
Software/Hardware Co-Design of
Efficient and Secure Cryptographic Hardware

Nadia Nedjah
(Department of Electronics Engineering and Telecommunications, Faculty of Engineering,

State University of Rio de Janeiro,
Rio de Janeiro, Brazil

nadia@eng.uerj.br
http://www.detel.eng.uerj.br)

Luiza de Macedo Mourelle

(Department of System Engineering and Computation, Faculty of Engineering,
State University of Rio de Janeiro,

Rio de Janeiro, Brazil
ldmm@eng.uerj.br

http://www.desc.eng.uerj.br)

Abstract: Most cryptographic systems are based on the modular exponentiation to perform the
non-linear scrambling operation of data. It is performed using successive modular
multiplications, which are time consuming for large operands. Accelerating cryptography needs
optimising the time consumed by a single modular multiplication and/or reducing the total
number of modular multiplications performed. Using a genetic algorithm, we first yield the
minimal sequence of powers, generally called addition chain, that need to be computed to
finally obtain the modular exponentiation result. Then, we exploit the co-design methodology
to engineer a cryptographic device that accelerates the encryption/decryption throughput
without requiring considerable hardware area. Moreover, the obtained designed cryptographic
hardware is completely secure against known attacks.

Keywords: Evolutionary Computation, Co-Design, Genetic Algorithm, Cryptography,
Addition-Chain
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1

1 Introduction

The modular exponentiation is a common operation for scrambling and is used by
several public-key cryptosystems, such as the RSA encryption scheme [Rivest, 78]. It
consists of a repetition of modular multiplications: C = TE mod M, where T is the
plain text such that 0 ≤T < M and C is the cipher text or vice-versa, E is either the
public or the private key depending on whether T is the plain or the cipher text, and M
is called the modulus. The decryption and encryption operations are performed using
the same procedure, i.e. using the modular exponentiation.

The performance of such cryptosystems is primarily determined by the
implementation efficiency of the modular multiplication and exponentiation. As the
operands, i.e. the plain text of a message or the ciphertext (possibly a partially
ciphered) are usually large (i.e. 1024 bits or more), and in order to improve time

Journal of Universal Computer Science, vol. 11, no. 1 (2005), 66-82
submitted: 15/7/04, accepted: 6/12/04, appeared: 28/1/05 © J.UCS

requirements of the encryption/decryption operations, it is essential to attempt to
minimise the number of modular multiplications performed as well as the time needed
to perform a single modular multiplication.

Most of the work [Blum, 99, Walter, 93, Nedjah, 02a] on improving the
characteristics, i.e. encryption/decryption throughput and required resources, focus on
one aspect: minimising the exponentiation time by implementing the operation on
hardware. However, the proposed solutions require considerable amount of hardware
area. In this paper, we propose and implement a novel solution that minimises the
number of required modular multiplications along with the modular multiplication
time without too much increase in resource requirements. We do so using genetic
algorithms [Nedjah, 02b] and the co-design methodology [Balarin, 97]. The proposed
solution finds a balance between the two requirements: time and area. Also, it allows
one to change the encryption and decryption key freely without any extra cost.

First, we introduce the concept of evolutionary addition chains as well as addition
chain based methods to perform modular exponentiation. Then, we introduce
Montgomery’s Algorithm used to implement the modular multiplication. Thereafter,
we describe the co-design system. Consequently, we discuss the architecture used to
implement the mixed solution. Finally, we draw some conclusions based on the
analysis of the system developed.

2 Addition Chains

It is clear that one should not compute TE then reduce the result modulo M as the
space requirements to store TE is E×log2 M, which is huge. A simple procedure to
compute C = TE mod M is based on the paper-and-pencil method. This method
requires E−1 modular multiplications computing all powers of T: T → T2 → ... → TE−1
→ TE. The paper-and-pencil method computes more multiplications than necessary.
For instance, to compute T8, it needs 7 multiplications, i.e. T → T2 → T3 → T4 → T5

→ T6 → T7 → T8. However, T8 can be computed using only 3 multiplications T → T2
→ T4 → T8. The basic question is: what is the fewest number of multiplications to
compute TE, given that the only operation allowed is multiplying two already
computed powers of T? Answering the above question is NP-hard, but there are
several efficient algorithms that can find a near optimal one.

