∨ b+

m we see that

1/2N � (b+
1 ∨ . . . ∨ b+

m) − 1/2N

= (b+
1 − 1/2N) ∨ . . . ∨ (b+

m − 1/2N)

� (b1 − 1/2N)+ ∨ . . . ∨ (bm − 1/2N)+.

In [Coq05](sec. 3) the previous lemma is used to prove the following result
which we will not need, but only state as motivation.

Theorem 7. Define Σ to be the locale generated by the elements D(a) and the
relations in Proposition 4 together with the relation D(a) =

∨
r D(a − r). Then

Σ is a compact completely regular locale.

Compact completely regular locales are the pointfree analogues of compact
Hausdorff spaces. Moreover, the points of Σ can be identified with representa-
tions of R. In fact, if a representation σ is given, then σ ∈ D(a) if and only if
σ(a) > 0.
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2.3 Normable elements

Upper cuts in the rational numbers may be conveniently used to deal with certain
objects that would classically be real numbers, we call them upper real numbers,
see [Ric98] [Vic03]. In general, such a cut does not have a greatest lower bound
in �. If it does the upper real number is called located or simply a real number.
Define the upper real U(a) := {q ∈ �|∃q′ < q.a ≤ q′}. If it is located a is said
to be normable and the greatest lower bound is denoted by sup a. Then we have
sup a < q if and only if q ∈ U(a).

Proposition8. If all elements of R are normable, then the predicate Pos(a) :=
sup a > 0 has the following properties:

1. If Pos(a) and D(a) � D(b), then Pos(b);

2. If Pos(a∨b), then Pos(a) or Pos(b);

3. If r > 0, then Pos(a) or D(a − r) = 0.

We note that Pos(a) if and only if Pos(a+).
In fact, in localic terms this shows that Σ is open, see [Joh84], but we will

not need this.
In order to prove this proposition we first need three lemmas.

Lemma9. sup(a ∨ b) = sup a ∨ sup b.

Proof. � Suppose that a ∨ b � q′ < q, then a, b � q′, so both sup a � q′ and
sup b � q′. Thus q′ � sup a ∨ sup b.

� If q′ � a, b, then q′ � a ∨ b and hence sup a ∨ b � sup a ∨ sup b.

Lemma10. Let r be a rational number. If sup b < r and r < sup(b ∨ c), then
r < sup c.

Proof. If sup b < r, then b � r′ < r, for some rational number r′. So, using
Lemma 9

r < sup(b ∨ c) = sup b ∨ sup c � r′ ∨ sup c.

Consequently, r < sup c.

Lemma11. If 0 < sup(b1 ∨ b2), then sup b1 > 0 or sup b2 > 0.

Proof. Suppose that 0 < r < sup(b1 ∨ b2). Either sup b1 < r or sup b1 > 0. In
latter case we are done. In the former case sup b2 > r by Lemma 10.
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Proof. [of Proposition 8]
Property 1 is clear.
Property 2 is Lemma 11.
Finally, to prove property 3 we decide whether sup a > 0 or sup a < r. In the

former case Pos(a). In the latter case D(a − r) = 0.

Corollary 12. If 1 = D(a1) ∨ . . . ∨ D(an), we can find i1 < . . . < ik such that
1 = D(ai1) ∨ . . . ∨ D(aik

) and Pos(ai1), . . . , Pos(aik
).

Proof. By Lemma 6 there exists r > 0 such that 1 = D(a1− r)∨ . . .∨D(an − r).
By Proposition 8 for all i, D(ai − r) = 0 or Pos(ai). From this the result follows.

Lemma13. Let I := (p, q), J := (r, s). Define I + J := (p + r, q + s) and
I ∨ J := (p ∨ r, q ∨ s). If |a + b − c| � ε and Pos(a ∈ I ∧ b ∈ J ∧ c ∈ K),
then the distance between I + J and K is bounded by ε. If |a ∨ b − c| � ε and
Pos(a ∈ I ∧ b ∈ J ∧ c ∈ K), then the distance between I ∨ J and K is bounded
by ε.

Finally, if |a − b| � ε and Pos(a ∈ I ∧ b ∈ J), then the distance between I

and J is bounded by ε.

