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Abstract: Self-adjoint operators and their spectra play a crucial rôle in analysis and
physics. For instance, in quantum physics self-adjoint operators are used to describe
measurements and the spectrum represents the set of possible measurement results.
Therefore, it is a natural question whether the spectrum of a self-adjoint operator can
be computed from a description of the operator. We prove that given a “program” of
the operator one can obtain positive information on the spectrum as a compact set in
the sense that a dense subset of the spectrum can be enumerated (or equivalently: its
distance function can be computed from above) and a bound on the set can be com-
puted. This generalizes some non-uniform results obtained by Pour-El and Richards,
which imply that the spectrum of any computable self-adjoint operator is a recursively
enumerable compact set. Additionally, we show that the spectrum of compact self-
adjoint operators can even be computed in the sense that also negative information
is available (i.e. the distance function can be fully computed). Finally, we also discuss
computability properties of the resolvent map.
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1 Introduction

A linear operator T : H → H on a Hilbert space H over some field F ∈ {C, R}
is called self-adjoint, if T = T ∗ where T ∗ is the adjoint operator of T , which is
the unique operator that satisfies 〈Tx, y〉 = 〈x, T ∗y〉. Any self-adjoint operator is
normal, which means that T ∗T = TT ∗ holds, and for complex Hilbert spaces our
results will be applicable to this larger class of operators, which also contains all
unitary operators, i.e. operators, which satisfy T ∗ = T−1. We will apply all these
notions also to partial operators T :⊆ H → H, but in this case we additionally
demand that dom(T ) is dense in H.

The spectrum σ(T ) is the set of all values λ ∈ F such that λ − T has no
inverse in the set B(H) of bounded linear operators T : H → H. In particular,
all eigenvalues of T , i.e. all λ ∈ F such that there exists a non-zero x ∈ H
with Tx = λx, are elements of the spectrum. The spectrum is known to be a
compact set and in absolute value it is bounded by ||T || = sup||x||=1 ||Tx||, i.e.
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by the operator norm of the corresponding operator. For self-adjoint operators
the spectrum is known to be real, i.e. σ(T ) ⊆ R (see [Wei80] for statements
regarding linear operators on Hilbert spaces).

From the perspective of computable analysis a natural question is whether
the spectrum of a self-adjoint operator can be computed in some natural sense.
In general, there are at least two variants of such a result, which could be of
interest, a uniform and a non-uniform one:

1. (Uniform) the map T �→ σ(T ) is computable,
2. (Non-uniform) σ(T ) is computable for any computable T .

It is clear that any uniform result implies the corresponding non-uniform one
(as computable maps map computable inputs to computable outputs). However,
in general the uniform result is much stronger. What complicates things here
is that the spectrum and also the operator might be computable in different
senses. Regarding operators we will typically represent them in a way, which
corresponds to programs (i.e. we will rather use the compact-open topology and
not the operator norm topology). Regarding compact subsets, we will consider
two variants of computability: one, which only includes positive information on
the compact set and another one, which includes also negative information.

The main result of this paper, presented in Section 4, is that for self-adjoint
operators in the real case and normal operators in the complex case we obtain
the following uniform and non-uniform results:

1. (Uniform) the map T �→ σ(T ) is lower semi-computable (that is computable
with respect to positive information on σ(T )),

2. (Non-uniform) σ(T ) is a recursively enumerable compact set for any com-
putable T .

The non-uniform version of this result also follows from the Second Main
Theorem of Pour-El and Richards [PER89, PER87]. We will also prove in Sec-
tion 5 that the result cannot be strengthened to recursive compactness, since
any recursively enumerable compact set can be represented as the spectrum of
some computable normal operator. This is in contrast to the finite-dimensional
case where the spectrum map T �→ σ(T ) is computable in a stronger sense
[ZB01, ZB04]. However, as we will see in Section 6, the above result can also be
strengthened to full computability if the operator T is additionally compact. In
this case we obtain:

1. (Uniform) the map T �→ σ(T ) is computable (that is computable with respect
to positive and negative information on σ(T )),

2. (Non-uniform) σ(T ) is a recursive compact set for any computable T .

Both main results of this paper are based on a purely classical result presented
in Section 3, which characterizes the distance function of the spectrum. Finally,
in Section 7 we will discuss some computability properties of the resolvent map
R : (λ, T ) �→ (λ− T )−1. Roughly speaking, we will show that the resolvent map
is computable whenever the spectrum is recursive.

In the Conclusions we will discuss some related results in constructive anal-
ysis. In the following Section 2 we briefly introduce some required notions from
computable analysis, the Turing machine based theory of computability and
complexity, which is the approach that we will use throughout this paper (see
[PER89, Ko91, Wei00] for comprehensive introductions).
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2 Computable Hilbert Spaces

In this section we briefly introduce the required tools from computable analysis,
which we will use in the following. For a more comprehensive introduction the
reader is referred to [Wei00] and the other cited references. We will not introduce
notions from functional analysis here and the reader is referred to standard
textbooks in this case. In the following we will discuss operators T :⊆ H → H
on Hilbert spaces H and we are in particular interested in computable Hilbert
spaces, which we define below (the inclusion symbol “⊆” indicates that T might
be partial). In general we assume that H is defined over the field F, which might
either be R or C. Throughout the paper, we assume that H �= {0}.
Definition 1. A computable Hilbert space (H, 〈.〉, e) is a separable Hilbert space
(H, 〈.〉) together with a fundamental sequence e : N → H (i.e. the closure of the
linear span of range(e) is dense in H) such that the induced normed space is a
computable normed space.

