
From Algebras to Objects: Generation and Composition

A. M. Cruz
(Sidereus, Consultoria Informática, SA, Porto, Portugal

mcz@sidereus.pt)
L. S. Barbosa

(Di-Cctc, Universidade do Minho, Braga, Portugal
lsb@di.uminho.pt)
J.N. Oliveira

(Di-Cctc, Universidade do Minho, Braga, Portugal
jno@di.uminho.pt)

Abstract: This paper addresses objectification, a formal specification technique which
inspects the potential for object-orientation of a declarative model and brings the ’im-
plicit objects’ explicit. Criteria for such objectification are formalized and implemented
in a runnable prototype tool which embeds Vdm-sl into Vdm++. The paper also in-
cludes a quick presentation of a (coinductive) calculus of such generated objects, framed
as generalised Moore machines.

Key Words: software formal specification, object-orientation, object composition

Category: D.1.5, D.2.1, D.2.2

1 Introduction

The object oriented (OO) programming paradigm offers many advantages when
compared to old-style, flat imperative programming. Concepts such as encapsu-
lation, abstraction, inheritance, or “information hiding” are supplied in a natural
manner which eases the process of software maintenance.

However, it is often the case that the expressive power of a particular pro-
gramming language or paradigm is misused by programmers. Sooner or later,
these will end up writing unintelligible (authorship dependent) code which is
hard to maintain — a symptom observable at all programming levels. For in-
stance, arbitrary recursion and/or (side) effects have been considered harm-
ful in functional programming. Instead, programmers are invited to structure
their code around generic program devices such as e.g. fold/unfold combin-
ators (which bring discipline to recursion) and monads (which bring discip-
line to effects). The main advantage is that these devices (or program com-
binators) are semantically richer than their more primitive counterparts and
come equipped with calculi which make it possible to reason about programs
[Bird and Moor, 1997, Jacobs and Rutten, 1997].

What about object-orientation? Is a given class library always a “good”
design once it seems to look like what can be found in the real world? Under

Journal of Universal Computer Science, vol. 11, no. 10 (2005), 1580-1612
submitted: 17/6/05, accepted: 23/9/05, appeared: 28/10/05 © J.UCS

which design principles can we restructure “spaghetti” C++ code, for instance?
Can we re-write the same code around fewer, “better” structured classes? Should
we think (specify) in terms of objects or are objects just an attractive imple-
mentation device? In any case how do we reason compositionally about them?

The questions above are not easy to answer. Anyway, it won’t be difficult to
find object oriented code crowded with classes some of which could be dispensed
with. This happens wherever they don’t resort to what the OO paradigm offers
that other paradigms don’t, namely, the threaded interaction between objects.
Conversely, many functional programs can be found where the obsessive pres-
ence of accumulators and (side)effects suggests that programmers are writing
functionally what they think imperatively.

Similar symptoms affect the area of formal modelling, in particular since
formal notations are becoming available “in pairs” — a declarative notation
plus an “object oriented” extension. Examples of this are Vdm-sl/Vdm++

[Fitzgerald and Larsen, 1998, Fitzgerald et al., 2005], Z and Z++[Spivey, 1989,
Lano, 1991], and Z and Object-Z [Smith, 2000], among others. How these nota-
tion pairs should be used is not always obvious. Because the OO extension super-
sedes the original notation, users often end up sticking to the former and ignoring
the latter. Sooner or later, what could be elegantly modelled by state-less math-
ematic formulæ ends up being modelled over instance variable assignments and
the like, in a way such that a little gap remains between the OO specification
and a candidate reification.

In this paper we try to bridge the two worlds — the declarative and the
object oriented — by discussing criteria under which a declarative specification
in notation N can be objectified into notation N ++. For a particular such pair of
notations, Vdm-sl/Vdm++, we present a tool which animates such criteria in a
way such that models written in Vdm-sl are converted (objectified) to Vdm++

objects. By objectification we mean stepwise addition of OO ingredients which
are consistent with the original declarative specification. Of course, different
ingredients will lead to different kinds of objectification.

Among several criteria for identifying potential classes for inclusion in a OO-
model, Coad and Yourdon [Coad and Yourdon, 1991] suggest the following:

The potential class must have a set of identifiable operations that can
change the value of its attributes in some way.

This paper will focus on this particular dimension of object orientation. We will
infer class hierarchies from flat, functional models or programs by identifying
such attribute-changing operations. This identification of the instance variables
in each class — the internal state of objects of that class — is thus a corner-
stone of the objectification process. Formally the inferred objects behave like

1581Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

(generalizations of) Moore machines 1 which we regard as a particular family
of coalgebras for a functor capturing a signature of attributes and methods
[Rutten, 2000]. Once such a process is applied to a functional specification,
reasoning about the inferred objects and their composition patterns can be
done coinductively [Turi and Rutten, 1998, Vene, 2000]: bisimulation provides
a powerful proof technique to establish behavioural equivalence. Later in the
paper we introduce an algebra of Moore machines suitable for this purpose.

A few words on the paper’s structure. Our starting point is an empirical
study on the objectification of model-oriented specifications involving the Vdm-

sl/Vdm++ [Fitzgerald and Larsen, 1998, Fitzgerald et al., 2005] pair of nota-
tions. Therefore, the first part of this paper presents a prototype system which
embeds Vdm-sl into Vdm++ according to some formal criteria. In a sense,
this suggests that models should be written first in Vdm-sl and then lifted to
Vdm++, whereupon they can be enriched with OO specification details which
could not be expressed algebraically in Vdm-sl. So, there is a separation of con-
cerns: static semantics first, at algebraic level, dynamic semantics later, at the
coalgebraic one. Section 2 presents an overview of the proposed strategy and
tool. Class identification and method inference are discussed in sections 3 and
4, respectively.

The second part of the paper starts with a discussion of what has been
achieved and motivates the formalization of the inferred objects as (generalised)
Moore machines, whose calculi is presented in section 6. The paper closes with
section 7 which discuses related work and draws some conclusions which lead to
plans for future work.

2 Overview of the objectification process

This section describes in a concrete way the proposed strategy for generating
objects from functional specifications. Such a strategy is implemented by a tool
(fully specified in [Cruz, 2004]) which converts Vdm-sl functional models into
object oriented Vdm++ models. Concretely, a parser for Vdm-sl supplies the
abstract syntax tree (AST) of the source Vdm-sl model specification to the ob-
jectifier. The main goal of the objectifier is to identity classes of objects in the
AST of the Vdm-sl functional specification, by transforming this specification
into an object oriented specification in Vdm++. Once a Vdm++ AST is pro-
duced, the corresponding concrete syntax is then synthesized by an appropriate
pretty-printer tool. This paper is concerned only with the intermediate AST
transformation process.

Let us follow the overall strategy through an example. Assume that we are
given the following functional model of a Stack of strings,
1 In classical automata theory a Moore machine [Moore, 1966] is an automaton where

each state is associated to an output symbol.

1582 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

types

Elem = char∗;
Stack = Elem∗;

functions

push : Stack × Elem → Stack
push (s , e) �

[e] � s ;
pop : Stack → Stack
pop (s) �

tl s
pre s �= [] ;
top : Stack → Elem
top (s) �

hd s
pre s �= [] ;
empty : () → Stack
empty () �

[];

isEmpty : Stack → B

isEmpty (s) �
s = [];

which are regarded as sheets (or pages) in another functional model, that of a
Folder [Barbosa and Oliveira, 2003]. This is defined as a couple of stacks

types

Folder : : S1 : Stack
S2 : Stack

which are initially empty,

new : () → Folder
new () �

mk-Folder (empty (), empty ())

where one can insert or remove pages,

1583Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

functions

insert : Folder × Elem → Folder
insert (f , e) �

mk-Folder (f .S1, push (f .S2, e));
remove : Folder → Folder
remove (f) �

mk-Folder (f .S1, pop (f .S2))
pre ¬ isEmpty (f .S2) ;

turn pages forwards or backwards,

forward : Folder → Folder
forward (f) �

let x = top (f .S2) in

mk-Folder (push (f .S1, x), pop (f .S2))
pre ¬ isEmpty (f .S2) ;
backward : Folder → Folder
backward (f) �

let x = top (f .S1) in

mk-Folder (pop (f .S1), push (f .S2, x))
pre ¬ isEmpty (f .S1) ;

and read the current page:

read : Folder → Elem
read (f) �

top (f .S2)
pre ¬ isEmpty (f .S2) ;

The analysis of the signature of these algebraic models unveils four sorts
Folder , Stack , Elem and B (the Booleans) — candidate to be promoted to classes
— which are such that:

1. Elem never appears both as parameter and result of a function.

2. B never appears as parameter of a function.

3. Stack appears both as parameter and result of functions push and pop.

4. Folder appears both as parameter and result of several functions (insert ,
forward , backward and remove).

1584 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Functions such as push, pop, insert , forward , backward and remove are named
fold algebras in functional programming terminology [Bird and Moor, 1997]. In

general, a function with signature B × A θ �� A is called a fold algebra, be-
cause it can “fold” its computation cumulatively over type A:

b0 θ (b1 θ (b2 θ . . .))

