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Abstract: Implications of a formal context (G, M, I) obey Armstrong rules, which
allows for definition of a minimal (in the number of implications) implication base,
called Duquenne-Guigues or stem base in the literature. A long-standing problem was
that of an upper bound for the size of a stem base in the size of the relation I . In this
paper we give a simple example of a relation where this boundary is exponential. We
also prove #P -hardness of the problem of determining the size of the stem base (i.e.,
the number of pseudo-intents).
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1 Main Definitions and Problem Statement

First we recall some basic notions of Formal Concept Analysis (FCA)
[Wille 1982], [Ganter and Wille 1999].

Definition. Let G and M be sets, called the set of objects and the set of
attributes, respectively. Let I be a relation I ⊆ G × M between objects and
attributes: for g ∈ G, m ∈ M , gIm holds iff the object g has the attribute
m. The triple K = (G, M, I) is called a (formal) context. Formal contexts are
naturally given by cross tables, where a cross for a pair (g, m) means that this
pair belongs to the relation I. If A ⊆ G, B ⊆ M are arbitrary subsets, then the
Galois connection is given by the following derivation operators :

A′ := {m ∈ M | gIm for all g ∈ A},
B′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a (formal)
concept (of the context K) with extent A and intent B. For g ∈ G and m ∈ M

the sets {g}′ and {m}′ are called object intent and attribute extent, respectively.
The set of attributes B is implied by the set of attributes D, or an implication
D → B holds, if all objects from G that have all attributes from the set D also
have all attributes from the set B, i.e., D′ ⊆ B′.

The operation (·)′′ is a closure operator [Ganter and Wille 1999], i.e., it is
idempotent (X ′′′′ = X ′′), extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆

Journal of Universal Computer Science, vol. 10, no. 8 (2004), 927-933
submitted: 22/3/04, accepted: 28/6/04, appeared: 28/8/04 © J.UCS



Y ′′). Sets A ⊆ G, B ⊆ M are called closed if A′′ = A and B′′ = B. Obviously,
extents and intents are closed sets. Since the closed sets form a closure system
or a Moore space [Birkhoff 1979], the set of all formal concepts of the context
K, forms a lattice, called a concept lattice and usually denoted by B(K) in FCA
literature.

Implications obey Armstrong rules:

A → B

A ∪ C → B
,

A → B, A → C

A → B ∪ C
,

A → B, B → C

A → C
.

A minimal (in the number of implications) subset of implications, from which all
other implications of a context can be deduced by means of Armstrong rules was
characterized in [Guigues and Duquenne 1986]. This subset is called Duquenne-
Guigues or stem base in the literature. The premises of implications of the stem
base can be given by pseudo-intents (see, e.g., [Ganter and Wille 1999]): a set
P ⊆ M is a pseudo-intent if P �= P ′′ and Q′′ ⊂ P for every pseudo-intent
Q ⊂ P . Since the introduction of the stem base, a long standing problem was
that concerning the upper bound of the size of the stem base: whether the stem
base can be exponential in the size of the input, i.e., in |G| × |M |.

Now we recall some standard definitions. A many-valued context
[Ganter and Wille 1999] is a tuple (G, M, W, I), where W is the set of attribute
values, I ⊆ G × M × W , such that (g, m, w) ∈ I and (g, m, v) ∈ I implies
w = v. Thus, instead of (g, m, w) ∈ I one can write g(m) = w. By definition,
dom(m): = {g ∈ G | (g, m, w) ∈ I for some w ∈ W}. An attribute m is com-
plete if dom(m) = G. A many-valued context is complete if all its attributes
are complete. X → Y is a functional dependency in a complete many-valued
context (G, M, W, I) if the following holds for every pair of objects g, h ∈ G:

(∀m ∈ X m(g) = m(h)) ⇒ (∀n ∈ Y n(g) = n(h)).

In [Ganter and Wille 1999] it was shown that having a complete many-valued
context (G, M, W, I), one defines the context KN := (P2(G), M, IN ), where
P2(G) is the set of all pairs of different objects from G and IN is defined by

{g, h}INm :⇔ m(g) = m(h).

Then a set Y ⊆ M is functionally dependent on the set X ⊆ M iff the implication
X → Y holds in the context KN .