The addition chain based methods attempt to find a chain of numbers such that
the first number of the chain is 1 and the last is the exponent E, and in which each
member of the chain is the sum of two previous members. For instance, the longest
addition chain is [1, 2, 3, …, E-2, E-1, E]. An addition chain of length l for an integer
n is a sequence of integers [a0, a1, a2, …, al] such that a0 = 1, al = n and ak = ai + aj, 0
≤ i ≤ j < k ≤ l. The algorithm used to compute the modular exponentiation C = TE mod
M, is specified by Algorithm 1.

Computing the minimal addition chain for a given exponent is a hard problem
[Nedjah, 02b, DeJong, 89]. We used genetic algorithms [Haupt, 98] to yield optimal
addition chains for large exponents [Nedjah, 02b]. We showed that the addition chains
obtained using the evolutionary methodology are always very much better than those
used by the traditional exponentiation methods such as the m-ary methods and sliding
window methods [Nedjah, 02c]. Note that for a given exponent, there exist many

67Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

addition chains. As the minimal addition chains are numerically unpredictable, every
computation based on it is also unpredictable and consequently the cryptographic
hardware that uses this addition chain to encrypt data is completely secure.

Algorithm 1. AdditionChainBasedMethod(T, M, E)
0: let [a0=1 a1 a2 … al=E] be an addition chain for E;
1: powers[0] = T;
2: for k := 1 to l
3: let ak = ai + aj | 1≤i<k and 1≤j<k;
4: powers[k] := powers[i] × powers[j] mod M;
5: return powers[l];
End.

3 Montgomery’s Algorithm

One of the widely used algorithms for efficient modular multiplication is
Montgomery’s algorithm [Montgomery, 85]. This algorithm computes the product of
two integers modulo a third one without performing division by M. It yields the
reduced product using a series of additions.

Let A, B and M be the multiplicand, the multiplier and the modulus respectively
and let n be the number of digits in their binary representation, i.e. the radix is 2. So,
we denote A, B and M as follows:

 2 and 2 ,2
1

0

1

0

1

0
∑∑∑

−

=

−

=

−

=

×=×=×=
n

i

i
i

n

i

i
i

n

i

i
i mMbBaA

The pre-conditions of the Montgomery algorithm are as follows:

• The modulus M needs to be relatively prime to the radix, i.e. there exists no
common divisor for M and the radix;

• The multiplicand and the multiplier need to be smaller than M.

As we use the binary representation of the operands, then the modulus M needs to be
odd to satisfy the first pre-condition.

Montgomery’s algorithm uses the least significant digit of the accumulating
modular partial product to determine the multiple of M to subtract. The usual
multiplication order is reversed by choosing multiplier digits from least to most
significant and shifting down. If R is the current modular partial product, then q is
chosen so that R + q × M is a multiple of the radix r, and this is right-shifted by r
positions, i.e. divided by r for use in the next iteration. So, after n iterations, the result
obtained is R =A × B × rn mod M. A modified version of the Montgomery’s algorithm
is given in Algorithm 2.

In order to yield the right result, we need an extra Montgomery modular
multiplication by the constant 22n mod M. However, as the main objective of the use

68 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

of Montgomery modular multiplication algorithm is to compute exponentiations, it is
preferable to Montgomery pre-multiply the operands by 22n and Montgomery post-
multiply the result by 1 to get rid of the 2n factor. Now, we concentrate on describing
the implementation of the Montgomery multiplication algorithm.

Algorithm 2. MontgomeryAlgorithm(A, B, M)
0: int R := 0;
1: for i := 0 to n-1
2: R := R + ai × B;
3: if r0 = 0 then R := R div 2
4: else R := (R + M) div 2;
5: return R;
End.