The induced normed space is the normed space with the norm given by
||x|| :=

√〈x, x〉. A computable normed space is a normed space such that the
metric d induced by d(x, y) := ||x − y|| together with the sequence αe : N → H,
defined by αe〈k, 〈n0, ..., nk〉〉 :=

∑k
i=0 αF(ni)ei, form a computable metric space

such that the linear operations (vector space addition and scalar multiplication)
become computable. Here αF is a standard numbering of QF where QF = Q in
case of F = R and of QF = Q[i] in case of F = C. We assume that there is
some n ∈ N with αF(n) = 0. Without loss of generality, we can even assume
that (en)n∈N is an orthonormal basis of H. A computable metric space X is a
separable metric space together with a sequence α : N → X such that range(α)
is dense in X and d ◦ (α × α) is a computable (double) sequence of reals.

If not mentioned otherwise, then we assume that all computable Hilbert
spaces H are represented by their Cauchy representation δH (of the induced com-
putable metric space). The Cauchy representation δ :⊆ Σω → X of a computable
metric space X is defined such that a sequence p ∈ Σω represents a point x ∈ X ,
if it encodes a sequence (α(ni))i∈N, which rapidly converges to x, where rapid
means that d(α(ni), α(nj)) < 2−j for all i > j. All computability statements
with respect to Hilbert spaces are to be understood with respect to the Cauchy
representation. Given representations (i.e. surjective maps) δ :⊆ Σω → X and
δ′ :⊆ Σω → Y , a map f :⊆ X → Y is called computable, if there exists a
computable F :⊆ Σω → Σω such that fδ(p) = δ′F (p) for all p ∈ dom(fδ).

It is clear that the inner product of any computable Hilbert space is a com-
putable map.

Proposition2. The inner product 〈.〉 : H × H → H, (x, y) �→ 〈x, y〉 of any
computable Hilbert space H is computable.

Proof. This follows from the fact that the norm ||.|| : H → R is a computable
map for any computable normed space and the fact that the inner product
satisfies the polar identities

〈x, y〉 =
1
4
(||x + y||2 − ||x − y||2)
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in case of F = R and

〈x, y〉 =
1
4
(||x + y||2 − ||x − y||2 + i||x + iy||2 − i||x − iy||2)

for F = C. �

3 The Spectrum of Self-Adjoint Operators

In this section we will provide a formula, which characterizes the distance func-
tion of the spectrum in terms of the norm of λ−T . This is a purely classical fact
and we will have to use some facts from functional analysis. The first one is a
characterization of the norm of the inverse operator (the straightforward proof
is left to the reader, see, for instance, Ex. 5.14 in [Wei80]).

Lemma3. Let X and Y be normed spaces and let T :⊆ X → Y be a linear
bounded operator. The inverse operator T−1 :⊆ Y → X exists and is bounded, if
and only if inf{||Tx|| : x ∈ dom(T ), ||x|| = 1} > 0. In this case

||T−1|| =
1

inf{||Tx|| : x ∈ dom(T ), ||x|| = 1} .

We denote by r(T ) = lim supn→∞ ||T n|| 1
n the spectral radius of T . It is known

(see Theorem 5.17 (c) and (d) in [Wei80]) that for arbitrary operators T in case of
F = C or self-adjoint operators in case of F = R one obtains r(T ) = sup |σ(T )|
and for normal operators in general r(T ) = ||T || holds (see Theorem 5.44 in
[Wei80]). By combining these two results, we obtain the following lemma.

Lemma4. Let H be a Hilbert space over F and let T :⊆ H → H be a normal
operator in case of F = C or a self-adjoint operator in case of F = R. Then

||T || = sup |σ(T )| = sup{|λ| : λ ∈ σ(T )}.
The next result characterizes the norm of the inverse of λ − T in terms of

the distance to the spectrum. In general, we define for a normed space X by
distA(x) := infa∈A ||x − a|| the distance function of a set A ⊆ X . Although the
following result is known (see V 3.16 and 3.31 in [Kat66]), we sketch the proof
for completeness.

