

Full Hash Table Search using Primitive Roots
of the Prime Residue Group Z/p

Joerg R. Muehlbacher
(FIM, Johannes Kepler University of Linz, Austria

muehlbacher@fim.uni-linz.ac.at)

Abstract: After a brief introduction to hash-coding (scatter storage) and discussion of methods
described in the literature, it is shown that for hash tables of length p >2, prime, the primitive
roots r of the cyclic group Z/p of prime residues mod p can be used for a simple collision
strategy q(p,i) = ri mod p for fi(k) = f0(k) +q(p,i) mod p. It is similar to the strategy which uses
quadratic residues q(p,i) = i2 mod p in avoiding secondary clustering, but reaches all table
positions for probing. A table of n primes for typical table lengths and their primitive roots is
added. In cases where r = 2j is such a primitive root, the collision strategy can be implemented
simply by repeated shifts to the left (by j places in all).
To make the paper self-contained and easy to read, the relevant definitions and the theorems
used from the Theory of Numbers are included in the paper.

Key Words: Hash tables; Full table scatter storage techniques; Collision strategy; Cyclic group
mod p; Primitive roots of the prime residue group mod p

Category: E.2, G.4

1 Introduction

Methods of scatter storage (hashcoding) to store and search for data, particularly in
tables, are discussed in detail in the literature and clearly described in
[Maurer, Lewis 75], for instance.

We start from a key set K ⊆ N and an address space A in the form of a table T of
size n with A = {0, 1, 2, ..., n-1}⊂ N0 and a hash function f0: K → A, which implies
T[a] ∈ K für k ∈ K. In general | K | >> n . Although only a small subset K´ ⊂ K with
| K´ | ≤ n is stored in A for locating, it must be assumed that f0 is not injective, i.e. it is
possible for two different keys k1, k2 ∈ K to be assigned the same home address:
∃ ki, kj ∈ K with a0 = f0(ki) = f0(kj). In this case a primary collision occurs, and a
collision strategy q is needed to find a substitute for an already occupied address a0.
Thus a0 = f0(k) does not imply T[a0] = k.

Among the procedures discussed in the literature, we consider so-called open
hash-coding. Here, if a primary collision occurs, a search is carried out in the table
itself for an as yet unoccupied address ai ≠ a0. It must of course be possible to
reconstruct this collision address during a search. The drawback of open hash-coding
is that secondary collisions can occur:

Assuming that, for k1 ≠ k2, f0(k1) = f0(k2) = a0, and that owing to this primary
collision k2 has been stored in a3, in line with the collision strategy – if we now need
to enter a key k3 with k3 ≠ k1, k3 ≠ k2 and f0(k3) = a3 in table T, its home address a3 is

Journal of Universal Computer Science, vol. 10, no. 9 (2004), 1239-1249
submitted: 1/9/04, accepted: 21/9/04, appeared: 28/9/04 © J.UCS

already occupied, a secondary collision occurs, and k3 must be stored elsewhere, say
in a4. But this will provoke a collision for a further key k4 with f0(k4) = a4.

In general, therefore, the first try made for k is at its home address, and if this is
occupied a sequence of addresses a1, a2, ... ai is worked through until the first empty
table item ai has been found as a substitute address (collision address). Note that no
inferences can as yet be drawn from the address sequence laid down in the collision
strategy, i.e. i>j does not imply ai > aj mod n.

The way in which collision strategy q identifies ai depends on table length
n = | A |, from i and in certain procedures from k itself, too.

We use the following notation:
fi(k) = f0(k) + qi(k,n,i) mod n with q0 = 0

where i is the smallest 0 ≤ i < n,
(i) for which an as yet unoccupied slot ai for a new key is found by means of fi(k)

If no such i can be found, the table is described as full. To keep things simple
we shall always assume that with t slots in the table occupied the load factor f
= t/n < 1, i.e. that at least one slot is empty. It is perfectly possible for qi(k,n,i)
not to reach all slots, and thus to terminate the procedure, even though empty
slots are available.

(ii) such that in the search for a key k this is found by means of qi (k,n,i) or a empty
slot is reached without success.

The main aim is thus to determine the simplest possible procedures fi(k) that
(i) reach all addresses 0, 1, ... n-1
(ii) avoid secondary collisions, and the resulting clusters of already occupied

collision addresses, as far as possible.
In what follows we are going to concentrate on q(k,n,i); we can thus assume

f0(k)=0 w.l.o.g. If the distribution of the key set K’ ⊂ K actually encountered is
unknown, one usually employs f0(k) = k mod p with p > 2 prim , so that A

corresponds to the (smallest representative of the) residue classes { 0 , 1 ,..., 1p − }.