Proof. We only prove the last fact. If the distance between I and J is bigger
than ε, than r − q > ε or p − s > ε. Consequently, D(q − a ∧ b − r) = 0 or
D(a − p ∧ s − b) = 0. Both cases imply that D(a ∈ I ∧ b ∈ J) = 0.

Definition 14. A Riesz space R is separable if there exists a sequence an such
that for all a and ε > 0, there exists n such that |a − an| � ε.

Theorem 15. [DC] Let R be a separable Riesz space all elements of which are
normable. Assume that Pos(a), then there exists a representation σ such that
σ(a) > 0.

Proof. We write εn := 1/2n. Using dependent choice and Lemma 5 we define a
sequence of rationals such that

Pos(a ∧ a0 ∈ (q0 − ε0, q0 + ε0) ∧ . . . ∧ an ∈ (qn − εn, qn + εn)).

If b ∈ R, we can find a sequence of elements ank
such that for any ε > 0 we

have |b − ank
| ≤ ε when k is large enough. Then qnk

is a Cauchy sequence and
we define σ(b) := limk qnk

. By Lemma 13 this definition does not depend on the
choice of the sequence ank

. The map σ is a representation such that σ(a) > 0
and σ(an) ∈ (qn − εn, qn + εn) for all n.

A suggestive way to state that σ(a) > 0 is to say that σ is a point in D(a).
Let Σ be the set of representations of R. We call Σ the spectrum of R. Each

element a of R defines a pseudo norm ρa(σ) := |σ(a)|. If the algebra is separable
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and an is a dense sequence, we can collect, like Bishop, all the pseudo-norms
into one metric

∑
2−n(1 + ‖an‖)−1|σ(an)|.

We have the following Stone-Yosida representation theorem, see [Sto41]
[Yos42].

Theorem 16. [DC] Let R is a separable Riesz space all elements of which are
normable. The spectrum Σ is a complete totally bounded metric space. For a in
R, we define â : Σ → � by â(σ) := σ(a) and ‖a‖ := sup(|a|). Then supσ |â(σ)| =
‖a‖. Finally, the set of functions â is dense in C(Σ).

Proof. We define Uars := D(a ∈ (r, s)) as an element of the lattice L(R). In-
tuitively, such an element may be thought of as the set {σ : σ(a) ∈ (r, s)} =
{σ : ρa(σ) < s − r}. Let ε > 0. Using Lemma 5 one may find finitely many
Uars such that s − r < ε, the supremum of which equals 1 in the lattice L(R).
By Corollary 12 one can assume all these elements to be positive. Each of them
contains a point by Theorem 15. The collection of these points form an ε-net.
Consequently, Σ is totally bounded.

It is straightforward to show that Σ is also complete as a uniform space.
For each σ ∈ Σ we have |σ(a)| � ‖a‖. To see this suppose that σ(a) > ‖a‖.

Then there exists ε > 0 such that σ(a) − a � ε1, however σ(σ(a) − a) = 0. If
r < ‖a‖, then by Theorem 15, there exists σ such that r < |σ(a)|.

Finally, the density follows from Proposition 3.1 in [Coq05]. Its proof involves
only elementary properties of Riesz spaces.

Notice the interplay between the pointwise and pointfree framework. From
a formal covering, in the lattice L(R), it is possible to deduce that Σ, a metric
space, is totally bounded. This is remarkable since in a recursive interpretation
of Bishop’s mathematics Σ does not have enough points.

3 f-algebras

In this section we apply the results of the previous section to f-algebras.

Definition 17. An f-algebra is a Riesz space with a strong unit and a commu-
tative3 multiplication such that 0 � ab, whenever 0 � a and 0 � b.

3.1 f-algebra of operators

Example 2. If R is a complete commutative algebra of normable self-adjoint op-
erators on a Hilbert space H , then R is a Riesz space with the order � defined
by 0 � A if and only if (Au, u) � 0 for all u in H .
3 One can prove classically that the commutativity requirement follows form the other

properties of an f-algebra. We intend to provide a constructive proof of this separately
using the pointfree description of the spectrum.
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In the rest of this subsection we prove that if A, B � 0, then AB � 0.
We have now defined two notions of boundedness on the algebra of operators.