Lemma5. Let H be a Hilbert space over F and let T :⊆ H → H be a normal
operator in case of F = C or a self-adjoint operator in case of F = R. Then

||(λ − T )−1|| =
1

distσ(T )(λ)

for all λ ∈ F \ σ(T ).
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Proof. If T is normal or self-adjoint, then λ−T shares the corresponding property
and if the latter map is injective than also (λ − T )−1 shares the corresponding
property for λ ∈ C or λ ∈ R, respectively (by Theorems 5.42 (iii) and 4.21 in
[Wei80]). We obtain by Lemma 4

||(λ − T )−1|| = sup |σ((λ − T )−1)|
for all λ ∈ F \ σ(T ). Using the continuous functional calculus or the resolvent
identities (see Ex. 5.27 in [Wei80]) one can also show that

σ((λ − T )−1) =
{

1
λ − λ′ : λ′ ∈ σ(T )

}
,

which altogether implies

||(λ − T )−1|| = sup
{

1
|λ − λ′| : λ′ ∈ σ(T )

}
=

1
inf{|λ − λ′| : λ′ ∈ σ(T )}

for all λ ∈ F \ σ(T ), which proves the claim. �

The next result is the main result of this section and it provides an equation
that even holds true for all λ. It combines the observations of Lemma 3 and
Lemma 5.

Proposition6. Let H be a Hilbert space over F and T :⊆ H → H a normal
operator in case of F = C or a self-adjoint operator in case of F = R. Then

distσ(T )(λ) = inf{||(λ − T )x|| : x ∈ dom(T ), ||x|| = 1}
for all λ ∈ F.

Proof. Let us assume that T is normal or self-adjoint, depending on whether
F = C or F = R. In both cases σ(T ) �= ∅ (by Theorem 5.17 (c) and (d) in
[Wei80]). Moreover, dom(T ) = dom(λ − T ). We proof the claimed equation by
a case distinction.

1. Case: λ ∈ F \ σ(T ). By definition of the spectrum, (λ − T )−1 exists in
B(H). By Lemma 3 and 5 we obtain

distσ(T )(λ) =
1

||(λ − T )−1|| = inf{||(λ − T )x|| : x ∈ dom(T ), ||x|| = 1}.

2. Case: λ ∈ σ(T ). In this case (λ − T )−1 does not exist in B(H). This can
have two reasons, either (λ−T )−1 does not exist as a (potentially partial) linear
bounded operator in which case by Lemma 3

inf{||(λ − T )x|| : x ∈ dom(T ), ||x|| = 1} = 0

or it does exist but range(λ − T ) is not dense in H. However, the latter cannot
happen for injective normal operators λ − T as they always have a dense range
(see Theorem 5.42 (i) in [Wei80]). This implies the claim since distσ(T )(λ) = 0
for λ ∈ σ(T ) as well. �

In the next section we will exploit this proposition in order to compute the
spectrum map T �→ σ(T ) of suitable operators.
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4 Computability of the Spectrum Map

In this section we prove that the spectrum map T �→ σ(T ) is computable for suit-
able operators T in a specific sense. We will represent operators T : H → H as
points in C(H,H) by using [δH → δH], i.e. the standard function space represen-
tation of continuous functions T : H → H induced by the Cauchy representation
δH of H (see [Wei00]). This representation rather corresponds to the compact-
open topology and not to the operator norm topology on B(H). However, the
compact-open topology is exactly the right one for our purposes, as it captures
exactly the type of information, which is available by having a program for T .
Later on, we will prove that one cannot improve the result by providing the
operator norm as additional input information.

Finally, since the spectrum σ(T ) is a compact subset of F, we will introduce a
representation for the hyperspace of compact subsets K<(F) (see [BW99, BP03]
for representations of hyperspaces in general).

Definition 7. We define a representation δK<(F) of the set K<(F) of non-empty
compact subsets of F by

δK<(F)〈p, q〉 = K : ⇐⇒ [δF → ρ>](p) = distK and max |K| ≤ ρ(q)

for all p, q ∈ Σω.

That is, roughly speaking, a name for a compact set K with respect to this
representation is a name for the distance function of the set K as an upper
semi-continuous function plus a name for a bound of the set. Here ρ denotes the
standard Cauchy representation of the reals, ρ> denotes the upper representation
(where any real number is represented by a list of all upper rational bounds)
and [δF → ρ>] denotes the standard representation for upper semi-continuous
functions F → R (see [Wei00] for precise definitions of all these representations).
Now we are prepared to prove the main result of this paper, where we tacitly
assume that all the spaces are endowed with the aforementioned representations.

Theorem 8. Let H be a computable Hilbert space over F. The spectrum map

σ :⊆ C(H,H) → K<(F), T �→ σ(T )

is computable, where dom(σ) is the set of all normal operators T : H → H in
case of F = C and of all self-adjoint operators in case of F = R.

Proof. In Theorem 5.1 of [Bra06] it has been proved that one can compute an
upper bound b ≥ ||T || of the operator norm of a given linear bounded operator
T : H → H. By Lemma 4 it follows that max |σ(T )| = ||T || ≤ b.