In this paper it is assumed that f0(k) = k mod p.

2 Classification of Collision Strategies

2.1 Linear Collision Strategy

fi(k) = f0(k) + c * i mod n with c relatively prime to n.

So that q(k,n,i) = q(n,i) = c * i mod n can address the entire table in any case, module
n and coefficient c must be relatively prime to each other: gcd(n,c)= 1.

This follows from the following

Theorem 2.1: If {r0, r1,……. rn-1} is a complete residue class system mod n and
 gcd (n,c) =1, {c* r0, c*r1,…….c* rn-1} is one as well.

The linear collision strategy is a prey to cluster formation, since, even if
f0(k1) ≠ f(k2), once qi(k1) = qj(k2) for i ≠ j, the consequence will always be that
fi+m(k1) = fj+m (k2) für m ≥ 0. Accordingly the same addresses must be checked for k2
that have been tested unsuccessfully to eliminate a collision in the case of k1, say.

1240 Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

2.2 Collision Strategy Using a Pseudorandom Number Generator

The aim of this procedure is to avoid cluster formation resulting from collisions. The
approach is to determine collision addresses by means of a pseudorandom number
generator. Here the quality of such a generator in the statistical sense is less important
than the requirement that its period is long enough for the entire table to be worked
through. In the original paper [Morris 68] specified the generator

q(n,i) = (5i mod 2j+2)/4 = (5i mod 4*n)/4
for tables of length n = 2j , without explanation. We shall return to this in our analysis.

2.3 Collision Strategy Using Quadratic Residues

Quadratic collision strategies also attempt to avoid cluster formation; they were
introduced by W.D.Maurer [Maurer, Lewis 75].

The following approach is adopted (assuming a prime number p > 2 for table length):

fi(k) = f0(k) + c * i + b*i2 mod p

and since c>0, b>1 yield no advantage, the strategy boils down to

q(p,i) = i2 mod p, i.e. fi(k) = f0(k) + i2 mod p

with the following

Definition 2.1: the number a is called a quadratic residue QR(p) of p, p prime,
if an x exists such that x2 ≡ a mod p.
Otherwise a counts as a quadratic non-residue NR(p).

One difficulty with this procedure is that there are only (p-1)/2 quadratic residues,

so only half the table is available for collision addresses, if no further assumptions are
made about p.

The sequence of quadratic residues mod p can be generated by means of
12, 22, ….., ((p-1)/2)2, for it can be demonstrated that these numbers are all pairwise
incongruent mod p. It is also easy to compute them by addition with diff = 1;
while (diff < p) {…; diff = diff+2}. C.E.Radke [Radke 70] and in modified form
C.Day [Day 70] have specified a procedure with which, for primes of the form p = 4*j
+3, the entire table can be accessed. A supplement for tables of length pj is due to
A.F. Ackermann [Ackermann 74].

Using the relation NR(p) = QR(p)*NR(p), J.R.Muehlbacher [Muehlbacher 81]
has shown that it is possible to search the table for quadratic residues and quadratic
non-residues in parallel, and thus to cover the entire table. This is also true for prime
powers pj, p>2, for if a is a QR(p), then a is also a QR(pj), p>2.

In the case of primes of the form p= 8*j +3 or p = 8*j –3 the number 2 can be
used as NR(p), since C.F.Gauss has proved that 2 is a NR(p) for such primes. It is
thus possible to generate the addresses complementary to 12,22, ….., ((p-1)/2)2 by
means of {i2 * 2| i=1,2,..,(p-1)/2}, i.e. by a simple shift left on every quadratic residue
generated.

1241Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

2.4 Further Procedures

All the procedures discussed so far are of the form q(n,i,k) = q(n,i), that is, they are
independent of the key itself. In any attempt to avoid clusters developing, it makes
sense to introduce the actual key (in a suitable form) when computing the addresses to
be tested. The double hash procedure [Luccion 72] [Knuth 73] and its numerous
variations are particularly significant representatives of this approach.

As an example we cite the linear quotient method [Bell 70], which is a
generalization of the linear strategy:

fi(k) = f0(k) + i * c(k) mod p, p prim

If the representation k = p*c + a is used for f0(k), then c is dependent on
k: c = c(k).