4 The Co-design Architecture

Our investigation is based on Algorithm 1, assuming that the addition chain is
provided. The software approach consists of implementing the algorithm in a
programming language, such as C, and executing the compiled code in a general-
purpose computer.

The bottleneck in the software approach is the evaluation of the modular
multiplication. Therefore, we decided to move this computation to hardware in order
to explore the speedup that can be achieved by a hardware implementation. From this
point on, we will have a mixed implementation, in which part of the initial
specification is in software and another part is in hardware. Consequently, we will
have to deal with the interaction between these two subsystems. The dynamics within
the co-encryption/decryption system is described in Figure 1.

Figure 1: Dynamics within the mixed encryption/decryption process

The execution cycle within the co-design system is described in the following
seven steps:

69Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

1. The genetic algorithm evolves a minimal addition chain for the given
encryption/decryption key;

2. The evolutionary addition chain is stored into the co-system shared memory;
3. The software subsystem executes a program that implements the

computation of Algorithm 1 and is stored in the shared memory;
4. The software subsystem finds the operands of the modular multiplication the

hardware subsystem has to perform;
5. The software subsystem notifies the hardware subsystem to start the modular

multiplication and waits;
6. Once the modular product is reached, the hardware subsystem notifies the

software subsystem and halts;
7. The software subsystem checks whether the last multiplication was

performed; if yes, it reads the shared memory to acquire the result of the
modular exponentiation, otherwise it performs step 4 repeatedly.

In the following sections, we explain, in details, the architecture of each of the

subsystems.

4.1 The Genetic Algorithm

Genetic algorithms [Haupt, 98] maintain a population of individuals that evolve
according to selection rules and other genetic operators, such as mutation and
recombination. Each individual receives a measure of fitness. Selection focuses on
high fitness individuals. Mutation and recombination provide general heuristics that
simulate the reproduction or crossover process. Those operators attempt to perturb the
characteristics of the parent individuals as to generate distinct offspring individuals.

The addition chain minimisation problem consists of finding a sequence of
numbers that constitutes an addition chain for a given exponent. The sequence of
numbers should be of a minimal length. This problem is NP-complete, that is why
genetic algorithms are perfect to minimal addition chains.

Encoding of individuals is one of the implementation decisions one has to take in
order to use genetic algorithms. It very depends on the nature of the problem to solve.
There are several representations that have been used with success: binary encoding,
which is the most common mainly because it was used in the first works on genetic
algorithms, represents an individual as a string of bits; permutation encoding, mainly
used in ordering problem, encodes an individual as a sequence of integers; value
encoding represents an individual as a sequence of values that consist of an evaluation
of some aspect of the problem [DeJong, 89, Haupt, 98].

In our implementation, an individual represents an evolutionary addition chain.
We use the binary encoding wherein 1 implies that the entry number is a member of
the addition chain and 0 otherwise. Let n = 9 be the exponent. The encoding of Figure
2 represents the addition chain [1, 2, 4, 5, 9]:

1 2 3 4 5 6 7 8 9

1 1 0 1 1 0 0 0 1

Figure 2: Addition chain encoding

70 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

4.2 Software Subsystem Architecture

In Algorithm 2, the formal parameters can be of 1024 bits. Therefore, instead of
passing these values, we decided to pass the indexes to the array powers (i, j and k),
together with the address of M and that of powers. Parameter size is related to the
size of the operands. Algorithm 3 below shows the modified version of Algorithm 1.

Algorithm 3. ModAdditionChainBasedMethod(T, M, E)
0: let [a0=1,a1,a2,...,al=E] be an addition chain for E;
1: powers[0] := T;
2: for k := 1 to l
3: find k | i<k and j<k, ak = ai + aj;
4: ModifiedMontgomery(i, j, k, M, powers, size);
5: return powers[l];
End.

In order to perform the chosen computation, the hardware subsystem needs the
function’s parameters, which are sent by the software subsystem. Integer and pointer
parameters are passed via memory-mapped registers, while data arrays are stored in
the shared memory. Algorithm 2 must be modified as well, so as to include the
necessary hardware interaction, which can be seen in Algorithm 4 below.