Since the representation [δF → ρ>] admits type conversion (see Theorem
3.3.15 in [Wei00]), it suffices to show that the map

(T, λ) �→ distσ(T )(λ)

is ([[δH → δH], δF], ρ>)–computable. By Proposition 6 we obtain

distσ(T )(λ) = inf
x∈S(0,1)

||(λ − T )x||
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where S(0, 1) = {x ∈ H : ||x|| = 1} is the sphere with radius 1. But the sphere
S(0, 1) is a recursive closed subset of H as it has a computable distance function

distS(0,1)(x) = | ||x|| − 1|
and thus there exists a computable sequence (xn)n∈N in H, which is dense in
S(0, 1) (see Theorems 3.7 and 3.8 in [BP03]). The map

(T, λ, x) �→ ||(λ − T )x||
is easily seen to be computable by using type conversion and evaluation proper-
ties and the fact that the norm || || : H → R is computable. Since inf : RN → R
is (ρN, ρ>)–computable, it follows that

(T, λ) �→ distσ(T )(λ) = inf
n∈N

||(λ − T )xn||

is upper semi-computable, as desired. This finishes the proof. �

Theorem 8 directly implies the following non-uniform version. We recall that
a non-empty compact set K ⊆ F is called recursively enumerable, if it is a
computable point in K<(F).

Corollary 9. Let H be a computable Hilbert space over F and let T : H → H be
a computable operator that is normal in case of F = C and self-adjoint in case
of F = R. Then the spectrum σ(T ) is a recursively enumerable compact set.

Theorem 8 leads to a number of questions:

1. Is it possible to get more information on the spectrum under the same con-
ditions on the input?

2. Is it possible to get more information on the spectrum in case that more
input information is provided?

3. Is it possible to restrict the spectrum map to a subset of operators for which
one can get more information on the spectrum?

We will deal with these questions and other topics in subsequent sections.

5 Spectral Representation of Compact Sets

In this section we will discuss the question whether the computability result on
the spectrum is optimal. In particular, one can ask whether the spectrum of a
self-adjoint computable operator is even a recursive compact set. That this is not
the case in general, follows from the following theorem. This theorem will not be
expressed for general Hilbert spaces (which is impossible as we will see) but just
for the space �2, which is the set of sequences (xn)n∈N ∈ FN bounded in the �2–
norm, which is generated by the inner product 〈(xn)n∈N, (yn)n∈N〉 :=

∑∞
i=0 xiy

∗
i .

Together with the sequence (en)n∈N ∈ �N
2 of unit vectors defined by en,k := δnk

with the Kronecker symbol δ we obtain a computable Hilbert space (�2, 〈.〉, e).
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Theorem 10. The spectrum map σ :⊆ C(�2, �2) → K<(F), T �→ σ(T ), defined
for normal operators T : �2 → �2 in case of F = C and for self-adjoint operators
T in case of F = R, is computable and it admits a multi-valued computable right
inverse K<(F) ⇒ C(�2, �2).

Proof. Computability of the spectrum map follows from Theorem 8 since �2 is
a computable Hilbert space. We have to show that there exists a computable
multi-valued right-inverse. Given the distance function distK of a compact set
K ⊆ F with respect to [δF → ρ>], we can extract a sequence (ak)k∈N, which is
dense in K (see Theorems 3.7 and 3.8 in [BP03]). Given a sequence (ak)k∈N in
F, which is dense in some compact set K ⊆ F and given a bound b > 0 such that
|x| ≤ b for all x ∈ K, we can effectively determine an operator T : �2 → �2 with
Tei = aiei for all i ∈ N. That is, T corresponds to the infinite diagonal matrix⎛

⎜⎜⎝
a0 0 0 . . .
0 a1 0 . . .
0 0 a2

...
...

. . .

⎞
⎟⎟⎠ .

It is clear that T is linear and ||T || = sup||x||=1 ||Tx|| ≤ b. The last observation
also shows that we can effectively determine T ∈ C(H,H), given K ∈ K<(F) (see
Theorem 4.3 (2) in [Bra03]). Moreover, T ∗ is just the diagonal operator induced
by the complex conjugate sequence (a∗

k)k∈N and hence T is normal and even
self-adjoint in case of F = R. Moreover, we claim σ(T ) = K. By Proposition 6
we obtain

distσ(T )(λ) = inf
||x||=1

||(λ − T )x||.
For our specific operator T it is not too hard to see that

inf
||x||=1

||(λ − T )x|| = inf
k∈N

|λ − ak| = distK(λ)

and thus we obtain σ(T ) = K, since K and σ(T ) are both closed. �

In particular, this theorem tells us that any recursively enumerable compact
set K ⊆ F can be represented by a normal linear bounded operator T : �2 → �2

whose spectrum σ(T ) is just K.

Corollary 11. A non-empty compact subset K ⊆ F is recursively enumerable,
if and only if there exists a computable operator T : �2 → �2, which is normal in
case of F = C or self-adjoint in case of F = R, with σ(T ) = K.

In this sense Theorem 8 is optimal. That is, under the same assumptions one
cannot obtain a recursive spectrum in general. However, for finite-dimensional
Hilbert spaces the situation is different. We recall that a non-empty compact
set K ⊆ F is called recursive, if it is a computable point with respect to the
following representation.

Definition 12. We define a representation δK(F) of the set K(F) of non-empty
compact subset of F by

δK(F)〈p, q〉 = K : ⇐⇒ [δF → ρ](p) = distK and max |K| ≤ ρ(q)

for all p, q ∈ Σω.
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The following theorem follows from results in [ZB01, ZB04].