Since p is prime, gcd(c,p) = 1 holds. However, the exceptional case c ≡ 0 mod p
must be dealt with explicitly by means of c = 1.

3 Period Length of Random Number Generators

What follows below has actually been clear from the Theory of Numbers for many
years; but this brief summary is meant to explain to the reader why (for instance) in
Morris’ procedure [Morris 68] the number 5 and 5i mod 2n+2 are selected, and that the
entire table can be covered as a result. The explanations also provide the basis for the
extension to Z/p, the prime residue class group mod p, p>2 in section 4.

The class of the multiplicative random number generators is characterized by
xi+1 = xi + c mod m, where c ≥ 0 and the initial value x0 need to be chosen suitably.
Since only a finite number of values is possible for the sequence {xi}, every such
generator becomes periodic. Usually c = 0 is selected.

In the example mentioned, xi+1 = (5i mod 2j+2)/4, the claim is made that the period
is maximal, i.e. the addresses {0,1,2,...,n= 2j -1} are worked through without
repetition.

In principle we have a multiplicative generator of the form
xi+1 = 5i mod m, generalized as xi+1 = ai mod m and gcd(a,m) = 1

Here one might be surprised at first that (5i mod 2j+2) is computed to start with
and subsequently divided by 4, so as to remain in the address region [0, n-1].

Definition 3.1: If a, m are relatively prime, then the smallest number

 m = ord(a) for which a
µ
 ≡ 1 mod m is true is called the order of a.

We are now interested in numbers a for which µ is maximal, so that the longest

possible period can be achieved.

Definition 3.2: A number a mod m (relatively prime to m) is called a primitive
element modulo m if its order µ is maximal.

As long ago as 1801 C.F. Gauss proved the following theorem:

1242 Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

Theorem 3.1: In a series x i+1 = a* xi mod m, a maximal period µ is achieved if
(i) xo is relatively prime to m
(ii) a is a primitive element modulo m.
(iii) In the special case m = n= 2j, µ(2) = 1, µ(4) = 2 and µ(2j) =

2 j-2
for j ≥ 3.

In condition (iii) we have referred only to the special case m= 2j ; in actual fact Gauss
provided a proof to µ(j) for any j. Much the same applies to the investigation of what
conditions must be satisfied for a to be a primitive element modulo pj, p prime
[Knuth 98].
For m =2j we also obtain:

Theorem 3.2: If m = 2j with j ≥ 4, then a is a primitive element modulo m if and
only if either a mod 8 = 3 oder a mod 8 = 5.

The two foregoing theorems provide the explanation for Morris’ procedure.
Because n = 2j and µ(2j) = 2 j-2 and j ≥ 4, mod 2j+2 is computed and a mod 8 = 5
holds.
In addition, xo = 50 is trivially relatively prime to n.

4 Primitive Roots of the Cyclic Residue Class Group mod p

As hash function we again employ f0(k) = k mod p, with p > 2 prime, and can assume
f0(k) = 0 w.l.o.g. This leaves the task of working through all addresses
A\{0}={1,2,……,p-1} in such a way that cluster formation is avoided as far as
possible. The starting-point is the multiplicative prime residue class group mod n. To
keep the presentation self-contained, we begin by repeating various definitions from
the Theory on Numbers. To make the mathematical background intelligible, we also
list the requisite theorems. The interested reader is referred to [Hasse 64], for
instance.

Definition 4.1: The Euler φ function φ(n) is the number of elements relatively
prime to n from {1,2,…,n}.

For prime numbers p we have φ(p) = p-1.

Theorem 4.1: The numbers relatively prime to module n form by multiplication
a group Z/n, which contains φ(n) elements and is called a prime
residue class group mod n.

If we choose n = p, then Z/p coincides with the set Z/n = { 1 ,..., 1p − }=

{1,2,…,p-1}, since everything is computed mod p.
Because f0(k) = 0, 0 ∪ Z/p describes the entire table T by A.
Since p is prime, gcd(a,p) =1 is true for all a ∈ Z/p, and because the number of

elements in Z/p is finite the order µ = ord(a) for which a
µ
 ≡ 1 is explained. In the

general case the set [a] = {an|n = 1,2,..} defines a subgroup Z/p, i.e. a subset of A. We
must therefore search for an a such that [a] = Z/p.