Many programming schemata over inductive types are based on such algebras,
e.g. in finite list processing. For example, the Vdm-sl elems function can be
specified as a fold whose recursive step is based on fold-algebra b θa � a∪{b}.

Under a slight change in perspective, algebra θ can also be regarded as a
state-transition function (vulg. method) — a1 = b θ a0 describes the transition
of an automaton which inputs b and steps from state a0 to state a1:

��������a0
b �� ��������a1

From this viewpoint, inhabitants of datatype A are regarded as states, that is,
instance variables in OO-terminology.

The identification of algebras in the original specification which — such as
push and pop — have this alternative coalgebraic meaning [Rutten, 2000] is
central to the objectification strategy described in this paper, whereby one
obtains the “corresponding (obvious) methods”. Such will be, in fact, the flavour
of our objectification method, although things won’t be as easy and immediate
as that. We will also see that methods can be obtained by combining pairs of
suitably typed functions, for instance

〈top, pop〉 : Stack → Elem × Stack (1)

where the “split” combinator is such that 〈f , g〉x = (f x , g x). A method POP
with semantics POP = 〈top, pop〉 is indeed what an OO-programmer would write
in the first place, instead of the two individual functions. These splits are known
in the functional programming literature as instances of the state transformer
monad (ST) [Wadler, 1990].

Of course, not every “split” of two functions will lead to a ST-instance: one
of the functions is required to involve a “state-sort” both at argument and result
level, in order for the combination of the two functions to enable input-dependent
state updating and observation. In summary, what seems to be central to the
problem is the identification of “state-sorts”: these will be the sorts which will
lead to classes under this objectification criterion.

In our example, sort B is primitive in Vdm-sl and Elem is modelled by strings
of character, which is also a primitive datatype. So, only sorts Stack and Folder
are candidates to class-promotion. Even if Elem were not a primitive datatype
and one had decided to promote it into a class, this would never see its state

1585Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Class-Stack -Alg

Class-Stack -Obj

�����������
Class-Folder -Alg

�����������

Class-Folder -Obj

��

Figure 1: Class hierarchy for the classes generated by the objectification of Folder.

modified. For this reason, Elem shall be kept as a declarative type belonging to
the class Stack .

One will, then, obtain two classes of objects, named Class-Stack -Obj and
ClassFolder -Obj in Figure 1. Why are there two more classes (Class-Stack -Alg
and ClassFolder -Alg) in the diagram of Figure 1 and why are they hierachically
structured as they are? In the actual delivery of every such -Obj class, we have
decided to keep the original functional API as a “library” class (the correspond-
ing -Alg class), so that the newly generated operations (methods) are always
defined over the original, homonym functions In other words, the -Obj class
inherits from the corresponding -Alg class. For example, for function insert of
the folder class to invoke push of the stack class, it is necessary that the former
be defined as a subclass of the latter.

In this way, such classes act as Vdm-sl modules “embedded” in Vdm++

via the class mechanism of the latter. In summary, the objectification of the
functional specification of Folder leads to four classes hierarchically related as
illustrated in Figure 1. There are two purely functional classes that expose
the hierarchic relationship between the original functional models of Stack and
Folder , and two classes with state and public methods (termed operations in
the VDM terminology) that provide the object oriented API of reactive “ma-
chines” Stack and Folder . As can be checked by inspecting the Vdm++ code
fragments below, -Alg classes only have functions, not operations. This is why
we refer to them as being (purely) functional, or declarative. (See references
[Fitzgerald and Larsen, 1998, Fitzgerald et al., 2005] for more details about the
syntax and semantics of the Vdm-sl and Vdm++ notations.) In detail:

class Class-Stack -Alg
types

publicElem = N;
publicStack = Elem∗

1586 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

functions

public

pop : Stack → Stack
pop (s) �

tl s ;
public

top : Stack → Elem
top (s) �

hd s ;
public

push : Stack × Elem → Stack
push (s , el) �

[el] � s ;
public

empty : () → Stack
empty () �

[];
public

isEmpty : Stack → B

isEmpty (s) �
s = []

end Class-Stack-Alg

This class Class-Stack -Alg provides its functional core to class Class-Stack -Obj ,

class Class-Stack -Obj is subclass of Class-Stack -Alg
instance variables

public ST -Stack : Stack ;

which, in turn, will offer the corresponding object-oriented API for the outside,
dropping all Stack parameters from the original signatures as one would expect:

operations

public

OP -pop : () o→ ()
OP -pop () �

ST -Stack := pop (ST -Stack);
public

OP -top : () o→ Elem
OP -top () �

return top (ST -Stack);

1587Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

public

OP -push : Elem o→ ()
OP -push (el) �

ST -Stack := push (ST -Stack , el);
public

OP -empty : () o→ ()
OP -empty () �

ST -Stack := empty ();
public

OP -isEmpty : () o→ B

OP -isEmpty () �
return isEmpty (ST -Stack)

end Class-Stack-Obj

As far as Folder is concerned, class Class-Folder -Alg (Figure 1) inherits the
functionality of Class-Stack -Alg as a (functional) library module:

class Class-Folder -Alg is subclass of Class-Stack -Alg
types

Folder : : s1 : Stack
s2 : Stack

functions

public

new : () → Folder
new () �

mk-Folder (empty (), empty ());
public

insert : Folder × Elem → Folder
insert (f , el) �

mk-Folder (f .s1, push (f .s2, el));
public

remove : Folder → Folder
remove (f) �

mk-Folder (f .s1, pop (f .s2));
public

backward : Folder → Folder
backward (f) �

let x = top (f .s1) in

mk-Folder (pop (f .s1), push (f .s2, x));

1588 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

public

forward : Folder → Folder
forward (f) �

let x = top (f .s2) in

mk-Folder (push (f .s1, x), pop (f .s2))
end Class-Folder-Alg

Finally, class Class-Folder -Obj inherits the functionality of Class-Folder -Alg
and offers it in an imperative way:

class Class-Folder -Obj is subclass of Class-Folder -Alg
instance variables

public ST -Folder : Folder ;

operations

public

OP -new : () o→ ()
OP -new () �

ST -Folder := new ();
public

OP -insert : Elem o→ ()
OP -insert (e) �

ST -Folder := insert (ST -Folder , e);
public

OP -remove : () o→ ()
OP -remove () �

ST -Folder := remove (ST -Folder);
public

OP -backward : () o→ ()
OP -backward () �

ST -Folder := backward (ST -Folder);
public

OP -forward : () o→ ()
OP -forward () �

ST -Folder := forward (ST -Folder)
end Class-Folder-Obj

Figure 2 is an attempt to depict the process of building this class hierarchy.
We proceed to the formalization of the intuitions behind this process in the
section which follows.

1589Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Figure 2: Overview of objectification example. Filled boxes depict VDM types;
bold arrows with open arrow heads depict type dependences; open octagons
are functions; attribute-changing functions (fold algebras) are in grey; dashed
clusters are candidates for promotion to class; solid line clusters are obtained
classes.