Theorem 13. For any finite-dimensional Hilbert space H, the spectrum map
σ :⊆ C(H,H) → K(F), T �→ σ(T ), defined for all linear operators T : H → H, is
computable.

This in turn shows that Theorem 10 cannot be generalized to arbitrary
Hilbert spaces, but only to infinite-dimensional ones.

Another question regarding the optimality of Theorem 8 is whether it might
help to increase the input information on the operator T . One meaningful addi-
tional input information would be the operator norm ||T || (not any computable
operator has a computable norm). However, it does not help to add this input
information since with the construction of the diagonal operator in the proof of
Theorem 10 it is easy to obtain a counterexample with a computable norm.

Example 1. We use F = R. Let a > 0 be a left-computable but not right-
computable real number and let b > a be some computable real number. Then
for K = [0, a] ∪ {b} there exists a computable self-adjoint operator T : �2 → �2

such that its compact spectrum σ(T ) = K is recursively enumerable but not
recursive and the operator norm ||T || = b is computable.

However, in contrast to this, any suitable computable operator T with a
computable spectrum has a computable norm, as we can conclude from Lemma 4
and the fact that the supremum of the recursive compact set σ(T ) under the
computable map | | : F → R is computable (see Lemma 5.2.6 in [Wei00]).

Corollary 14. Let H be a computable Hilbert space over F and T : H → H
a computable operator, which is normal in case of F = C or self-adjoint in
case of F = R and which has a recursive compact spectrum σ(T ). Then ||T || is
computable.

6 The Spectrum of Compact Operators

In this section we want to study the question whether there is any reasonable
subclass of maps T for which the spectrum map T �→ σ(T ) becomes computable
as a map with target space K(F), i.e. with full information on the spectrum.
It turns out that compact operators are of this type. We recall that a linear
operator T : H → H is called compact, if it maps bounded sets to relatively
compact sets. This condition is equivalent to the condition that T (S(0, 1)) is
compact, where S(0, 1) = {x ∈ H : ||x|| = 1} denotes the unit sphere.

Before we study the spectrum of compact operators, we have to investigate
some basic properties of compact operators. By B∞(H) we denote the set of
compact operators T : H → H. First of all, we prove that the space B∞(H) is
a computable normed space with the operator norm and the dense subset given
by the numbering

α〈k, 〈n0, ..., nk〉, 〈l0, ..., lk〉〉(x) :=
k∑

i=0

〈x, αe(ni)〉αe(li).
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Here we assume that (ei)i∈N is a computable orthonormal basis of H (which
always exists) and αe is the corresponding numbering of a dense subset of H,
as defined in Section 2. Then α is actually a numbering of certain finite rank
operators Tn : H → H, defined by Tn(x) := α(n)(x), which form a dense subset
of B∞(H): on the one hand, the set of finite rank operators is dense in the
set of compact operators with respect to the operator norm (by Theorem 6.5 in
[Wei80]) and, on the other hand, any finite rank operator T can be represented as
Tx =

∑k
i=0〈x, xi〉yi with linearly independent xi ∈ H and linearly independent

yi ∈ H. Since range(αe) is dense in H, it follows that range(α) is dense in B∞(H).
By δB∞(H) we denote the corresponding Cauchy representation. We start with
a basic observation, which helps to handle the numbering α. Note that 〈.〉 is
used in two meanings: if applied to natural numbers, it stands for the canonical
Cantor pairing function, if applied to objects in a Hilbert space, it stands for
the inner product. No ambiguity is to be expected here.

Lemma15. Let H be a computable Hilbert space. There are computable func-
tions M : N → N and C : N → F such that

α(n)(x) =
M(n)∑
j=0

M(n)∑
i=0

C〈n, i, j〉〈x, ei〉ej

for all n ∈ N and x ∈ H (and such that C〈n, i, j〉 = 0 for i or j > M(n)).

Proof. Given n = 〈k, 〈n0, ..., nk〉, 〈l0, ..., lk〉〉, it is clear that we can compute
values ahj , bhj,∈ QF and mh, m′

h ∈ N such that

αe(nh) =
mh∑
i=0

ahiei and αe(lh) =
m′

h∑
j=0

bhjej

for all h = 0, ..., k. Then M with M(n) := max{mh, m′
h : h = 0, ..., k} is com-

putable and we can assume that all yet undefined values of ahj, bhj are zero. A
straightforward calculation using the linearity of the inner product shows that

α(n)(x) =
k∑

h=0

〈x, αe(nh)〉αe(lh) =
M(n)∑
j=0

M(n)∑
i=0

(
k∑

h=0

a∗
hibhj

)
〈x, ei〉 ej.

Since by C〈n, i, j〉 :=
∑k

h=0 a∗
hibhj clearly a computable function C is defined,

the claim follows. �

Now we prove that the space B∞(H) is actually a computable normed space,
which will allow us to compute with compact operators easily.