1243Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

The aim is to generate the entire group Z/p with the aid of a single element a ∈
Z/p , for we obtain all addresses in the hash table in conjunction with the home
address 0!
Here we add the following

Definition 4.2: A group G is called cyclic if an element x ∈ G exists such that
[x] = G. In that case x is called an element generating G.

For the prime residue class groups mod m with m = p the following theorem is valid:

Theorem 4.2: For every prime number p the prime residue class group Z/p is
cyclic.

Definition 4.3: A natural number a is called a primitive root if the residue class
of a mod n generates the residue class group Z/n.

Conclusion 4.1: From φ(p) = p-1 it follows directly that a number a (residue class)
for which gcd(a,p) = 1 is a primitive root if and only if a as
generating element has the order φ(p) = p-1. The smallest
residues of the powers a,a2,a3,….,ap-1 are then all different from
each other and generate the required address set A\{0}=
{1,2,…,p-1}.

We also note that primitive roots exist for every prime number, and that more

than one primitive root may exist for a given prime number; thus the generating
element Z/p is not uniquely defined a priori.

The following theorem is valid:

Theorem 4.3: For every divisor d ∈ N of p-1 exactly φ(d) prime residue classes
mod p of the order d exist. These arise from such an a mod p in
the form

ab mod p with gcd(b,d) = 1.

From this it follows with d = p-1 that exactly φ(p-1) primitive roots a mod p exist and
that, for any known a, they can be generated by means of ab mod p with
gcd(b,p-1) = 1.

For the application the following conclusion is also important:

Conclusion 4.2: If 2 is not a primitive root mod p, p > 2, then 2i, i ∈ N, is not a
primitive root mod p either.

Example:
Module p = 7
Residue class: 2 3 4 5 6
Primitive root: n j n j n
a,a2,a3,….,ap-1 with a = 3 yields 3, 2, 6,4,5,1 order φ(p) = p-1 = 6
a,a2,a3,….,ap-1 with a = 5 yields 5,4,6,2,3,1
a,a2,a3,….,ap-1 with a = 6 yields 6,1,6,1,6,1 order 2
Here we are briefly concerned with assertions in the Theory of Numbers and algebra
regarding the cyclicity of Z/n for any n whatever, or for powers of p and assertions

1244 Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

connected with this, to the extent necessary to give reasons why the more general case
is of no particular practical value for hash-coding.

The general theorem proved by Gauss holds:

Theorem 4.4: Let n ≥ 2 and p ≠ 2 prime. The prime residue class group Z/n is
cyclic if and only if n = 2 or n = 4 or n = pj or n= 2 pj with j ∈ N.

For the application, though, we need a cyclic group of the order n-1 to go with the
module n, so as to be able to generate the addresses A in conjunction with the home
address f0(k)= 0. The Euler function φ(n) is multiplicative, i.e. φ(a)* φ(b) = φ(ab), if
gcd(a,b) =1. Since φ(2) = 1 and φ(pj) = pj – pj –1, a residue class module of the form 2
pj is no use.

The case m = 2j is covered by Morris’ random number generator, but has the
disadvantage that k mod 2j cannot be used as a hash function. In the binary
representation of k this corresponds to a shift right by j places, and it is obvious that
the hash function f0(k) would tend a priori to result in clusters as a result.

In the same way, unanswered questions about the existence of primitive roots are
of no further importance here for practical reasons, except that it is known that at least
one primitive root exists for every prime number. But determining primitive roots w
to a module p systematically, for instance the smallest, does involve a slight problem.

No general constructive procedure exists for this, so we are forced to have
recourse to a table, which can be computed for 1≤ w ≤ p-1 by means of the necessary
and sufficient relation

wp-1 = 1 mod p with φ(p) = p-1 and wj ≠ 1 mod p for 0 < j < p-1
Various software packages (such as Mathematica) provide functions to compute

all primitive roots of a given prime number p in their program libraries.
For hash tables of length p, the values of p of special interest as table lengths – for

reasons of efficiency – are those for which 2 is a primitive root and j ∈ N, so that 2j is
also a primitive root. For it is then possible to handle raising to a power iteratively by
a shift left by j places!

5 Algorithmic Solution

We can implement the results so far in the following collision strategy:

Since A and A\{0} together form a group, we simply obtain, with
fi(k) = f0(k) + q(i,p) mod p and a primitive root w mod p and q(0,p) = 0,
 f0(k) = k mod p

fi(k) = f0(k) + wi mod p i=1,2,...,p-1

The programs below implement this strategy. A table listing primitive roots w for
typical values of p is appended.