3 Objectification criteria for class generation

3.1 Class inference

A Vdm-sl functional model can be divided in two main blocks — abstract
data type specification and function specification 2. Altogether, these form an
abstract model M = (S ,MS ,MΩ) where
2 We are deliberately ignoring the definition of constant values

[Fitzgerald and Larsen, 1998] which are not relevant for our purposes.

1590 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

– S is a set of (user-defined) sort symbols and Ω is a set of function symbols.

– MS : S → TS maps each sort to its definition, where TS is a polynomial
(recursive) type describing the abstract syntax of Vdm-sl type constructors.
All VDM primitive types such as N and B are embedded into TS , as well as
S itself via the embedding sort : S → TS 3.

– MΩ : Ω → (TS)∗ × TS is a (heterogeneous) algebraic signature mapping
every function symbol in Ω to its functionality.

Which members of S should be promoted to object classes is a decision which
depends on the analysis of M as a whole: they should be non primitive sorts
which come equipped with fold-algebras, that is, that appear simultaneously as
parameter and result of one or more functions. This ensures the existence of up-
dating functions essential to the future object’s behaviour, by state transition.

Some notation will ease the formalization of the chosen promotion criteria.
Everywhere the definition of sort s ∈ S involves another sort s ′ ∈ S , we say that
s directly depends on s ′ (or that s ′ participates in the construction of s) and
write s � s ′. In our running example, we have Folder � Stack � Elem. Formally,
we define � (the direct dependence relation) as follows,

s � s ′ ≡ s ′ ∈T (MS s) (2)

where generic membership ∈T extends traditional set-theoretic membership ∈P
to “shape” T. Details about this extension can be found in e.g. [Hoogendijk, 1997,
Oliveira and Rodrigues, 2004].

Let s ∈ S be a sort symbol, Ps be the set of function symbols in Ω that have
parameters involving sort s

Ps = {f ∈ Ω | s ∈T∗ π1(MΩ f)}

and Rs be a similar set concerning s as result:

Rs = {f ∈ Ω | π2(MΩ f) = (sort s)}
3 A polynomial type is, roughly speaking, a type whose definition involves Cartesian

product (written ×) and disjoint usion (written +), out of which other types (such
as eg. finite lists, etc) can be built. See reference [Visser, 2003] for details about the
polynomial definition of the abstract syntax of a given BNF grammar. In brief, the
conversion is synthesised by the following table:

Bnf notation Polynomial notation
α | β �→ α + β
αβ �→ α × β
α∗ �→ α∗

α+ �→ α × α∗
ε �→ 1

1591Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

The union of this two sets will be denoted by Ωs = Ps ∪ Rs .
For every pair s , s ′ ∈ S , let Ωs→s′ denote the set of all function symbols in

Ω which have result sort s ′ and at least one parameter type involving sort s :

Ωs→s′ = Ps ∩ Rs′ (3)

Let As denote the set of all fold-algebras over sort s found in Ω. In general,
As ⊆ Ωs→s ⊆ Ωs . We define predicate classProm s , meaning “sort s is class-
promotable”, as follows:

classProm s ≡
As �= {} ∨ Ωs �= {} ∧ 〈∃ s ′ �= s : s � s ′ : classProm s ′〉 (4)

where {} denotes the empty set. This definition rules out primitive types (which
are not in S , by construction) and requires at least (a) one s-fold-algebra or (b)
a function that has s as parameter or result, in which case s directly depends
on some other class-promotable s ′.

In our running example, Folder is class-promotable for two reasons: there are
several Folder -fold-algebras and Folder �Stack , Stack being class-promotable on
its own.

Class-promotable datatypes will serve to define the instance variables that
form the state of the respective classes. Every datatype which fails such a pro-
motion will have to be defined in some other way but, under what class? Criteria
for assigning such datatypes to classes are needed.

Let Cs denote the class originating from a sort s such that classProm s holds.
In our strategy, the datatypes to be defined inside class Cs are the following:

{s} ∪ {s ′ | s � s ′ ∧ ¬(classProm s ′)}
∪ {s ′ | s ′ � s ∧ ¬(classProm s ′) ∧ Ωs→s′ ∪ Ωs′→s �= {}})

That is to say, besides s itself, class Cs will declare

– the types that construct s and are not themselves promoted to class;

– all types s ′ that depend on s , are not themselves promoted to class and are
such that there exists at least one function whose signature involves s and
s ′, either as parameters or result.

In our example, Stack �Elem and Elem is not class-promotable. Thus Elem joins
class CStack . Although Folder �Stack , Folder is class-promotable, so it won’t join
CStack .

3.2 Classifying the functionality

So far we have identified which Vdm++ classes to generate and how to organize
them hierarchically. Our strategy is still lacking criteria for identifying which

1592 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

functions and methods should be created in each class. The set of all functions
to be declared in the context of class Cs is as follows:

As ∪ 〈
⋃

s ′ ∈ S : (classProm s ′) ⇒ s � s ′ : Ωs′→t ∪ Ωs→s′〉

This means that every function involving a parameter or result s ′ different
from s which is class-promotable can only be accepted in Cs if s ′ participates in
the definition of s , in which case it is provided higher in the hierarchy.

Every function which is not accepted by any Cs , together with its parameter
and result sorts, and all sorts shared by more than one Cs , form a top level
library S -Alg (default system algebra), from which every -Alg class inherits.

Last but not least, we are ready to address criteria for inferring methods
for class Ct out of the functions directly available or inherited by Ct under the
strategy presented above.

4 Method inference

So far, the objectification process delivers a collection of classes that deploy an
API similar to the original functional API, now with aditional operations encap-
sulated with the data structures over which they operate. The resulting API, may
however be enhanced by combining state-changing functionality with operations
which query that same state, leading to a more useful “Moore machine”.

There are at least two ways of pairing such functions:

(a) Split a state-transformer function with a state-query function in the way
suggested in section 2 via the pop and top example, recall (1). In this com-
bination, the state is observed before being updated.

(b) First invoke the operation that changes the state and then that which ob-
serves it. As an example, consider cash withdrawing in an ATM machine:
the receipt provided along with the money shows the account’s balance after
the subtraction of the required amount.

Let us see an example. Suppose that, upon objectification, the following func-
tions

f : t1 × t2 × ... × tn → t ′

g : t1 × t2 × ... × tn → t1
h : t1 → t1

are included in class Ct1 . Concerning pair f , g, criterion (a) above will offer the
extra Vdm++ method which follows

1593Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

F G : t2 × ... × tn
o→ t ′

F G (x2, ..., xn) �
let x = f (ST -t1, x2, ..., xn) in

(ST -t1 := g (ST -t1, x2, ..., xn); return x)
pre pre-g(ST -t1, x2, ..., xn) ∧ pre-f (ST -t1, x2, ..., xn) ;

and (b) will offer

G F : t2 × ... × tn
o→ t ′

G F (x2, ..., xn) � (
ST -t1 := g (ST -t1, x2, ..., xn); return f (ST -t1, x2, ..., xn))

pre pre-g(ST -t1, ..., xn) ∧ pre-f (g(ST -t1, ..., xn), ..., xn)) ;

In attempting to pair f , h criterion (a) is excluded, but (b) still works, as the
sequencing of the two operations doesn’t require the two functions to have the
same parameters:

H F : t2 × ... × tn
o→ t ′

H F (x2, ..., xn) � (
ST -t1 := h (ST -t1); return f (ST -t1, x2, ..., xn))

pre pre-h(ST -t1) ∧ pre-f (h(ST -t1), x2, ..., xn)) ;

Returning to the Stack example, the following methods will be offered for
free in the final API for synthesized class Class-Stack-Obj:

public

TopPop : () o→ Elem
TopPop () �

let x = top (ST -stack) in

(ST -stack := pop (ST -stack);
return x

)
pre ST -stack �= []

public

PopTop : () o→ Elem
PopTop () �

(ST -stack := pop (ST -stack);
return top (ST -stack)

)
pre ST -stack �= [] ∧ pop(ST -Stack) �= [] ;

1594 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

5 Objects as Moore machines

The approach described in the previous sections starts from a functional spe-
cification to generate corresponding OO classes by the identification of loci of
state. This is not, however, the unique way of introducing objects in a design. It
rather corresponds to what one may call the objectify as late as possible altern-
ative. Note that each OO class always inherits from an algebraic class which is
its direct correspondent, every method tracing its origin to a specific functional
service.