Proposition16. Let H be a computable Hilbert space. Then (B∞(H), || ||, α)
is a computable normed space. In particular, the following operations are com-
putable:

1. + : B∞(H) × B∞(H) → B∞(H), (T, T ′) �→ T + T ′,
2. · : F × B∞(H) → B∞(H), (λ, T ) �→ λT .
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Proof. We have to prove that the induced metric is computable on the dense
subset. That is, given n and n′, we have to compute ||α(n) − α(n′)||. We use
the computable functions M and C from the previous lemma and we let cij :=
C〈n, i, j〉, c′ij := C〈n′, i, j〉 and m := max{M(n), M(n′)}. Now we obtain by the
Theorem of Pythagoras and the assumption that (ej)j∈N is an orthonormal basis

||α(n) − α(n′)||2 = sup
||x||=1

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
j=0

m∑
i=0

(cij − c′ij)〈x, ei〉ej

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= sup
||x||=1

m∑
j=0

∣∣∣∣∣
m∑

i=0

(cij − c′ij)〈x, ei〉
∣∣∣∣∣
2

= sup
s∈Sm

m∑
j=0

∣∣∣∣∣
m∑

i=0

(cij − c′ij)si

∣∣∣∣∣
2

where Sm := {s = (s0, ..., sm) ∈ Fm+1 :
∑m

i=0 |si|2 = 1}. We note that the last
equality holds since by Parseval’s Identity ||x||2 =

∑∞
i=0 |〈x, ei〉|2 but for our

specific supremum above the Fourier coefficients 〈x, ei〉 of x with index i > m do
not contribute anything to the sum. Now the last supremum is a supremum over
a compact set, which can easily be computed (see2 Corollary 6.2.5 in [Wei00]).

By definition of α it is clear that

α〈k, 〈n0, ..., nk〉, 〈l0, ..., lk〉〉 + α〈k′, 〈n′
0, ..., n

′
k′〉, 〈l′0, ..., l′k′〉〉

= α〈k + k′ + 1, 〈n0, ..., nk, n′
0, ..., n

′
k′〉, 〈l0, ..., lk, l′0, ..., l

′
k′〉〉

and this shows that addition is computable with respect to α. Moreover, since

||(T + T ′) − (α(t) + α(t′))|| ≤ ||T − α(t)|| + ||T ′ − α(t′)||,
one can use approximations of T and T ′ in order to obtain an approximation of
T +T ′ of any desired quality. Altogether, this proves that addition is computable
with respect to the Cauchy representation δB∞(H). It is straightforward to show
that the multiplication with scalars is computable as well. �

The next lemma shows that the Cauchy representation of the set of compact
operators B∞(H) is natural in the sense that it allows to extract “programs”.
We will exploit this fact in the next section.

Lemma17. Let H be a computable Hilbert space. Then the injection

inj : B∞(H) ↪→ C(H,H)

is computable.
2 Since the dimension of the set Sm depends on the result of the computation, strictly

speaking, one has to use here the fact that a compact image under a continuous
function in �2 can be computed, which follows from Theorem 3.3 in [Wei03]. The
sequence (Sm)m∈N is a computable sequence in K(�2), embedded in the obvious way.
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Proof. Since the inner product is computable by Proposition 2, it follows from
the definition of α that evaluation is computable with respect to α. But that
together with the fact that ||Tx − α(n)(x)|| ≤ ||T − α(n)|| · ||x|| implies that

ev : B∞(H) ×H → H, (T, x) �→ Tx

is computable with respect to δB∞(H). This in turn implies that the injection
inj : B∞(H) ↪→ C(H,H) is computable (see Lemma 3.3.14 in [Wei00]). �

Now we are prepared to prove the main result of this section, which shows
that the spectrum map is fully computable for self-adjoint compact operators.

Theorem 18. Let H be a computable Hilbert space over F. Then the spectral
map

σ :⊆ B∞(H) → K(F), T �→ σ(T ),

defined for all normal compact operators in case of F = C and all self-adjoint
compact operators in case of F = R, is computable.

Proof. Similarly, as in the proof of Theorem 8 it suffices to show that

F : B∞(H) × F → R, (T, λ) �→ inf
||x||=1

||(λ − T )x||

is ([δB∞(H), δF], ρ)–computable, since by Proposition 6 we know that

distσ(T )(λ) = inf
||x||=1

||(λ − T )x||.

We first prove this fact for T = α(n). We use the computable functions M and
C from Lemma 15 and we let cij := C〈n, i, j〉 and m := M(n). We use the fact
that cij = 0 for all i and j ≥ m+1 and similarly as in the proof of Proposition 16
we obtain

inf
||x||=1

||(λ − T )x||2 = inf
||x||=1

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

j=0

(
λ〈x, ej〉 −

m∑
i=0

cij〈x, ei〉
)

ej

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= inf
||x||=1

∞∑
j=0

∣∣∣∣∣λ〈x, ej〉 −
m∑

i=0

cij〈x, ei〉
∣∣∣∣∣
2

= inf
s∈Sm+1

m+1∑
j=0

∣∣∣∣∣λsj −
m∑

i=0

cijsi

∣∣∣∣∣
2

,

where Sm := {s = (s0, ..., sm) ∈ Fm+1 :
∑m

i=0 |si|2 = 1}. Thus, since the con-
tinuous image of the recursive compact sets Sm is computable, we can compute
inf ||x||=1 ||(λ − T )x|| for T = α(n) for any given n and λ (as in the proof of
Proposition 16).