/*
 let p be a prime number suitable for the length of the hash table hashtable
let k!=0 be the key
T[a] == 0 : place is empty;
let w be a primitive root mod p

1245Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

home address home = k mod p // fo(k);
It is assumed that at least one slot in the table is empty.

*/
boolean find_Key(int k, int p, int w) {
 int home=k mod p;
 int tmp=w;
 int a=home;

 while ((t[a]!=k) && (t[a]!=0)) {
 a=(home+tmp) mod p;
 tmp=(tmp*w) mod p;
 }
 return (t[a]==k);
}

insert_Key(int k, int p, int w) {
 int home=k mod p;
 int tmp=w;
 int a=home;

 while ((t[a]!=k) && (t[a]!=0)) {
 a=(home+tmp) mod p;
 tmp=(tmp*w) mod p;
 }
 t[a]=k;
}

6 Generalization with a Factor Group

Definition 6.1: If G is an abelian group, U ⊆ G a subgroup and g ∈ G, then the
coset gU = Ug is called a normal divisor of G.

A normal divisor U of G generates a decomposition of G into cosets
G = U ∪ Ug1 ∪ Ug2 ... ∪ Ugi and the following theorem is valid:

Theorem 6.1: If G is a group, g ∈ G and U is a subgroup of G, then

(1) g ∈ U if and only if g U = U
(2) the various cosets with respect to U form a partition of G and

every g lies in a uniquely defined coset
(3) all cosets with respect to U have the same cardinality, i.e. the

same number of elements.

The cosets for the normal divisor U form a group, the factor group G/U.
In addition, ord(G/U) * ord(U) = ord(G).

1246 Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

Before we discuss the general case, let us start with a decomposition G = U ∪ Ug, i.e.
we want to partition the address set A \ {0} achieved with the collision strategy into
two subsets A = U ∪ V of equal size.
Starting from theorem 4.3, we select d = (p-1)/2 as divisor and determine a prime
residue class r in Z/p such that rd ≡ 1 mod p and ri ≠ 1 mod p for i < d.
Because d < p-1, this is not a primitive root, but it generates a cyclic subgroup U for
which ord(U) = ord (Z/p)/2 = (p-1)/2 in Z/p with [r] = {r,r2,...,rd-1,1}, and U is a
normal divisor.

If we select r with this property, then U = [r] supplies exactly half the addresses. The
set V = G \ U complementary to U has the same number of elements, in line with
theorem 6.1, and with rU = Ur = U we obtain Z/p = U ∪ V with ⎢U ⎢= ⎢ V ⎢ = (p-1)/2.
To determine V algorithmically we need a g ∈ Z/p with g ∉ U ⊆ Z/p. Therefore

gd ≢ 1 mod p with d < p-1 must hold. A primitive root w ∈ Z/p does the job, because

wp-1 ≡ 1 mod p and wi ≢ 1 mod p for 0 < i < p-1.

The normal divisor U and the coset V can be generated step by step once r and g have
been selected:
U: {ri} i = 1,2,...,(p-1)/2
V: {ri*g} i = 1,2,...,(p-1)/2

Example: p = 13, r = 4 with r6 ≡ 1 mod 13, primitive root w=2
 yields the sequence 4,8,3,6,12,11,9,5,10,7,1,2.
For a primitive root w and a generating element r with
ord(r) = (p-1)/2 we can thus formally write:

fi(k) = k mod p + qi(p,i) mod p mit q0 = 0;

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∗
=

+

wveveni

voddi
q i

i

i

2

2

1

 for i>0

This strategy can be formally transferred to any normal divisor U of Z/p

whatever, and in the general case, once U has been selected, one obtains a partition of
the address set A which is determined by the factor group Z/p in line with U.
However, it is no longer possible (as it was in the case Z/p = U ∪ V) to use a
primitive root to raise the elements r ∈ [r] to a power.

Example: p = 13, r = 5 with r4 ≡ 1 mod 13, generating elements 6 and 3

 yields the following decomposition:
{5,12,8,1}∪{4,7,9,6}∪{2,10,11,3}

If U is a normal divisor, i.e. a cyclic subgroup of Z/p with ord (U) = u, then one
obtains a decomposition into cosets with (p-1)/u classes and these form a partition of
the address set. The individual partitions correspond to the factor group Z/p with
respect to U.