Algorithm 4. ModifiedMontgomery(i,j,k,&M,&powers, size)
0: char* const parameter0 := (char*) 0xF000;
1: char* const parameter1 := (char*) 0xE000;
2: char* const parameter2 := (char*) 0xD000;
3: char** const parameter3 := (char**) 0xC000;
4: char** const parameter4 := (char**) 0xB000;
5: *parameter0 := i; *parameter1 := j;
6: *parameter2 := k;
7: if k = 1 then
8: *parameter3 := &M;
9: *parameter4 := &powers;
10: *parameter5 := size;
11: start();
12: waitForInterruption();
13: acknowledge();
End.

As can be seen from Algorithm 4, parameter0, parameter1, parameter2,
parameter3, parameter4 and parameter5 contain the addresses of the parameter
registers located in the hardware subsystem. After their initialisation, the hardware
subsystem can be started to execute the computation. In our case, parameters i, j and k
are used to address the elements of the array powers, while parameter powers holds
the address of the first element of the corresponding array. Hence, i, j and k are used
as displacement within the array area. Since M can be large, we decided to keep M in
the shared memory and pass its address only. Notice that it is up to the hardware
subsystem to get the necessary data from the shared memory, once it is started. The

71Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

software subsystem, then, waits for an interrupt from the hardware subsystem,
indicating it has completed the operation.

4.3 Hardware Subsystem Architecture

The hardware subsystem comprises the hardware function and the interface logic. The
latter deals with the communication between the hardware subsystem and the other
entities, i.e. software subsystem and the shared memory. The characteristics of the
interface depend closely on the implementation platform. Therefore, we will deal with
it in the next section.

The hardware function computes the modular product of two given operands
using Montgomery’s algorithm described in Section 3. Figure 3 shows the
architecture of an iterative implementation [Nedjah, 02a] for the Montgomery
modular multiplication method [Montgomery, 85]. The values of A and B are
obtained from the memory, where the array elements are stored, using parameters i
and j, respectively. These indexes are provided by the software subsystem. The
obtained modular product is stored in the same array powers in entry k = i + j.

Figure 3: Montgomery multiplication hardware

72 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

The first multiplexer of the proposed architecture, i.e. MUX21, passes 0 or the
content of register B depending on whether bit a0 indicates 0 or 1 respectively. The
second multiplexer, i.e. MUX22, passes 0 or the content of register M depending on
whether bit r0 indicates 0 or 1 respectively. The first adder, i.e. ADDER1, delivers the
sum R + ai × B (line 2 of Algorithm 2), and the second adder, i.e. ADDER2, yields the
sum R + M (line 4 of the same algorithm). The shift register SHIFT REGISTER1 provides
the bit ai. At each iteration i of the multiplier, this shift register is right-shifted once,
so that the least significant bit of SHIFT REGISTER1 contains ai.

The role of the controller consists of loading A, B and M, synchronising the
shifting and loading operations of SHIFTREGISTER1 and SHIFTREGISTER2, and
controlling the number of necessary iterations. Furthermore, embedded into the
controller hardware, we find the steps for parameter passing as well as the handshake
protocol between the hardware and software subsystems. The handshake control
register signals the start (start) and parameter passing (parameters) commands
from the software subsystem, and the done (done) command from the hardware
subsystem.