For an arbitrary compact T and ||x|| = 1 we obtain

||(λ − T )x − (λ − α(n))x|| ≤ ||T − α(n)|| · ||x|| = ||T − α(n)||,
which implies that the above map F is computable. �
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We say that a linear bounded operator T : H → H is computably compact,
if and only if it is a computable point in B∞(H). We immediately obtain the
following corollary of the previous theorem.

Corollary 19. Let H be a computable Hilbert space over F and T : H → H a
computably compact operator that is normal in case of F = C and self-adjoint in
case of F = R. Then σ(T ) is a recursive compact subset of F.

Here it is clear that in case of full computability of the spectrum there is no
result, which corresponds to the Spectral Representation Theorem 10 of compact
sets or its Corollary 11. This is because it is known that for compact operators the
spectrum coincides in F \ {0} with the point spectrum, i.e. the set of eigenvalues
and the spectrum is countable with 0 as only possible cluster point (see Theo-
rem 6.7 in [Wei80]). Thus, for instance the recursive compact set [0, 1] cannot be
the spectrum of a computably compact operator. The fact that the spectrum is
countable with only possible cluster point 0 also implies that any eigenvalue of a
self-adjoint computably compact operator is computable (as any isolated point
of an r.e. closed set is computable, see Proposition 3.6 in [BW99]). However, it is
even known that in general the eigenvalues of a self-adjoint computable operator
are computable [PER89, PER87].

7 Computability of the Resolvent Map

In this section we will briefly discuss computability properties of the resolvent
map R : (λ, T ) �→ (λ − T )−1. Roughly speaking we show that the resolvent
map is computable, whenever the spectrum is fully computable. We will use the
following representation of the set B(H) of bounded linear operators for this
purpose (see [Bra03] for representations of linear bounded operators in general).

Definition 20. Let a representation δB(H) of B(H) be defined by

δB(H)〈p, q〉 = T : ⇐⇒ [δH → δH](p) = T and ||T || = ρ(q)

for all p, q ∈ Σω.

Using the representation δB(H) we can prove the following result on com-
putability of the resolvent map.

Theorem 21. Let H be a computable Hilbert space over F and let Bσ be a rep-
resented class of linear bounded operators T : H → H, which are normal in case
of F = C or self-adjoint in case of F = R and such that the maps

1. inj : Bσ ↪→ C(H,H) and
2. σ : Bσ → K(F) are computable.

Then the resolvent map

R :⊆ F × Bσ → B(H), (λ, T ) �→ (λ − T )−1

with dom(R) = {(λ, T ) : λ ∈ F \ σ(T ), T ∈ Bσ} is computable as well.

1896 Brattka V., Dillhage R.: Computability of the Spectrum ...



Proof. First of all, we note that the inversion map

ι :⊆ C(H,H) × R → C(H,H), (T, b) �→ T−1,

defined for all (T, b) such that T : H → H is a bijective linear bounded operator
and ||T−1|| ≤ b, is computable (see Theorem 6.9 in [Bra01]). By Lemma 5

||(λ − T )−1|| =
1

distσ(T )(λ)

holds for all λ ∈ F \ σ(T ) and for all suitable T . If Bσ is a represented set of
suitable operators such that the spectrum map σ and inj are computable, then it
follows from the fact that F×C(H,H) → C(H,H), (λ, T ) �→ λ−T is computable
and

R(λ, T ) = (λ − T )−1 = ι

(
λ − T,

1
distσ(T )(λ)

)

that the resolvent map R restricted to λ ∈ F \ σ(T ) and T ∈ Bσ is computable
as well. Strictly speaking, ι yields (λ−T )−1 only as a point in C(H,H), but the
additional information ||(λ − T )−1||, which is required to obtain (λ − T )−1 as
point in B(H) is available by the equation above. �

Now Bσ can be chosen, for instance, as the set of all normal or self-adjoint
compact operators, depending on whether F = C or F = R, since by Lemma 17
and Theorem 18 it follows that the requirements are satisfied. We note that in the
finite-dimensional case all computable operators are automatically computably
compact.

Corollary 22. Let H be a computable Hilbert space over F. Then

R :⊆ F × B∞(H) → B(H), (λ, T ) �→ (λ − T )−1,

defined for all (λ, T ) such that λ ∈ F \ σ(T ) and T : H → H is a compact
operator, which is normal in case of F = C or self-adjoint in case of F = R, is
computable.

Theorem 21 might have other applications besides that for compact oper-
ators. An example is the application to the set Bσ = {T } ⊆ C(H,H) for a
single computable operator T : H → H of suitable type and with computable
spectrum.

Corollary 23. Let H be a computable Hilbert space over F and let T : H → H
be a computable operator, which is normal in case of F = C and self-adjoint in
case of F = R and such that the spectrum σ(T ) is a recursive compact set. Then

R(., T ) :⊆ F → B(H), λ �→ (λ − T )−1

with dom(R(., T )) = F \ σ(T ) is computable.