1247Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

References

[Ackerman 74] F. Ackerman: Quadratic search for hash tables of sizes pn. CACM, Volume 17,
Issue 3, p.164 (March 1974)

[Batagelj 75] V. Batagelj: The quadratic hash method when the table size is not a prime
number. CACM, Volume 18, Issue 4, p.216-217, April 1975

[Bays 73] C. Bays: The reallocation of hash-coded tables. CACM, Volume 16, Issue 1, p.11-14,
Jan 1973

[Bell 70] J. R. Bell: The quadratic quotient method: a hash code eliminating secondary
clustering. CACM, Volume 13, Issue 2, p.107-109, Feb 1970

[Bell, Kaman 70] J. R. Bell, C. H. Kaman: The linear quotient Hashcode. CACM 13, 675-677,
1970

[Brent 73] R. P. Brent: Reducing the retrieval time of scatter storage techniques. CACM,
Volume 16, Issue 2, p.105-109, Feb 1973

[Burkhard 73] W. A. Burkhard: Full table quadratic quotient scatter table searching. Proc.6th
Hawaii Int. Conf on Systems Sc., 81-82, 1973

[Day 70] A. C. Day: Full table quadratic searching for scatter storage. CACM, Volume 13,
Issue 8, p.481-482, Aug. 1970

[Gauss 1871] C. F. Gauss: Disquisitiones Arithmeticae. 1871
[Hasse 64] H. Hasse: Vorlesungen über Zahlentheorie, 1964, Springer
[Knuth 73] D. E. Knuth: The Art of Computer Programming. Vol. 3: Searching and Sorting,

Addison Wesley 1rd Edition 1973
[Knuth 98] D. E. Knuth: The Art of Computer Programming. Vol. 2: Seminumerical

Algorithms,3rd Edition, p 10- 21, Addison Wesley 1998
[Lamport 70] L. Lamport: Comment on Bell's quadratic quotient method for hash coded

searching. CACM, Volume 13, Issue 9, p.573-574, Sept. 1970
[Larson 88] P.-A. Larson: Dynamic Hash Tables. CACM, Volume 31, Issue 4, p.446-457, 1988
[Luccion 72] F. Luccion: Weighted increment linear search for scatter Storage. CACM Volume

15, 1045-1047, 1972
[Maurer 68] W. D. Maurer: An improved hash code for scatter storage. CACM, Volume 11,

Issue 1, p.35-38, 1968
[Maurer, Lewis 75] W. D. Maurer, T.G. Lewis: Hash Table Methods. ACM Computing

Surveys (CSUR), Volume 7, Issue 1, p. 5-19, 1975
[Morris 68] R. Morris: Scatter Storage Techniques. CACM 11(1): p.38-44 (1968)
[Muehlbacher 81] J. R. Muehlbacher: Full Table Scatter Storage Parallel Searching.

Computing, Volume 26, p. 9-18, 1981
[Radke 70] C. E. Radke: The use of quadratic residue search. CACM Volume 13, Issue 2, p.

103- 105, Feb 1970
[Ullmann 72] J. D. Ullmann: A Note on the Efficiency of Hashing Functions. Journal of the

ACM (JACM), Volume 19, Issue 3, p.569-575, July 1972

1248 Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

A Appendix

Table of various prime numbers with selected primitive roots

Otherwise the order ord is listed. N.B.: ord is a divisor of p-1.
For every prime number there are exactly φ(p-1) primitive roots, which are
incongruent mod p.

p \ 2 3 4 5 7 8 16 32 φ(p-1)

 127 7 Y 7 42 126 7 7 7 36
227 Y 113 113 Y 113 Y 113 Y 112
211 Y Y 105 35 Y 70 105 42 48
239 119 119 119 119 Y 119 119 119 96
241 24 120 12 40 Y 8 6 24 64
509 Y Y 254 254 Y Y 127 Y 252
523 Y 58 261 Y 261 174 261 Y 168

1019 Y 509 509 509 Y Y 509 Y 508
2029 Y 169 1014 1014 676 676 507 Y 624
4021 Y 1005 2010 1005 20 1340 1005 804 1056
8093 Y Y 4046 1156 2023 Y 2023 Y 3264

16381 Y 1170 8190 4095 630 5460 4095 3276 3456
32749 Y 16374 16374 2729 Y 10916 8187 Y 10912
65357 Y Y 32678 Y Y Y 16339 Y 32676

1249Muehlbacher J.R.: Full Hash Table Search using Primitive Roots ...