In order to synchronise the work of the components of the architecture, the
controller is implemented as a state machine, which has 10 states defined as follows:

S0: Initialise state machine;
S1: If start = 0 then Go to S2 Else Go to S1;
S2: done := 0;
 If start = 1 then Go to S4

 Else If parameters = 0 then Go to S2;
S3: If parameter0 then Load i into REGISTERi
 Else If parameter1 then Load j into REGISTERj
 Else If parameter2 then Load k into REGISTERk
 Else If parameter3 then
 Load &M into REGISTERM
 Else If parameter4 then

 Load &powers into REGISTERP;
 Else If parameter5 then

 Load size into counter;
 Go to S2;
S4: Load powers[i] from memory into SHIFT REGISTER1;
S5: Load powers[j] from memory into REGISTER1;
S6: If k = 1 then
 Load M from memory into REGISTER2;
S7: Decrement counter;
S8: Load partial result into SHIFT REGISTER2;
S9: Enable SHIFT REGISTER2; Enable SHIFT REGISTER1;
 If counter = 0 then Go to S10 Else Go to S7;
S10: Load SHIFT REGISTER2 into memory powers[k];
 done := 1; Go to S1

Memory read operations (to obtain the values of A, B and M) as well as memory
write operations (to store the modular products) are embedded in the specification of

73Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

the hardware subsystem and performed by the interface logic. The interface between
the hardware function and the software subsystem uses a control register CR through
which a handshake protocol is implemented. When the software subsystem wants to
call the hardware function, it asserts the start bit of CR (line 11 in Algorithm 4).
When the hardware function completes the execution, it asserts the done bit of CR.
When the software subsystem acknowledges the end of the hardware function
operation (line 13 in Algorithm 4), it withdraws the start command by resetting the
start bit of CR. When the interface logic detects that the start bit was reset, it resets
the done bit, thus completing the handshake.

5 Implementation Platform

In order to obtain a final implementation, we need a processor capable of executing
the software instructions (software subsystem) and a hardware device capable of
executing the chosen computation (hardware subsystem). Our co-design platform
consists of the XS40 board, from Xess [Xess, 03], which is based on the Intel 80C31
micro-controller, the XilinxTM XC4010XL FPGA [Intel, 03] and 32KB of SRAM,
shared by the hardware and the software subsystems. A simplified version of the co-
design architecture is seen in Figure 4 and the XS40 co-design board is shown in
Figure 5.

Figure 4: Co-design system architecture

While the hardware subsystem is computing the required modular product
(computation of line 4 in Algorithm 3), the micro-controller finds the entries of array
powers in which operands of the next modular multiplications (computation of line 3
in Algorithm 3) are located. Interleaving the work of the hardware function with that
of the micro-controller improves a great deal the overall performance of the
encryption/decryption co-design system.

74 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

Figure 5: Xess XS40 co-design board

6 Timing and Area Characteristics

In this section, we compare the proposed cryptographic hardware, which is a mixed
system, i.e. software and hardware, described throughout this paper with the software-
only and hardware-only versions. The software-only system is implemented in ASM51
assembly language [Xilinx, 03]. Recall that the software subsystem of the proposed
solution is also implemented using ASM51. The two hardware-only systems are
implemented into XS4000: the first system is based on the binary exponentiation
method and the second on the m-ary exponentiation method [Mourelle, 04], which is a
generalisation of the binary method as instead of considering windows of one bit, the
m-ary method deals with windows of m bits. Recall that the hardware subsystem of
the mixed system is also implemented into the same FPGA family.

The software-only and one of the hardware-only implementations are based on
the binary modular exponentiation. The latter implementation was developed by the
authors [Nedjah, 02a]. In the following, we briefly describe the binary method and the
hardware architecture of the first hardware-only system and, thereafter, we introduce
the m-ary exponentiation method together with the hardware architecture of the
second hardware-only implementation. Interested author can find more details about
both hardware implementations in [Nedjah, 02a, Nedjah, 03, Mourelle, 04].

75Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

6.1 Binary exponentiation-based implementation

The binary exponentiation algorithm is given in Algorithm 5, wherein k is the number
of digits in exponent E, T is the text to be encrypted/decrypted and M as before is the
modulus. Exponent E consists of its binary representation
〈ek−1ek−2… e1e0〉. The algorithm output C is the ciphertext or plaintext depending on
whether T is the plaintext or ciphertext.

Algorithm 5. BinaryExponetiation(T, E, M)
0: int C;
1: if ek-1 = 1 then R := T else R := 1;
2: for i := k-2 downto 0

3: C := C × C mod M;
4: if ei = 1 then C := C × T mod M;
5: return C;
End.