2 Counting pseudo-intents

A concept lattice can be exponential in the size of the context (e.g., when it is a
Boolean one). Moreover, the problem of determining the size of a concept lattice
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is #P -complete (see e.g. [Kuznetsov 2001]). There are several polynomial-delay
algorithms for computing the set of all concepts (see e.g. review
[Kuznetsov and Obiedkov 2002]). However, neither an efficient
(polynomial-delay) algorithm, nor a good upper bound for the size of stem base
was known. It is easy to show that there can be a stem base exponential in
the size with respect to |M |, for example when object intents are exactly all
possible subsets of size |M |/2. However, in this case |G|, as well as |I|, are also
exponential in |M |, and the number of pseudo-intents is polynomial in |I|.

A solution to the question whether stem base can be exponential in the size
of the context, i.e., in |G|× |M | is obtained by observing a fact about functional
dependencies, namely that the size of a smallest base of functional dependen-
cies can be exponential in the size of the relation [Mannila and Räihä 1992]1.
Although the reducibility of functional dependencies to implications implies sim-
ilar statement for the implication base, a general form of a context that gives
rise to exponentially large stem base was not clear. The reduction of a many-
valued context (G, M, W, I) to a binary one KN = (P2(G), M, IN ) along the lines
of [Ganter and Wille 1999] (see Section 1) results in contexts with (2m+3)2 ob-
jects for m ≥ 2, so the smallest number of objects in such a context is 49. Here we
propose simpler contexts with sizes of the stem base exponential in the relation
size.

Consider a context Ke = (G, M, I) given by the cross table in Figure 1, where
G = G1∪G2, M = M1∪M2∪{m0}, I = I1∪I2∪I3∪{m0}×G2 and subcontexts
K1 = (G1, M1, I1), K2 = (G1, M2, I2), K3 = (G2, M1 ∪ M2, I3) are of the form
(A, A, �=). More formally, objects and attributes are G1 = {g1, . . . , gn}, G2 =
{gn+1, . . . , g3n}, M1 = {m1, . . . , mn}, M2 = {mn+1, . . . , m2n}. The relations I1,
I2, and I3 are defined as follows: giI1mj iff i �= j, giI2mj iff i �= j −n, giI3mj iff
i �= j + n for gi and mj from corresponding sets of objects and attributes. For
m0 and g ∈ G one has m0Ig iff g ∈ G2.

1 I am grateful to Lhouari Nourine for attracting my attention to this fact.
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G \ M m0 m1, . . . , mn mn+1, . . . , m2n

g1

...

... I1 I2

...
gn

gn+1 ×
...

...
...

...
...

... I3

...
...

g3n ×
Figure 1

Theorem 1. The number of pseudo-intents of the context Ke is 2n.

Proof. First note that the set of attributes {m1, . . . , mn} is a pseudo-intent. In
fact, for a subset

B = {mj1 , . . . , mjk
} ⊂ {m1, . . . , mn} = M1

we have
B′ = (G1 \ {gj1 , . . . , gjk

}) ∪ (G2 \ {gn+j1 , . . . , gn+jk
})

and B′′ = B, i.e., the set B is closed. The set {m1, . . . , mn} is not closed, since
{m1, . . . , mn}′′ = {m0, m1, . . . , mn}. If a set is not closed and all its subsets are
closed, then it is a pseudo-intent by definition. Since the set {m1, . . . , mn} is a
pseudo-intent, if we replace mi ∈ {m1, . . . , mn} with mn+i, then the resulting
set

{m1, . . . , mi−1, mi+n, mi+1, . . . , mn}
is still a pseudo-intent, because it is not closed:

{m1, . . . , mi−1, mi+n, mi+1, . . . , mn}′′ =

{m0, m1, . . . , mi−1, mi+n, mi+1, . . . , mn}
and every subset

C ⊂ {m1, . . . , mi−1, mi+n, mi+1, . . . , mn}
is closed by the same arguments as for B ⊂ M1. We can replace each mi with
mn+i obtaining another pseudo-intent. Since the replacement of mi for mn+i

can be done independently for each i, we have 2n pseudo-intents. �
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Note that in our example pseudo-intents are at the same time proper premises
(see, e.g., [Ganter and Wille 1999]), which make the so-called direct base: all
implications are deduced from this base by single application of Armstrong rules.
Moreover, here all pseudointents are so-called minimal positive hypotheses (see,
e.g., [Ganter and Kuznetsov 2000]) w.r.t. the target attribute m0.