Between this conservative approach and the somewhat rasher objectify from
scratch attitude, another alternative is to start just with the functional spe-
cifications which are intended to generate the basic objects in the design. But
what does basic mean here? A suitable criteria would classify as basic modules
declaring operations whose semantics do not result entirely from a combina-
tion of imported operation’s calls. Intuitively Class-Stack -Alg is basic whereas
Class-Folder -Alg is not. Once such basic algebras are objectified, complex ob-
jects will arise by instance creation and object composition.

This approach requires the introduction of (at least conceptual) mechanisms
for instance creation and an algebra for object composition. Instance creation
requires grouping all methods into a single coalgebra and a naming mechanism.
For example, instances of class Class-Stack -Obj are given a name Stack and a
semantics specified by a pair of functions which aggregate together attributes
(OP -top and OP -isEmpty) and methods (OP -pop, OP -push and OP -empty):

oStack : Stack -→ Elem × B

aStack : Stack × (1 + Elem + 1) -→ Stack

where Stack is the sort of its internal state space (see Class-Stack -Obj) and
1 + Elem + 1 are the types of the input parameters of the object methods
mentioned above4. Note that attributes are aggregated by a split construction5

oStack = 〈OP -top,OP -isEmpty〉

whereas methods are composed in an additive context through an either pre-
composed with the right distributivity law:

aStack = [OP -empty,OP -push,OP -pop] · dr

4 1 denotes the singleton set whose unique element is, by convention, represented by
∗, and + stands for datatype sum, i.e., disjoint union of sets.

5 A split is the canonical function to a cartesian product, cf., equation (1). Dually an
either [f , g] :A+B -→ C is the canonical function from a coproduct or disjoint union
of sets: either f or g is applied to argument x : A + B , depending on x coming from
A or B .

1595Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

These two functions correspond, respectively, to the observer and action part
of a Moore machine: the split of oStack and (curried) aStack

〈oStack, aStack〉 : Stack -→ (Elem × B) × Stack1+Elem+1

yields a coalgebra for functor T = O×IdI , for O = Elem×B and I = 1+Elem+1.
I and O will be referred to in the sequel as the object interface types.

Modelling the generated objects by Moore machines provides immediately
a proof principle (bisimulation) for proving observational equivalence. But we
need more:

– First of all, the objectification process generates (typically) a number of dif-
ferent classes due to the possible identification of several state-promotable
sorts. This corresponds to starting, on the functional side, with heterogen-
ous (i.e., multisorted) models. This entails the need for (well-behaved) ways
of composing (concurrently) object instances of the generated classes. Such
is the purpose of combinators �, � and � to be introduced in next sec-
tion. In short, data heterogeneity at the functional level leads to concurrent
composition of object instances.

– Furthermore, it is often the case that functions in the original specification
involve more than one state-promotable sort. Such cross-referencing, which
has no special meaning at the functional level, is realized by some form of
interaction between the corresponding object instances.

– Finally, declarative specifications need not be purely functional, but may
allow themselves to follow a particular behavioural pattern (such as, for ex-
ample partiality or non determinism), which moreover is intended to be
preserved by composition.

The way we propose to take such behavioural effect into account is by intro-
ducing in the coalgebra signature a strong monad B 6 leading to the following
re-definition of funtor T:

T = O × BI (5)

6 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor[Kock, 1972]. B
being strong means there exist natural transformations τT

r : T × - =⇒ T(Id × -) and
τT
l : - × T =⇒ T(- × Id), called the right and left strength, respectively, subject to

certain conditions. Their effect is to distribute the free variable values in the context
“-” along functor B. Strength τr , followed by τl maps BI × BJ to BB(I × J), which
can, then, be flattened to B(I × J) via µ. In most cases, however, the order of
application is relevant for the outcome. The Kleisli composition of the right with the
left strength, gives rise to a natural transformation whose component on objects I
and J is given by δr = τrI ,J • τlBI ,J

Dually, δl = τlI ,J • τrI ,BJ . Such transformations
specify how the monad distributes over product and, therefore, represent a sort of
sequential composition of B-computations.

1596 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Generalized Moore machines are formally represented as coalgebras for this func-
tor, given by the split of two functions

〈op , ap〉 : Up -→ O × (B Up)I

where op : Up -→ O is the attribute and ap : Up × I -→ BUp is a state update
function corresponding to the aggregation of methods. Typically, O instanti-
ates to a Cartesian product

∏
x∈X Ox of different, but simultaneously available,

observers, whereas I takes the form of a sum
∑

y∈Y Iy of (state update, non
interfering) operations. If Y is regarded as a set of action names, Iy denotes the
type of the argument of operation y.

Such coalgebras need to be pointed, i.e., an initial state value up ∈ Up has
to be provided, corresponding to the default state value assigned at object cre-
ation. This acts as a seed for object behaviour. In algebraic specifications this
is often ommitted, meaning that any value of Up could be chosen; sometimes,
however, they are given by constant specifications (e.g., the empty list for the
stack example) or a suitable predicate. Then,

Definition 1. For interface types I and O , a Moore machine (generalized wrt
effect B) is specified as a (pointed) coalgebra

p = 〈γp : Up -→ 2, 〈op : Up -→ O , ap : Up -→ BU I
p 〉〉 (6)

where γp is referred to as the seed predicate.

The section which follows introduces the definition of some combinators, all of
them parametric on B, and a fragment of the resulting calculus. The combinators
include pipeline, i.e., a generalization of functional composition over objects
with disjoint state spaces running independently; hook, i.e., a partial pipeline in
which only specified pairs of attributes/methods are joined; wrapping, used to
costumize object interfaces (for e.g., to hide or to replicate a particular method)
and several forms of parallel composition.

For the moment, however, let us go back to our Stack/Folder example and
remark that at least two ways of building a folder from two stacks pop out
from the same algebraic specification. They are shown as two possible paths in
the diagram of Figure 3, where different types of arrows stand for alternative
engineering procedures.

– Following the path on the right, we proceed by importing Class-Stack -Alg
into another algebraic specification (Class-Folder -Alg) which is then objec-
tified. A folder is then an instance FolderO of this class obtained by direct
objectification of the corresponding algebra. This corresponds to the Vdm

objectification exercise presented in the first part of this paper.

1597Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Class-Stack -Alg
Objectify

�� ������������

������������
Import

��
Class-Stack -Obj

CreateInstance

��

Class-Folder -Alg

Objectify

��
L.Stack, R.Stack

ObjectCompose

�� ��
��
��

Class-Folder -Obj

CreateInstance

��
FolderC FolderO

Figure 3: Alternative paths to objectification.

– The alternative path on the left brings objectification earlier to the process
and produces a OO class of stacks (Class-Stack -Obj). A folder is built by cre-
ating two instances L.Stack and R.Stack of this class, modelling respectively
the left and right piles in the folder. They are then appropriately combined,
resorting to a calculus to be presented in the sequel.

An interesting question concerns the relationship between objects FolderO

(after folder by objectification) and FolderC (after folder by composition). Actu-
ally, as shown in sub-section 6.2, they correspond to bisimilar Moore machines. In
the general case, however, one may act as a refinement [Meng and Barbosa, 2004]
of the other. Before dwelling in these issues, let us review briefly the underlying
object calculus.

6 A Calculus of (generalised) Moore machines

6.1 Object combinators

The algebra of generalised Moore machines is expressive enough to capture sev-
eral object instance composition patterns. In the sequel we introduce a number of
combinators and (a fragment of the) calculus which enables compositional reas-
oning about object-oriented designs. Such laws are typically equations stated in
terms of observational equivalence 7.