Hence the addition chain used by the binary method is as follows, wherein
identical members must be discarded. For instance, for exponent E = 250 =
〈11111010〉, the addition chain will be [1,2,3,6,7,14, 15, 30, 31, 62, 124, 125, 250].

()()()()[]013212111 22222 , ,2 ,2 , eeeeeeeee kkkkkkk ++++++ −−−−−−− KKK

The architecture of the hardware [Nedjah, 03] that performs the binary
exponentiation is shown in Figure 6. It uses two modular multipliers whose
architectures are that shown in Figure 3 and a controller that determines the sequence
of events. When the iteration finishes the controller halts and the result is found in
register MPRODUCT. The first multiplier, i.e. MULTIPLIER1, performs the squaring of
line 3 in Algorithm 5 while the second multiplier, i.e. MULTIPLIER2, performs the
multiplication of line 4 in Algorithm 5, when it is necessary.

6.2 M-ary exponentiation-based implementation

Generally speaking, the m-ary methods for exponentiation [1] may be thought of as a
three major steps procedure: (i) partitioning the binary representation of the exponent
E in k-bit windows; (ii) pre-computing all possible powers in windows one by one;
(iii) iterating the squaring of the partial result k times to shift it over, and then
multiplying it by the power in the next window, if the window is different from 0.

In other words, the m-ary methods scans the digits of E from the least significant
to the most significant digit and groups them into partitions of equal length log

2
m,

where m is a power of two. Note that 2-ary method coincides with the binary
exponentiation methods described earlier (Algorithm 5).

76 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

Figure 6: Details of the architecture of binary exponentiator

In general, the exponent E is partitioned into p partitions, each one containing
l = log

2
m successive digits. If the last partition has less digits than log

2
m, then the

exponent is expanded to the left with at most log
2
m − 1 zeros. The m-ary algorithm is

described in Algorithm 6, wherein as before M and E represent the modulus and
exponent of the cryptosystem, T and C stand for the text and the ciphertext,
respectively, and, finally, Vi denotes the decimal value of partition Pi.

Algorithm 6 implements the modular multiplication based on Montgomery’s
algorithm (Algorithm 2) and whose hardware architecture is given in Figure 7.

77Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

Algorithm 6. M-aryExponentition(T, M, E)
1: Partition E into p l-bit windows;
2: for i = 2 to m-1 Compute Ti mod M;

3: C := 1-pVT mod M;
4: for i := p-2 downto 0 do

5: C :=
l2C mod M;

6: if Vi ≠ 0 then C := C× iVT mod M;
7: return C;
End.

The hardware that implements the m-ary method, presented in Algorithm 6, is

described in Figure 7. The first or pre-processing step (Line 2) computes all the
possible powers of T, with respect to the partition size l, and stores them in a local
memory (MEM). Later on, i.e. in the second or exponentiation step (Line 3 to 6), each
partition of the exponent E will be used to address the memory to obtain the pre-
computed power of T.

Figure 7: The architecture of the m-ary hardware

There is no need to store T0 mod M, since zero partitions are not considered (see
Line 6 of Algorithm 6). The first power of T, i.e. T2 modulo M, is computed by
passing T through both multiplexers MUX1 and MUX4, feeding the modular
multiplier (MODMULT). The result is then stored in location 2 of MEM, using the initial
value of register REGI. This register is responsible for generating the power memory
addresses during the pre-processing step. The subsequent possible powers are
obtained, successively, by passing the previous result through multiplexer MUX3 then
MUX1. Note that T is kept available through multiplexer MUX4. The memory locations
are generated by incrementing REGI, whenever a new address is required.