One as a bounded operator: A is bounded by a if for all x, ‖Ax‖2 � a‖x‖2. The
other from the ordering: A is bounded by a if A � aI, where I is the identity
operator.

Lemma18. The two notions of boundedness coincide — that is, for all x,
(Ax, x) � (ax, x) if and only if for all x, ‖Ax‖2 � a‖x‖2. Consequently,
‖A2‖ = ‖A‖2.

Proof. The usual proof, for instance in [Lan83] using the polarization identity,
is constructive.

Since (AB2x, x) = (A(Bx), (Bx)), we see that AB2 � 0, whenever A � 0.
This suffices to prove that R is an ordered ring.

Lemma19. [Rie32] (p33, footnote 9) Let R be a as above. Then every positive
element is the uniform limit of a sum of squares.

Proof. We can assume that 0 � A � 1. Define A0 := A and An+1 := An − A2
n.

Then 0 � An+1 � 1, since An+1 = An(1−An)2+(1−An)A2
n � 0 and 1−An+1 =

1−An +A2
n. Moreover, An+1 = An−A2

n � An. Since A = A2
1 + · · ·+A2

n +An+1,

we have A2
n � 1/n → 0. By lemma 18 this implies that An → 0.

Corollary 20. AB � 0, whenever A, B � 0.

Proof. If A, B � 0, then (ABx, x) =
∑

(ABnx, Bnx) � 0, where Bn is a sequence
such that ΣB2

n converges to B.

The following lemma shows that one can construct the square root4 when R

is complete and thus one can define the absolute value as |A| :=
√

A2. From the
absolute value one first defines A+ := (|A|+A)/2 and then A∨B := A+(B−A)+.
Consequently, the algebra is a Riesz space and an f-algebra.

Lemma21. For all A � 0 we can build a Cauchy sequence (An) of positive
elements such that A2

n → A.

Proof. We can assume 0 ≤ A ≤ I. We define the two sequences An ∈ [0, I] and
rn ∈ [0, 1] defined by A0 = 0 and r0 = 0 and

An+1 = 1/2(1− A + A2
n) rn+1 = 1/2(1 + r2

n)
4 This is the usual lemma that R admits square root of positive elements if R is

complete. Notice that the proof is directly constructive, and it corresponds to the
usual Taylor expansion of (1 − x)1/2.
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Clearly, we have An ≤ rn for all n.
We claim that we have for all n

An ≤ An+1 rn ≤ rn+1 An+1 − An ≤ rn+1 − rn

This is proved by induction from the equalities

An+1 − An = 1/2(An + An−1)(An − An−1)

rn+1 − rn = 1/2(rn + rn−1)(rn − rn−1)

It follows that we have

(I − An)2 − A = 2(An+1 − An) ≤ 2(rn+1 − rn)

In order to conclude, all is left is to show that (rn) has limit 1. We know that
0 ≤ rn ≤ rn+1 ≤ 1 and we have

1 − rn+1 = (1 − rn)1/2(1 + rn) ≤ (1 − rn)(1 − ε/2)

if rn ≤ 1− ε. This shows that if (1− ε/2)N ≤ ε we have 1− rn ≤ ε for all n ≥ N .

3.2 Gelfand representation

Any f-algebra is a Riesz space so we have a Gelfand representation of the f-
algebra qua Riesz space, see Theorem 16.

Theorem 22. The Gelfand transform ·̂ preserves multiplication.

Proof. Since 2ab = (a+b)2−a2−b2. We need to prove that ·̂ preserves squares —
that is σ(a2) = σ(a)2. For this we first prove: σ(ab) > 0, whenever σ(a), σ(b) > 0.

If σ(a) � r > 0, then σ(a−r) > 0. By Lemma 6.3 in [Coq05], (a−r)+∧b+ �
1
r (ab)+, so σ(ab)+ � r(σ(b)+ ∧ σ(a − r)+) > 0, which was to be proved.