For this purpose we first need a notion of morphism. Fortunately the general
theory of coalgebras provides such a notion: a morphism relating two coalgebras
7 Refinement laws, witnessing object simulation, have been studied in

[Meng and Barbosa, 2004], although in the broader context of coalgebraic modelling.

1598 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

is just a function between their state spaces with commutes with the coalgebra
dynamics. For Moore machines h : p -→ q is a morphism from p to q iff

(O × BhI) · p = q · h (7)

which can be re-written into

op = oq · h ∧ Bh · ap = aq · (h × id) (8)

Additionally the following preservation condition for seeds should hold

γp = γq · h (9)

A notion of a morphism entails for free a notion of equivalence. Again a
general result in the coalgebra theory asserts that the existence of a morph-
ism between two Moore machines is enough to prove they are bisimilar. This
provides a proof technique for the Moore calculus: proofs are presented in the
Bird-Merteens pointfree calculation style [Bird and Moor, 1997] popularised in
the functional programming community, and therefore do not rely on the explicit
construction of bisimulations (as done in mainstream coalgebra literature).

Our first combinator is pipelining: two objects p and q are placed side by
side, connecting the output attribute of p to the input of q action. Formally,

Definition 2. Pipeline p ; q : I -→ O is given 8 by

p ; q = 〈γp;q : Up × Uq -→ B, 〈op;q , ap;q〉〉 (10)

op;q = Up × Uq
π2 �� Uq

oq �� O

ap;q = Up × Uq × I xr �� Up × I × Uq
ap×id �� BUp × Uq

τr �� B(Up × Uq)

B〈id,op ·π1〉 �� B(Up × Uq × K) Ba �� B(Up × (Uq × K))

B(id×aq) �� B(Up × BUq)
Bτl �� BB(Up × Uq)

µ �� B(Up × Uq)

op;q = ∧ ·(γp × γq)

Clearly, sequential composition is associative, i.e., for p, q and r suitably typed

(p ; q) ; r ∼ p ; (q ; r) (11)

To investigate the existence of units for ; requires a prior introduction of a
mechanism for representing functions as objects which is done through a sort of
‘mirror mechanism’:
8 The definition makes use of a few natural isomorphisms, namely a : (A×B)×C -→

A×(B×C) (associativity), s :A×B -→ B×A (commutativity) and xr :A×B×C -→
A × C × B (defined by xr = a◦ · (id × s) · a.

1599Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Definition 3. A function f : A -→ B is represented by

�f � = 〈b ∈ B , 〈idB , ηB · f · π2〉〉

i.e., by a coalgebra B -→ B × (BB)A.

Note that, in general, the representation of f is not unique. Even worse, the
possible representations are not bisimilar. We shall come back to this soon. For
the moment, consider

copyK = �idK�

Is this a unit for sequential composition? Let p : I -→ O be a component. We
want to discuss whether equations

copyI ; p ∼ p (12)

p ; copyO ∼ p (13)

hold. The obvious choice of morphisms to witness bisimulations in equations (12)
and (13) is, respectively, π2 : I × Up -→ Up and π1 : Up × O -→ Up . It is easy
to prove that these morphisms commute with the action part of the respective
objects. For the observers, however, one has:

ocopyI ;p = op · π2

but
op;copyO

= ocopyO
· π2 �= op · π1

Anyway, should both p ; copyO and p be observed after action takes place, the
result would be the same, because the ‘expected’ value would be already stored
in the state of copyO . This leads to the following definition of a next morphism.

Definition 4. A next morphism from p : I -→ O to q : I -→ O is a function
h : Up -→ Uq such that

Bop · ap = Boq · aq · (h × id) (14)

and

Bh · ap = aq · (h × id) (15)

Two components p and q are next bisimilar, written as p •∼ q iff there is a seed
preserving next morphism h : p -→ q relating them.

Lemma5. The composition of next morphisms is a next morphism. Moreover,
every morphism is also a next morphism.

1600 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Proof. Let h : p -→ q and k : q -→ r be next morphisms. Then,

ar · ((k · h) × id)

= { × functor and k is a next morphism }
Bk · aq · (h × id)

= { B functor and h is a next morphism }
B(k · h) · ap

and

Bop · ap

= { h is a next morphism }
Boq · aq · (h × id)

= { k is a next morphism }
Bor · ar · (k × id) · (h × id)

= { × functor }
Bor · ar · ((k · h) × id)

We shall now prove that every morphism is a next morphism: if h :p -→ q is a morphism
it already meets (15). It furthermore satisfies (14) because

Bop · ap

= { h is a morphism (attribute condition) and B functor }
Boq · Bh · ap

= { h is a morphism (action condition) }
Boq · aq · (h × id)

�

We may thus conclude that p ; copyO
•∼ p holds. Therefore, Moore machines

and next morphisms form a category. Instead of going deep into the theorectical
details (the reader is referred to [Barbosa, 2001]) we prefer to unveil a bit more
of the envisaged calculus. The result which follows, whose proof is included to
illustrate the pointfree reasoning style mentioned above 9, shows that pipelining
is actually the object extension of functional composition.

Lemma6. Let g : I -→ K and f : K -→ O be functions. Then,

�f · g� ∼ �g� ; �f � (16)

Proof. Equation (16) will be proved by checking that π2 : K × O -→ O is a morphism
from �g� ; �f � to �f · g�. For the observers part note that

o�g�;�f � = π2 · idO = o�f ·g�

9 This proof, as any other one in the calculus, is parametric on monad B. Such a
genericity would be very difficult to express in a conventional pointwise proof style.

1601Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

holds. On the other hand,

Bπ2 · a�g�;�f �
= { ; and function lifting definitions }

Bπ2 · µ · Bτl · B(id × (η · f · π2)) · Ba · B〈id, π1〉 · τr · ((η · g · π2) × id) · xr

= { η is a strong natural transformation: τl · (id × η) = η }
Bπ2 · µ · η · B(id × (f · π2)) · Ba · B〈id, π1〉 · τr · ((η · g · π2) × id) · xr

= { monad axioms: µ · η = id }
Bπ2 · B(id × (f · π2)) · Ba · B〈id, π1〉 · τr · ((η · g · π2) × id) · xr

= { routine: (id × π2) · a = π1 × id }
Bπ2 · B(id × f) · B(π1 × id) · B〈id, π1〉 · τr · ((η · g · π2) × id) · xr

= { × absorption: (f × g) · 〈h, k〉 = 〈f · h, g · k〉 }
Bπ2 · B〈π1, f · π1〉 · τr · ((η · g · π2) × id) · xr

= { × cancellation: π1 · 〈f , g〉 = f and π2 · 〈f , g〉 = g }
Bf · Bπ1 · τr · ((η · g · π2) × id) · xr

= { η is a strong natural transformation: τr · (η × id) = η }
Bf · Bπ1 · η · (g × id) · (π2 × id) · xr

= { η is natural: η · f = Bf · η }
η · f · π1 · (g × id) · (π2 × id) · xr

= { × cancellation }
η · f · g · π1 · (π2 × id) · xr

= { routine: π1 · (π2 × id) · xr = π2 · (π2 × id) }
η · f · g · π2 · (π2 × id)

= { function lifting definition }
�f · g� · (π2 × id)

�

Directly connected to function lifting is the wrapping combinator which en-
capsulates objects’s pre- and post-composition with lifted functions. Formally,

Definition 7. For an object p : I -→ O and functions f : I ′ -→ I , g : O -→ O ′,
define

-[f , g] : Cp(I ,O) -→ Cp(I ′,O ′)

mapping 〈γp , 〈op , ap〉〉 into 〈γp , 〈op[f ,g], ap[f ,g]〉〉, where

op[f ,g] = Up
op----------------------→ O

g
----------------------→ O ′

ap[f ,g] = Up × I ′ id×f
----------------------→ Up × I

ap----------------------→ BU

The following result can be established in terms of next bisimilarity:

1602 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Lemma8. For any machine p : I -→ O and functions f : I ′ -→ I , g : O -→ O ′,
f ′ : J -→ I ′ and g ′ : O ′ -→ R,

p[f , g] •∼ �f � ; p ; �g� (17)

p[f , g][f ′, g ′] •∼ p[f · f ′, g ′ · g] (18)