In each iteration of the exponentiation step, the partial result C is raised to the 2l
power then multiplied by TVi modulo M, when Vi is not a zero partition (see lines 5
and 6 of Algorithm 6). The values of TVi modulo M are obtained from the power
memory, according to the current partition of the exponent E. In order to obtain the

78 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

value of the current partition, we store exponent E in shift register REGE, from which
the most significant partition is retrieved to address the power memory (see line 3 and
6 of Algorithm 1). When a new partition is required, register REGE is left-shifted l
times. Recall that l represents the partition size. This operation is controlled by a
down counter, initialised with l and decremented each time the register REGE is left-
shifted. Signal zerol is asserted when the down counter reaches zero. The square-and-
multiply loop (starting in line 5 of Algorithm 6) consists of two main phases:

1. The first one performs l squaring of the partial result. For this purpose, the

partial result is fed-back to inputs A and B of the modular multiplier of Figure
3, through multiplexers MUX3 and MUX5, and then multiplexers MUX1 and
MUX4, respectively. The squaring operation is controlled by a down counter,
which is initialised with l and decremented each time one squaring is
completed;

2. The second phase performs the modular multiplication of the partial result
with the pre-computed power of T, when the current partition is not zero. The
power of T, i.e. TVi modulo M, is read from the power memory, at the
location indicated by the most significant partition of register REGE. The
address is passed through multiplexer MUX2.

The square-and-multiply loop is performed until the least significant partition of E is
reached. This is controlled by a down counter, which is initialised with p and
decremented each step of the loop. Recall that p denotes the number of partitions.
Signal zerop is asserted when the down counter reaches zero. The final result is, then,
loaded from SHIFTREGISTER2 in the architecture of Figure 3 into register REGC.

6.3 Result Comparison

For the four systems, i.e. the software-only, the two hardware-only and the proposed
co-design systems, we obtained the hardware required, where it is applicable, as well
as the response time. The obtained figures are given in Table 1. The charts of Figure 8
represent the time requirements for the three considered implementations, i.e.
software-only, hardware-only and hardware/software co-design implementation. It
shows clearly that the software-only has the worst time whilst the hardware-only
offers the best time. Moreover, it demonstrates that the response time of the mixed
implementation is not that bad with respect to the best time. The mixed
implementation is about 27% slower than the hardware-only ones.

Hardware area Response time Requirements

System
512 1024 2048 512 1024 2048

Software-only − − − 1982 3491 7255
Hardware-only1 811 1679 2995 713 1354 2001
Hardware-only2 1407 2220 3201 501 953 1324
Mixed 195 431 722 1029 1782 2209

Table 1: Hardware area (CLBs), response time (ns) and performance factor

79Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

0

1000

2000

3000

4000

5000

6000

7000

8000

ti
m

e

512 1024 2048

operand size

Software-only

 Hardware-only1

Hardware-only2

Mixed

Figure 8: Comparison of the response time for the considered implementations

The chart of Figure 9 represents the hardware area consumption for the hardware-
only and the mixed implementations. Clearly, the co-design implementation requires
very much less hardware than the hardware-only solution. The latter consumes about
four times more hardware area than the former.

0

500

1000

1500

2000

2500

3000

3500

a
re

a

512 1024 2048

operand size

 Hardware-only1

Hardware-only2

Mixed

Figure 9: Comparison of the required hardware area of the considered

implementations, when applicable

The chart of Figure 10 represents the performance factor area×time for the
implementations, which involve hardware, i.e. the hardware-only and the mixed
implementations. It is clear from this chart that the co-design system improves a very
great deal the performance factor. The improvement is about 65%.

80 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

0

1000000

2000000

3000000

4000000

5000000

6000000

fa
ct

or

512 1024 2048

operand size

 Hardware-only1

Hardware-only2

Mixed

Figure 10: Performance factor for the hardware-only and mixed implementations

5 Conclusion

In this paper, we propose and implement a novel solution that focuses on the two
major aspects impacting on the performance of any given cryptosystems based on
modular exponentiation as a non-linear function for data scrambling: (i) the number
of required modular multiplications and; (ii) the modular multiplication time, without
too much increase in resource requirements. To do so, we evolve, using genetic
algorithms, a minimal addition chain based on which we perform the modular
exponentiation. Moreover, we exploited the co-design methodology to partition the
modular exponentiation into two subsystems: the hardware subsystem and the
software subsystem. Given the adequate operands, the former performs a single
modular multiplication. The latter coordinates the work of the hardware subsystem
based on the evolutionary addition chain.