Besides the exponential boundary of the size of the stem base, the problem
of counting pseudo-intents is also intractable by the following

Theorem 2. The problem
INPUT A formal context K = (G, M, I)
OUTPUT The number of pseudointents of K

is #P -hard.

Proof. Consider an abitrary graph (V, E) and three sets M = {m1, . . ., m|V |},
G1 = {g1, . . . , g|E|}, and G2 = {g|E|+1, . . . , g|E|+|V |} such that the elements of
the set M are in one-to-one correpondence with the set of vertices V (so one can
write, e.g., v(m)), the elements of the set G1 are in one-to-one correspondence
with the edges from E (so one can write, e.g., e(g)), the elements of the set G2

are in one-to-one correspondence with vertices from V (so one can write, e.g.,
v(g)).

Now consider a context K = (G1 ∪ G2, M ∪ {m0}, I), where I is defined as
follows: for m ∈ M and g ∈ G1 one has mIg iff v(m) �∈ e(g) (i.e., the vertex
v(m) is not incident to the edge e(g)). For m ∈ M and g ∈ G2 one has mIg iff
v(m) �= v(g). For m0 one has m0Ig iff g ∈ G2.

In terms of FCA, the context K is the subposition of two contexts, which
can be reprsented by the cross table in Fig. 2. Here � I is the complement of the
vertex-edge incidence relation of the graph (V, E): v � I e iff v is not incident to
e (or v �∈ e), �= denotes the “zero-diagonal” relation (only the diagonal pairs do
not belong to it).

Recall that in a graph (V, E) a subset W ⊆ V is a vertex cover if every
edge e ∈ E is incident to some w ∈ W . A cover is minimal if no proper subset
of it is a cover. The problem of counting all minimal covers was proved to be
#P -complete in [Valiant 1979]. We show that for a graph (V, E) pseudo-intents
of the context in Fig. 2 are in one-to-one correspondence with minimal vertex
covers of (V, E).

Indeed, if a subset W ⊆ V of vertices is a minimal cover, then by definition
of � I , for each gi ∈ G1 there is an attribute mi ∈ W such that gj � I mi does
not hold. Thus, the set W ′ will not contain any object from G1. Hence, W ′′

will contain m0 and, thus W is not closed (W ′′ �= W ). However, for any subset
Q ⊂ W we have Q′′ = Q (because Q′ contains an object from G1). Thus, by
definition, W is a pseudo-intent.

In the opposite direction, for each mi ∈ M consider W : m �∈ W . Since
mi �∈ {g|E|+i}′, the implication W → {mi} does not hold and there is no non-
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trivial implications with mi in the right-hand side. The only possible nontrivial
implications are of the form W → {m0}. Hence, if W is a pseudo-intent of the
context, then W ′ should not contain any object from G1. Thus, by the defini-
tion of � I , the set W is a vertex cover. This cover is minimal, since otherwise
there had existed a subset Q ⊂ W which is not closed, Q′′ = Q ∪ {m0}, which
contradicts the fact that W is a pseudo-intent such that W ′′ = W ∪ {m0}.

G \ M m0 m1, . . . . . . . . . . . . , m|V |
g1

...

... � I

...
g|E|

g|E|+1 ×
...

...
...

... �=
...

...
g|E|+|V | ×

Figure 2

Thus, we reduced the decision problem of finding a minimal vertex cover to the
problem of finding a pseudo-intent. The reduction is obviously polynomial. �

To show that the problem of counting pseudo-intents belongs to the class
#P (and, thus is #P -complete), one should prove that the following decision
problem

INSTANCE A context K = (G, M, I), Q ⊆ M

QUESTION Is Q a pseudo-intent?

is solvable in polynomial time. Note that the decision problem

INSTANCE A context K = (G, M, I), a natural number k ≤ |M |.
QUESTION Is there a pseudo-intent of the context K of size not greater

than k?

is proved to be NP-hard with the same reduction as in the proof of Theorem 2
from the NP-complete problem of deciding the existence of a vertex cover of size
no greater than k.

At the same time the problem

INSTANCE A context K = (G, M, I)
QUESTION Is there a pseudo-intent of the context K?

is solvable in polynomial time: The only situation when a context (G, M, I) does
not have a pseudo-intent is the case where it has a “diagonal” subcontext of
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the form (A, A, �=). For an arbitrary context (G, M, I) one can test whether it
has a diagonal subcontext in (|G| · |M |) time (by scanning once all rows of the
cross-table of the context K).
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