Object aggregation is captured by two tensor products: �, which corresponds
to synchronous product, and �, which captures a notion of choice between the
available methods. The composite object p � q executes simultaneously both
actions and offers the product of both attributes. Formally,

Definition 9. Let p : I -→ O and q : J -→ R. Then,

p � q = 〈γp�q , 〈op�q , ap�q〉〉
where

γp�q = Up × Uq
γp×γq �� 2 × 2 ∧ �� 2

op�q = Up × Uq
op×oq �� O × R

and

ap�q = Up × Uq × (I × J)
∼= �� Up × I × (Uq × J)

ap×aq �� BUp × BUq
δl �� B(Up × Uq)

On the other hand, composition p � q, although also yielding the product of
attributes, behaves either as p or q depending on input. Formally,

Definition 10. The choice combinator is defined as

p � q = 〈γp�q , 〈op�q , ap�q〉〉
where

γp�q = Up × Uq
γp×γq �� 2× 2 ∧ �� 2

op�q = Up × Uq
op×oq �� O × R

ap�q = Up × Uq × (I + J)
∼= �� Up × I × Uq + Up × (Uq × J)

ap×id+id×aq �� BUp × Uq + Up × BUq

τr+τl �� B(Up × Uq) + B(Up × Uq) � �� B(Up × Uq)

where � = [id, id] is the codiagonal function.

1603Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Both combinators are associative, commutative whenever B is a commutative
monoid and commute with pipeline. The unit of � is object idle = �id1� (the
lifting of the identity) whereas the unit of � is nil = �!∅� (the lifting of the
unique function from ∅ to 1). As one would expect the unit for � acts a zero
element for �.

Concurrent composition, in which objects execute either simultaneous or in-
dependentely, is captured by yet another tensor � which combines both � and
�. Formally,

Definition 11. Let p : I -→ O and q : J -→ R. Then,

p � q = 〈γp�q , 〈op�q , ap�q〉〉

where

γp�q = γp�q

op�q = op�q

ap�q = Up × Uq × (I + J) + I × J
∼= ��

Up × Uq × (I + J) + Up × Uq × (I × J)

ap�q+ap�q �� B(Up × Uq) + B(Up × Uq)
� �� B(Up × Uq)

Object interaction is dealt through a family of hook combinators which allow
a value read in an attribute to be fed back as the argument of a method.

Definition 12. Let p : I -→ O be a component and assume I =
∑

y∈Y Iy ,
O =

∏
x∈X Ox such that Ii = Jj , for indices i and j . The hook combinator on

position i , j is defined by

p �i,j = 〈γp , 〈op�i,j , ap�i,j 〉〉

where

op�i,j = op

ap�i,j = Up × (I + 1)
∼= �� Up × I + Up

ap+Φi,j�� BUp + BUp
� �� BUp

where

Φi,j = Up
〈id,op〉 �� Up × O

id×πj �� Up × Oj
id×ii �� Up × I

ap �� BUp

Reference [Barbosa, 2001] proves a number of laws for these combinators. For
example, it is easy to show that pipelining is a special (total) case of hook. The
calculus also provides other combinators (and corresponding laws): for example

1604 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

a delay combinator δp which replicates the state space of p so that one copy
of Up always maintains the previous state value. It also includes a proviso for
representing autonomous internal (hidden) activity within the calculus.

Due to space limitations we shall now close this glimpse over the calculus
and proceed to applying it to build the FolderC object mentioned in Figure
3. Our main target is to compare this with the result of the objectification
process applied to the Folder declarative specification which leads to FolderO,
as discussed in the first part of this paper.

6.2 The Folder example

This subsection discusses how two instances of Class-Stack -Obj can be assembled
together to yield a Folder object. Our starting point are two copies L.Stack and
R.Stack of a Class-Stack -Obj instance Stack wrapped by [id, π1] to hide observer
OP -isEmpty10 which plays no role in the folder specification. For readers’ con-
venience object’s input/output signatures are shown decorated with the names
of the corresponding methods or attributes, as in

Stack[id, π1]

�

(empty : 1) + (push : Elem) + (pop : 1)

�

top : Elem

Our next step is to aggregate both stack instances concurrently, via �, and
wrap the composite on both input and output sides, as follows. Let

IL.Stack = L.empty : 1 + L.push : Elem + L.pop : 1

denote the input interface of instance L.Stack, obtained by prefixing with in-
stance identifier L. all the original methods, and assume a similar convention
for R.Stack. According to Def. 11, the input interface of L.Stack � R.Stack is
IL.Stack�R.Stack = (IL.Stack + IR.Stack) + IL.Stack × IR.Stack, which makes far more
methods available than the ones required for building a folder object 11. There-
fore, embedding

sel : (L.empty, R.empty) : 1× 1 + R.pop : 1 + R.push : Elem +

+ (L.pop, R.push) : 1× Elem + (L.push, R.pop) : Elem × 1

-→ IL.Stack�R.Stack

10 In the sequel, method and attribute identifiers OP -mth (as in OP -isEmpty) will be
replaced by the more concise notation mth (as in isEmpty).

11 For example, joint method (L.new, R.pop) plays no role in the assembly.

1605Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

selects the relevant methods.
Interaction between the two stacks, as required to implement the folder’s

forward method, is specified by feeding back attribute L.top as an argument
to method R.push. A similar combination of R.top and L.push yields method
backward12. This is, however, only part of the picture: the correct implementation
of forward requires that L.pop is also simultaneously performed. We will resort
to the hook combinator in order to connect the joint method (L.pop, R.push) to
attribute L.top, paired with a dummy parameter ∗ :1 which acts as an input for
L.pop. A similar scheme applies to the implementation of backward. Such output
extensions are performed by wrapping the composite output with isomorphism

ext : L.top : Elem × R.top : Elem -→ (1× Elem) × (Elem × 1)

By puting everything together, and keeping in mind that methods forward and
backward are realized by feeding back the first (respectively, second) output
factor into the fourth (respectively, fifth) input additive component, one obtains

(L.Stack � R.Stack)[sel, ext]�4,1-5,2

which is of type

1× 1+ Elem + 1 + 1×Elem + Elem × 1 + 1 + 1 -→ (1×Elem)× (Elem × 1)

Note that the application of hook yields two new methods activated by a trivial
input of type 1 (which models, say, the pushing of a button), but retains all the
already available methods. Therefore a final step is necessary to conform this
object with the intended folder signature. This amounts to getting rid of un-
used methods, by hiding the original stack attributes and relabeling operations.
Formally, we obtain

FolderC = (L.Stack � R.Stack)[sel, ext]�4,1-5,2 [relb, hide]

of type

new : 1 + insert : Elem + remove : 1 + forward : 1 + backward : 1 -→ 1

where the relabelling function relb = [, i2, i3, i6, i7] is a case analysis defined as
an either, and hide = ! is just the (universal) function which collapses any data
into the singleton set 1.

We are finally in position to discuss the relationship between FolderO and
FolderC, which corresponds to two alternative ways of building a folder out of
an class component modelling stacks, emphasizing, respectively, objectification
or composition.
12 In a sense, this is the classical ’recipe’ of process algebra [Milner, 1999]: interaction

amounts to parallel composition with synchronization on shared points (i.e., actions
in a typical process calculi, attribute/method pairs above).