Suppose that |σ(a)| < q. Then q > σ(a) and so σ(q − a) > 0. Similarly,
σ(q + a) > 0. Consequently, σ(q2 − a2) = σ((q − a)(q + a)) > 0. By a similar
argument we see that if |σ(a)| < q, then |σ(a2)| < q2. We conclude that σ(a2) =
σ(a)2.

We have proved the following representation theorem for f-algebras which
explains the name f-algebra: an f-algebra is an abstract function algebra.

Theorem 23. [DC]Let A be a separable f-algebra of normable elements, then the
spectrum Σ is a compact metric space and there exists an f-algebra embedding
of A into C(Σ).
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We now specialize this theorem to the f-algebra in Example 2 and obtain
Bishop’s version of the Gelfand representation theorem. In fact, like Bishop we
first prove the theorem for Hermitian operators. As a corollary we obtain the
Gelfand duality theorem for a separable Abelian C*-algebra, exactly as stated by
Bishop [BB85] Cor.8.28 by considering its self-adjoint part which is an f-algebra.

Corollary 24. [DC]Let A be a separable f-algebra of normable Hermitian oper-
ators on a Hilbert space, then the spectrum is a compact metric space and there
exists an f-algebra embedding of A into C(Σ).

Theorem 25. [DC]Let R be an Abelian C*-algebra of operators on a Hilbert
space. Then there exists a C*-algebra embedding ϕof R into C(Σ,�), where Σ

is a compact metric space. Moreover, ϕ(1) = 1 and R is norm-dense.

Bishop’s Gelfand representation theorem states that for any commutative
algebra of normable operators on a separable Hilbert space there exists a norm-
preserving isomorphism to the algebra of continuous functions on its spectrum.
To prove that this map is norm-preserving Bishop proves that certain ε eigen-
vectors can be computed. In fact, the computational information of the ε eigen-
vectors is used only to prove the non-computational statement that the map is
norm-preserving. In contrast, we work directly on the approximations so that
we can avoid these unused computational steps.

3.3 Peter-Weyl

For a typical application, we let G be a compact group and R be the alge-
bra of operators over L2(G) generated by the unit operator and the operators
T (f)(g) := f ∗ g, where ∗ denotes the convolution product. Each operator T (f)
is compact and hence normable. The non-trivial representations of R are then
exactly the characters of the group G. This gives a reduction of the Peter-Weyl
theorem to the Gelfand representation theorem, see [CS05].

4 Compact overt locales

Bishop defines a metric space to be compact if it is complete and totally bounded
and proves that all uniformly continuous functions defined on such a metric
space are normable. In contrast, in the framework of locale theory it is not true
in general that all functions on a compact regular locale are normable, i.e. the
norm is only defined as an upper real which may not be a located.

However, the locale considered in Theorem 7 is not only compact completely
regular, but also overt as shown by Proposition 8. In this case all the continuous
functions are normable. This is a general fact.
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Theorem 26. If X is a compact completely regular locale, then X is overt if
and only if for any f ∈ C(X) there exists sup f ∈ � such that sup f < s if and
only if f−1(−∞, s) = X.

Proof. We prove only the ‘only if’ part. If X is overt and f ∈ C(X), then an
approximation of the supremum can be found by considering a finite covering of
X by positive opens of the form f−1(r, s), where s − r is small.

The previous facts suggest a similarity between Bishop’s compact metric
spaces and the compact overt spaces in formal topology.

Bishop compact ⇔ compact overt

Clearly this requires further developments building on ideas in [ML70] [Joh84].
However, we postpone this to further work.

We would like to conclude this discussion with the following comparison be-
tween the three following frameworks: classical mathematics with the axiom of
choice, Bishop’s mathematics and our framework, predicative constructive math-
ematics without dependent choice5. Using classical logic and the axiom of choice
one can show that the spectrum defined in Theorem 7 has enough points [Joh82].
Thus in this setting the pointfree and pointwise description of the space coin-
cide. In a recursive interpretation of Bishop’s framework these descriptions differ.
However, using dependent choice, normability and separability assumptions, we
have shown how to deduce that Σ is totally bounded from the pointfree descrip-
tion of Σ.