It is clear that this result is optimal in the sense that a recursively enumerable
spectrum would not suffice in general, as the following example shows.
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Example 2. We use F = R. Let a > 0 be a left-computable but not right-
computable real number. Then there is a self-adjoint operator T : �2 → �2

with σ(T ) = [0, a]. Let λ > a be some computable real number. Then λ �∈ σ(T )
and hence

||(λ − T )−1|| =
1

distσ(T )(λ)
=

1
λ − a

is not a computable real number either. Thus, R(λ, T ) is not a computable point
in B(�2).

Finally, we note that similarly, as Theorem 21 one could prove that the re-
solvent map R :⊆ F × Bσ → C(H,H) of self-adjoint operators is computable in
the complex case without the requirement that the spectrum is recursive, but
restricted to λ ∈ C \ R, since in this case an upper bound for ||(λ − T )−1|| can
be computed using

||(λ − T )−1|| ≤
∣∣∣∣ 1
Im(λ)

∣∣∣∣
(which holds true by Theorem 5.18 in [Wei80]).

8 Conclusions

In this paper we have studied questions regarding the computability of the spec-
trum of self-adjoint linear operators from the point of view of computable anal-
ysis. Roughly speaking, we have shown that the spectrum map of self-adjoint
operators (or normal operators in the complex case) on computable Hilbert
spaces is lower semi-computable and the map is even fully computable restricted
to compact operators. In a certain sense our uniform results are effectivizations
of corresponding topological properties, which have been studied in perturbation
theory (see [Kat66]).

We have also investigated the question in which sense this result is opti-
mal and we have seen that lower semi-computability cannot be strengthened in
the general case. Finally, we have seen that the resolvent map is computable,
provided the spectrum map is. The non-uniform versions of our results are gen-
eralizations of what has been proved by Pour-El and Richards [PER87, PER89].
Pour-El and Richards have also studied further questions regarding computabil-
ity of eigenvalues and the sequence of eigenvalues. Uniformizations of some of
these results can be found in [Dil05].

It is an interesting question how our results are related to similar results,
which have been established in constructive analysis (see [BB85, BI96, Ish91])
and up to which extend our results could be obtained via the realizability inter-
pretation of constructive analysis (see [Bau00, Lie04] for this topic). We will not
be able to answer this question conclusively here, but we can give a number of
pointers.

It seems that Proposition 2.6 in [BI96], which states that the approximative
spectrum of a self-adjoint operator on a separable Hilbert space is separable,
comes closest to our Theorem 8. In [BI96] it has also been shown that it can
be proved intuitionistically that the approximative spectrum coincides with the
spectrum (for self-adjoint operators), if and only if Markov’s prinicple holds.
It is known that Markov’s principle is valid in computable analysis (see e.g.
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Section 3.2.1 in [Lie04]). Another result in [BI96] is the Brouwerian Counterex-
ample 1.1, which shows that the statement “any normable self-adjoint operator
on �2 with located range has a compact approximative spectrum” implies the
limited principle of omniscience. This fact is underlined by our results in Sec-
tion 3, which show that the realizability interpretation of the above statement
is not valid in computable analysis.

Moreover, Corollary 3.5 in [BI96] seems to be the constructive counterpart of
our Theorem 18 with the slight difference that this and the aforementioned con-
structive results do not capture normal operators. The development of compact
operators in constructive analysis (see [Ish91]) follows a different line than our
approach in Section 6. Whereas for our representation of compact operators clo-
sure under addition comes for free and the fact that bounded sets are mapped to
compact ones effectively, requires some efforts. This is just the other way around
in the constructive approach. The results in Sections 3 and 6 demonstrate how
computable analysis can import results from classical functional analysis in or-
der to get certain shortcuts in proofs, which are not available in a rigorously
intuitionistic approach.

Another interesting result, namely Theorem 2.8 in [BI96] states that for any
self-adjoint operator T with bound b > 0 it holds that ||f(T )|| exists for each
f ∈ C[−b, b], if and only if the approximative spectrum of T is compact. Via
realizability theory this result should translate to the interesting non-uniform
statement that ||f(T )|| is computable for any computable f ∈ C[−b, b], if and
only if the spectrum σ(T ) is a recursive compact set (a uniform version could be
obtained as well).

Finally, it would also be interesting to study the relation between pertur-
bation theory and constructive analysis. Via a continuous realizability interpre-
tation results from constructive analysis should yield corresponding results in
perturbation theory. Under which conditions can one go the other way around?
These and other questions regarding the realizability interpretation still deserve
further attention.

From the computable analysis perspective, there are still a lot of open ques-
tions in spectral theory and regarding compact operators. Constructive analysis
can be a rich source of inspiration here, but there are also many questions,
which will probably not be answered by a realizability interpretation of exist-
ing results in constructive analysis, such as the question whether any compact
computable operator is automatically computably compact or which degree of
non-computability the sequence of eigenvalues has.
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