1606 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

Lemma13. Objects FolderO and FolderC, as specified above, are bisimilar, i.e.,

FolderO ∼= FolderC

Proof. First notice that the state spaces of both FolderC and FolderO are of type Stack×
Stack , by definition of � in the former case, by construction of sort Folder , in the
latter. Noting that there are no visible attributes involved and assuming both objects
are initialized with a pair of empty stacks, the identity on Stack × Stack provides
a Moore machine morphism which is enough to establish bisimilarity. Note that, on
the absence of attributes, there is no need to restrict ourselves to next-bisimilarity.
To establish state identity as a morphism between coalgebras underlying FolderC and
FolderO amounts to prove the equivalence of each pair of corresponding methods. As
such methods are aggregated through an either, the proof can be made independently
for each method involved. We sketch below the proof of equivalence between method
forward in FolderC and the original OP -forward in FolderO. Let u ∈ Stack × Stack
represent the current state value.

aFolderC (u, forward)

= { wrapping, relb embedding }
a(L.Stack�R.Stack)[sel,ext]�4,1-5,2 (u, i6∗)

= { hook definition }
Φ4,1 u

= { unfolding definition of Φ4,1 }
a(L.Stack�R.Stack)[sel,ext] · (id × i4) · (id × π1) · 〈id, o(L.Stack�R.Stack)[sel,ext]〉u

= { wrapping definition }
a(L.Stack�R.Stack)[sel,ext] · (id × i4) · (id × π1) · 〈id, ext · o(L.Stack�R.Stack)〉 u

= { � definition }
a(L.Stack�R.Stack)[sel,ext] · (id × i4) · (id × π1) · 〈id, ext · oL.Stack × oR.Stack〉 u

= { × absorption }
a(L.Stack�R.Stack)[sel,ext]〈id, i4 · π1 · ext · oL.Stack × oR.Stack〉 u

= { definition of L.Stack and R.Stack attributes, isomorphism ext }
a(L.Stack�R.Stack)[sel,ext]〈u, (i4 · π1) ((∗, L.top(π1 u))(R.top(π2 u), ∗))〉

= { × cancellation }
a(L.Stack�R.Stack)[sel,ext]〈u, (i4 (∗, L.top(π1 u))〉

= { sel embedding, � definition }
(L.pop(π1 u)), R.push(π2 u, L.top(π1 u)))

= { Class-Folder-Obj definition }
forward u

= { Class-Folder-Obj definition }
OP -forward ∗

�

1607Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

7 Conclusions and future work

This paper addresses the problem of devising suitable class hierarchies within
the context of object-oriented system development. The paper consists of two
parts: a methodology to lift an algebraic specification of a system into a class
hierarchy is presented first, followed by a calculus for modeling and reasoning
about a class hierarchy and its dynamical behaviour.

The approach includes objectification, a formal specification design technique
which inspects the object-oriented potential of a declarative model and brings
the implicit objects explicit. Criteria which detect such object-orientedness and
decide about the structure and contents of the target class hierarchy are formal-
ized and implemented in a tool prototype which embeds Vdm-sl into Vdm++.
Once such implicit objects have been generated and framed as generalised Moore
machines, reasoning about their composition can be conducted coinductively in
a modular way.

As a formal modelling technique, objectification brings with it a declarative-
first approach to formal specification and a separation of concerns: one should
model static semantics first, let this model evolve into a minimal OO model
and — finally — specify on top of this all complex behavioural aspects of the
original problem. In this way one is safe from too convoluted start-up object-
models which may compromise design simplicity and elegance — two important
aspects of formal modelling — in the long run.

We don’t claim completeness and correctness of the proposed objectification
criteria. Surely, there is much future work in this respect. For instance, the
inspection of function bodies and type definitions will bring about other program
analysis techniques, namely slicing [Weiser, 1981]. Moreover, some polynomial
type patterns can be detected which improve the target class hierarchy in a way
which maximizes record subtyping [Oliveira, 1997].

Moving on to more immediate improvements, the fact that the current version
of the prototype tool only inspects functional (deterministic) fold-algebras is
not a shortcoming of the approach: it can be easily extended to relational fold-
algebras, which are specified in Vdm-sl via pre/post -conditions. Moreover, the
identification of promotable types should be extended from sort names (in S)
to type expressions (in TS) that are not associated to a sort name. Another
foreseeable improvement has to do with parameter “flipping” and currying in
the generation of new methods such as TopPop.

On the other hand, the shift of emphasis from inheritance to object com-
position paves the way to component-based design in a perspective similar to
that of [Nierstrasz and Dami, 1995, Jifeng et al., 2003] or [Arbab, 2003]. Going
further in this direction would mean, first of all, to split methods’ invocation
into an input and an output interaction, formalized as specific named ports (see
[Barbosa and Barbosa, 2004] for preliminary work on that direction). This will

1608 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

enable object (or component) deployment as the specification of activation pat-
terns for such ports — for example an object of class Class-Stack -Obj could be
deployed in a context requiring the activation of a fixed number of pushes before
a pop is allowed to occur. Yet another step will introduce such port names in
the coalgebra state data, such that the object interaction abilities will change
dynamically, open the way to model some form of mobility.

8 Related work

The proposed objectification technique is related to similar wwork developed in
the area of reverse engineering and software restructuring aiming at re-implemen-
tation towards object-oriented code. References, like e.g. [Gall and Klösch, 1996],
[Gall et al., 1995], [Bellay and Gall, 1998] and [Pinzger et al., 2004] present stra-
tegies for converting conventional (non-object-oriented) code into object oriented
one, provided that the target object oriented language is an extension of the ori-
ginal procedural language (e.g. C to C++, PASCAL to Object Pascal). The
transformation process is developed at a level that is very close to the source
code, and aims at modifying it as little as possible. This (manual) transformation
is based on the “knowledge” of software engineers about class identification. A
methodology for reverse engineering of procedural code, based on a diagrammatic
abstraction of the original system is presented in [Cheng and Auernheimer, 1993].
The diagrams thus obtained are a basis for the subsequent formal specification
of the system.

References [Gannod and Cheng, 1996] and [Gannod and Cheng, 2001] pre-
sent a method for C-code reverse engineering. This approach is based on weak-
est/strongest preconditions and is adaptable to any procedural language. In par-
ticular it is shown how, at a later stage, classes of objects can be identified
using the logic abstraction created earlier, aiming at restructuring the software
towards the object oriented paradigm. The methodology considers an object as
an abstract data type, objects being identified by a number of guidelines. The
objectification techniques put forward in the current paper take decisions similar
to the ones in [Cheng and Gannod, 1993].

For maintaining bad documented and unspecified legacy code some tech-
niques have been developed for code decompilation and reversal to Z++ nota-
tion [Bowen et al., 1993]. These techniques have been studied for COBOL and
FORTRAN code reversal, and are divided in three stages [Bowen et al., 1993]:
clean, specify and simplify. Prior to the last step, through a method of functional
abstraction, the code itself is reverse engineered to a first order functional lan-
guage, in which there are only two constructors: functional composition f a and
conditional expressions if e then a else b. With this two constructs its possible to
represent the program’s functionality through a set of equations. In the last step,
one tries to form hierarchies between classes of objects. Functional equations,

1609Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

obtained in the previous phase, are relaxed to relational equations. The relational
equations are than applied as a set of transformations and simplifications.

The calculus of Moore machines introduced in section 6 is in debt to previ-
ous research of the second and third authors on coalgebraic calculi for software
component’s models, as documented in references [Barbosa and Oliveira, 2003,
Barbosa, 2003, Barbosa et al., 2005]. Such work, however, does not cover the
object’s model and calculus proposed here.

Acknowledgments

The work reported in this paper has been carried out in the context of the
PURe Project (Program Understanding and Re-engineering: Calculi and Ap-
plications) funded by Fct (the Portuguese Science and Technology Foundation)
under contract POSI/ICHS/ 44304/2002.

The contributions by Joost Visser to an earlier version of this paper are
gratefully acknowledged. The Vdm++ and Vdm-sl AST modules imported by
the current version of the prototype tool have been borrowed from Ifad Ltd
(Denmark) under a non-disclosure agreement.

References

[Arbab, 2003] Arbab, F. (2003). Abstract behaviour types: a foundation model for
components and their composition. In de Boer, F. S., Bonsangue, M., Graf, S., and
de Roever, W.-P., editors, Proc. First International Symposium on Formal Methods
for Components and Objects (FMCO’02), pages 33–70. Springer Lect. Notes Comp.
Sci. (2852).

[Barbosa, 2001] Barbosa, L. (2001). Components as Coalgebras. PhD thesis, Univer-
sidade do Minho.