Our conclusion is that the best formulation of the representation theorem is
the pointfree one, since, besides being neutral on the use of the axiom of choice
and classical logic, it implies the usual formulations both in Bishop’s framework
and in classical mathematics.

5 Choice

5.1 No points

As mentioned before, when all the elements of the algebra are normable, one
can construct points in the spectrum using dependent choice. We claim that
dependent choice is needed for this. In fact, it is known that there exist compact
overt locales for which we need countable choice to construct a point. Thus it
suffices to consider the space of continuous functions on such a locale. We think
that a nice example can be extracted from [Ric00].

Richman [Ric00](p.5) gave an informal argument that indicates that one can
not construct the zeroes of the complex polynomial X2 − a unless one knows
5 This framework is related to Richman’s proposal to develop constructive mathemat-

ics without using countable choice, see [Ric00].
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whether a = 0 or not. To a in � we can associate the locale Ya of roots of
X2 − a. The existence of a point in Ya requires dependent choice. On the other
hand using results from [Vic03] it should be possible to show that Ya is compact
overt as an element of the completion of the metric space n-multisets in �. The
metric on this space is the usual Hausdorff metric on compact subsets of �.

Finally, we remark that this leaves open the question whether it is possible
to construct the points of the spectrum of a discrete countable Riesz space over
the rationals, or more generally, to construct the points of the spectrum of a
separable Riesz space.

5.2 Spreads

It is interesting to note that Richman [Ric02] proposes to use spreads to avoid
dependent choice. We suggest to use formal spaces instead. One motivation of
formal topology [ML70] [Sam87] was precisely to give a direct treatment of
Brouwer’s spreads by working with trees of finite sequences. Formal topology
may be seen as a predicative and constructive version of locale theory. John-
stone [Joh82] stresses that one may avoid the use of the axiom of choice in
topology by using locale theory and dealing directly with the opens. In this light
it may not be so surprising that Richman uses spreads to avoid choice.

Richman’s definition of spread differs in two respects from Heyting’s def-
inition. The branching of the tree is arbitrary, i.e. not necessarily indexed by
the natural numbers, and it is not decidable whether or not a branch can be
continued. This may be compared to the present situation where we study the
maximal spectrum Σ. When Σ has a countable base, we may define it as a
finitely branching tree. When furthermore Σ is overt, every positive branch can
be continued in a positive way. One difference between Richman’s spreads and
our approach is that Richman requires the infinite branches to be elements of a
metric space.

6 Conclusion

We gave a constructive proof of the Stone-Yosida representation theorem for
Riesz spaces. This theorem was used to prove a representation theorem for f-
algebras, from which we derived the Gelfand representation theorem for com-
mutative C*-algebras of operators on a Hilbert space. This constructive theorem
generalizes the one by Bishop and Bridges. In a similar way one may prove a
generalization of Bishop’s spectral theorem, see [Spi05].

It should be noted that we have used normability and separability hypothesis
in the statements of the main theorems and used the axiom of dependent choice.
In fact, without these hypothesis we can still obtain the spectrum as a compact
locale. The normability is necessary to show that the spectrum is overt. The
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separability hypothesis is used to obtain a metric space instead of a uniform
space. Finally, the axiom of dependent choice is used in Theorem 15 to construct
a point in each positive open, and thus obtain a metric space in the sense of
Bishop.

In this context, we would like to mention a problem for both constructive
versions of the Gelfand representation theorem: can it be applied to construct
the Bohr compactification of, say, the real line, like Loomis [Loo53]? Consider-
ing that the Stone-ech compactification has been successfully treated in locale
theory [Joh82], one would hope that a similar treatment is possible. Since the
almost periodic functions do not form an algebra constructively, we may con-
sider the f-algebra of functions generated by them. However, in this algebra
not all elements are normable. Any element of the group determines a point in
the spectrum. However, it is not possible to extend the group operation to the
spectrum and obtain a localic group, since every compact localic group has a
positivity predicate [Wra90] and since, moreover, the spectrum is compact this
would imply that all the functions in the f-algebra are normable. This, as we
stated before, is not the case. See Spitters [Spied] and the references therein for
a constructive theory of almost periodic functions.
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