The solution proposed and implemented finds a balance between the two
requirements: time and area. Furthermore, it allows one to change of the encryption
and decryption key freely without any extra cost. We demonstrated that the response
time of the mixed implementation is not that bad with respect to that of the hardware-
only implementation. As a matter of fact, the co-design based implementation is about
27% slower than the hardware-only one. However, the mixed implementation
requires very much less hardware than the hardware-only solution. The latter
consumes about four times more hardware area that the former. Finally, we showed
that the co-design based system improves considerably in about 65%.

Acknowledgements

The authors wish to acknowledge the financial support provided by Fundação de
Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq).

81Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

References

[Balarin, 97] F. Balarin et al., Hardware-software co-design of embedded systems: the polis
approach, Kluwer Academic Publishers, 1997.

[Blum, 99] Blum, T. and Paar C., Montgomery modular exponentiation on reconfigurable
hardware, Proceedings of the 14th. IEEE Symposium on Computer Arithmetic, Australia, 1999.

[DeJong, 89] DeJong, K. and Spears, W.M., Using genetic algorithms to solve NP-complete
problems, Proceedings of the Third International Conference on Genetic Algorithms, pp. 124-
132, Morgan Kaufmann, 1989.

[Haupt, 98] Haupt, R.L. and Haupt, S.E., Practical genetic algorithms, John Wiley & Sons,
1998.

[Intel, 03] Intel, MCSTM51 family of micro-controllers architectural overview,
http://www.intel.com, 2003.

[Montgomery, 85] P.L. Montgomery, Modular Multiplication without trial division,
Mathematics of Computation 44, pp. 519-521, 1985.

[Mourelle, 04] Mourelle, L.M. and Nedjah, N., Fast reconfigurale hardware for the m-ary
modular exponentiation, EUROMICRO Symposium on Digital System Design: Architectures,
Methods and Tools, August 31st – September 3rd., Rennes, France, 2004.

[Nedjah, 02a] Nedjah, N and Mourelle, L.M., Two hardware implementations for the
Montgomery multiplication: sequential vs. parallel, Proceedings of the 15th. Symposium on
Integrated Circuits and Systems Design, Brazil, IEEE Computer Society, pp. 3-8, 2002.

[Nedjah, 02b] Nedjah, N. and Mourelle, L.M., Minimal addition chains for efficient modular
exponentiation using genetic algorithms, Proceedings of the Fifteenth International Conference
on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems, Cairns,
Australia, Lecture Notes in Computer Science, Springer-Verlag, vol. 2358, pp. 88-98, 2002.

[Nedjah, 03] Nedjah, N. and Mourelle, L.M., Three Hardware Implementations for the Binary
Modular Exponentiation: Sequential, Parallel and Systolic, Proceedings of the 15th.
International Symposium on Computer Architecture and High Performance Computing, São
Paulo, Brazil, IEEE Computer Society Press, 2003.

[Nedjah, 02c] Nedjah, N. and Mourelle, L.M., Efficient parallel modular exponentiation
algorithm, Proceedings of the Second International Conference on Information Systems, Izmir,
Turkey, Lecture Notes in Computer Science, vol. 2457, pp. 405-414, 2002.

[Rivest, 78] Rivest, R.L., Shamir, A. and Adleman, L., A method for obtaining digital signature
and public-key cryptosystems, Communication of ACM, vol. 21, no.2, pp. 120-126, 1978.

[Xess, 03] Xess, http://www.xess.com, 2003.

[Xilinx, 03] Xilinx, http://www.xilinx.com, 2003.

[Walter, 93] C. D. Walter, Systolic modular multiplication, IEEE Transactions on Computers,
42(3):376-378, 1993.

82 Nedjah N., de Macedo Mourelle L.: Software/Hardware Co-Design ...