[Barbosa, 2003] Barbosa, L. S. (2003). Towards a Calculus of State-based Software
Components. Journal of Universal Computer Science, 9(8):891–909.

[Barbosa and Oliveira, 2003] Barbosa, L. S. and Oliveira, J. N. (2003). State-based
components made generic. In Gumm, H. P., editor, CMCS’03, Elect. Notes in Theor.
Comp. Sci., volume 82.1. Elsevier.

[Barbosa et al., 2005] Barbosa, L. S., Sun, M., Aichernig, B. K., and Rodrigues, N.
(2005). On the semantics of componentware: a coalgebraic perspective. In He, J.
and Liu, Z., editors, Mathematical Frameworks for Component Software: Models for
Analysis and Synthesis, Series on Component-Based Development. World Scientific.

[Barbosa and Barbosa, 2004] Barbosa, M. and Barbosa, L. (2004). Specifying Soft-
ware Connectors. In Araki, K. and Liu, Z., editors, Proc. First International Col-
loquim on Theoretical Aspects of Computing (ICTAC’04), Guiyang, China, pages
53–68. Springer Lect. Notes Comp. Sci. (3407).

[Bellay and Gall, 1998] Bellay, B. and Gall, H. (1998). Reverse engineering to recover
and describe a system’s architecture. In ESPRIT ARES Workshop, pages 115–122.

[Bird and Moor, 1997] Bird, R. and Moor, O. (1997). The Algebra of Programming.
Series in Computer Science. Prentice-Hall International.

[Bowen et al., 1993] Bowen, J., Breuer, P., and Lano, K. (1993). Formal specifica-
tions in software maintenance: From code to Z++ and back again. Information and
Software Technology, 35(11/12):679–690.

1610 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

[Cheng and Auernheimer, 1993] Cheng, B. and Auernheimer, B. (1993). Applying
formal methods and object-oriented analysis to existing flight software. In Proc. of
18th Annual Software Engineering Workshop, Greenbelt, Maryland, pages 274–282.

[Cheng and Gannod, 1993] Cheng, B. and Gannod, G. (1993). A two-phase approach
to reverse engineering using formal methods. In Formal Methods in Programming
and Their Applications, pages 335–348.

[Coad and Yourdon, 1991] Coad, P. and Yourdon, E. (1991). Object-Oriented Ana-
lysis. Prentice Hall, 2nd edition.

[Cruz, 2004] Cruz, A. (2004). Objectification of formal specifications. Master’s thesis,
University of Minho. (in Portuguese).

[Fitzgerald and Larsen, 1998] Fitzgerald, J. and Larsen, P. (1998). Modelling Sys-
tems: Practical Tools and Techniques for Software Development . Cambridge Uni-
versity Press, 1st edition.

[Fitzgerald et al., 2005] Fitzgerald, J., Larsen, P., Mukherjee, P., Plat, N., and Verhoef,
M. (2005). Validated Designs for Object–oriented Systems. Springer, New York.

[Gall and Klösch, 1996] Gall, H. and Klösch, R. (1996). Improving reusability of leg-
acy applications through object-oriented re-architecturing. Technical report, DSD,
Technical University of Vienna.

[Gall et al., 1995] Gall, H., Klösch, R., and Mittermeir, R. (1995). Architectural trans-
formation of legacy systems. In Proceedings of the ICSE-17 Workshop on Program
Transformation for Software Evolution, Seattle, Washington.

[Gannod and Cheng, 1996] Gannod, G. and Cheng, B. (1996). Strongest postcondi-
tion semantics as the formal basis for reverse engineering. Journal of automated
software engineering, 3(1/2).

[Gannod and Cheng, 2001] Gannod, G. and Cheng, B. (2001). A suite of tools for
facilitating reverse engineering using formal methods. In Proc. of 9th International
Workshop on Program Comprehension (IWPC 2001), Toronto, Canada, pages 221–
232.

[Hoogendijk, 1997] Hoogendijk, P. (1997). A Generic Theory of Data Types. PhD
thesis, University of Eindhoven, The Netherlands.

[Jacobs and Rutten, 1997] Jacobs, B. and Rutten, J. (1997). A tutorial on (co)algebras
and (co)induction. EATCS Bulletin, 62:222–159.

[Jifeng et al., 2003] Jifeng, H., Zhiming, L., and Xiaoshan, L. (2003). A contract-
oriented approach to component-based programming. In Liu, Z., editor, Proc. of
FACS’03, (Formal Approaches to Component Software), Pisa.

[Kock, 1972] Kock, A. (1972). Strong functors and monoidal monads. Archiv für
Mathematik, 23:113–120.

[Lano, 1991] Lano, K. (1991). Z++, an object-oriented extension to Z. In Nicholls,
J. E., editor, Proceedings of the Fifth Annual Z User Meeting on Z User Workshop,
Workshops in Computing Series, pages 151–172. Springer-Verlag Workshops in Com-
puting Series.

[Meng and Barbosa, 2004] Meng, S. and Barbosa, L. (2004). On refinement of generic
state-based software components. In Rattray, C., Maharaj, S., and Shankland, C.,
editors, 10th Int. Conf. Algebraic Methods and Software Technology (AMAST), pages
506–520, Stirling. Springer Lect. Notes Comp. Sci. (3116).

[Milner, 1999] Milner, R. (1999). Communicating and Mobile Processes: the π-
Calculus. Cambridge University Press.

[Moore, 1966] Moore, E. F. (1966). Gedanken experiments on sequential machines. In
Automata Studies, pages 129–153. Princeton University Press.

[Nierstrasz and Dami, 1995] Nierstrasz, O. and Dami, L. (1995). Component-oriented
software technology. In Nierstrasz, O. and Tsichritzis, D., editors, Object-Oriented
Software Composition, pages 3–28. Prentice-Hall.

[Oliveira, 1997] Oliveira, J. (1997). A calculational approach to reverse specification.
Seminar presented at UNU-IIST, Macau, May 13th, 1997, 22 pages.

1611Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

[Oliveira and Rodrigues, 2004] Oliveira, J. and Rodrigues, C. (2004). Transposing re-
lations: from Maybe functions to hash tables. In Seventh International Conference
on Mathematics of Program Construction, 12-14 July, 2004, Stirling, Scotland, UK,
pages 334–356. Springer Lect. Notes Comp. Sci. (3125).

[Pinzger et al., 2004] Pinzger, M., Fischer, M., Jazayeri, M., and Gall, H. (2004). Ab-
stracting module views from source code. In Proceedings of the International Con-
ference on Software Maintenance, pages 533–533, Chicago, USA. IEEE Computer
Society Press.

[Rutten, 2000] Rutten, J. (2000). Universal coalgebra: A theory of systems. Theor.
Comp. Sci., 249(1):3–80.

[Smith, 2000] Smith, G. (2000). The Object-Z Specification Language. Advances in
Formal Methods. Kluwer Academic Publishers. 160 pages.

[Spivey, 1989] Spivey, J. (1989). The Z Notation — A Reference Manual. Series in
Computer Science. Prentice-Hall International. C.A. R. Hoare.

[Turi and Rutten, 1998] Turi, D. and Rutten, J. (1998). On the foundations of fi-
nal coalgebra semantics: non-well-founded sets, partial orders, metric spaces. Math.
Struct. in Comp. Sci., 8(5):481–540.

[Vene, 2000] Vene, V. (2000). Categorical Programming with Inductive and Coinduct-
ive Types. PhD thesis, Faculty of Mathematics, University of Tartu (Dissertationsa
Mathematicae 23).

[Visser, 2003] Visser, J. (2003). Generic Traversal over Typed Source Code Represent-
ations. Ph. D. dissertation, University of Amsterdam, Amsterdam, The Netherlands.

[Wadler, 1990] Wadler, P. (1990). Comprehending monads. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, Nice, France.

[Weiser, 1981] Weiser, M. (1981). Program slicing. In Fifth International Conference
on Software Engineering, San Diego, California.

1612 Cruz A.M., Barbosa L.S., Oliveira J.N.: From Algebras to Objects ...

