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Abstract: Categorical Multi-Combinators form a rewriting system developed with the
aim of providing efficient implementations of lazy functional languages. The core of the
system of Categorical Multi-Combinators consists of only four rewriting laws with a
very low pattern-matching complexity. This system allows the equivalent of several -
reductions to be performed at once, as functions form frames with all their arguments.
Although this feature is convenient for most cases of function application it does not
allow partially parameterised functions to fetch arguments. This paper presents Partial
Categorical Multi-Combinators, a new rewriting system, which removes this drawback.
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1 Introduction

The method of compilation of functional languages into combinators, first ex-
plored by Turner in [Turner 1979], provides a way of removing the variables from
a program, transforming it into an applicative combination of constant functions
or combinators. Turner used a set of combinators based on Curry’s Combina-
tory Logic. To each combinator there is associated a rewriting law. In rewriting a
combinator expression, Turner rewrites the leftmost-outermost reducible subex-
pression (or redez) at each stage. When no further rewriting can take place the
expression is said to be in normal form.

Another theory of functions is provided by Category Theory [Lambek 1980],
and we can see the notation used herein as providing an alternative set of combi-
nators. The original system of Categorical Combinators was developed by Curien
[Curien 1986]. This work was inspired by the equivalence of the theories of typed
A-calculus and Cartesian Closed Categories as shown by Lambek [Lambek 1980]
and Scott [Scott 1980].

Aiming to implement lazy functional languages in an efficient way using
rewriting of Categorical Combinators we developed a number of optimisations
[Lins 1996, Lins 1987a] of the naive system, the most refined of which was the
system of Linear Categorical Combinators [Lins 1987a]. The modifications in-
troduced reduce the number of rewriting laws and increase the efficiency of the
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system by reducing the number of rewriting steps involved in taking an ex-
pression to normal form, whilst leaving the complexity of the pattern matching
algorithm unchanged.

Categorical Multi-Combinators are a generalisation of Linear Categorical
Combinators. Each rewriting step of the Multi-Combinator code is equivalent
to several rewritings of Linear Categorical Combinators, since an application of
a function to several arguments can be reduced in a single step. The core of the
system of Categorical Multi-Combinators consists only of four rewriting laws
with a very low pattern-matching complexity and avoids the generation of triv-
ially reducible sub-expressions. In [Lins et al. 1994b] we have shown the equiva-
lence between the operational semantics of the TIM [Fairbairn and Wray 1987]
machine and rewriting of Categorical Multi-Combinator expressions: every TIM
state is equivalent to a Categorical Multi-Combinator expression and vice versa;
equivalent expressions are transformed into equivalent expressions by rewriting.

Independently, there has been much interest in compiled versions of func-
tional languages which run much more quickly on von Neumann machines than
do interpreters. Johnsson, with his implementation of Lazy ML [Johnsson 1987],
showed that it is possible to get fast implementations of lazy functional lan-
guages. The basic principle of the G-Machine is to avoid generating graphs,
as much as possible. An analysis of the G-Machine and its optimisations can
be found in [Lins and Soares 1993]. Categorical Multi-Combinators served as
a basis for several compiled machines [Lins and Lira 1993, Lins et al. 1994a,
Musicante and Lins 1991, Thompson and Lins 1992]. The latest abstract ma-
chine, I'CMC [Lins and Lira 1993], has already shown very good performance
figures [Hartel et al.1996].

The system of Categorical Multi-Combinators allows the equivalent of several
[B-reductions to be performed at once, as functions form frames with all their
arguments. This feature is convenient for most cases of function application be-
cause a coarser granularity of computation allows better compiled code. On the
other hand, full lazyness is lost because partially parameterised functions are not
reducible as such. Partial applications need to wait until the evaluation reaches
a point in which all arguments are present, becoming a total application. If a
partial application becomes shared in Categorical Multi-Combinators a copy of
it is made for each instance of the variable to be replaced, losing the sharing
of computations. Pseudoknot [Hartel et al.1996] is an example of a benchmark
in which there is a large number of shared partial applications. In this paper
we present a new set of Categorical Multi-Combinators, called Partial Categor-
ical Multi-Combinators, which allows partial applications to be evaluated. We
prove that Partial Categorical Multi-Combinators have the Church-Rosser prop-
erties of uniqueness of normal forms and that they are normalising, i.e. rewriting
the leftmost-outermost pattern at each point of the reduction sequence leads to
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normal form, if it exists. Although, in this paper, the focus is on the formal as-
pects of Partial Categorical Multi-Combinators, the reader can find in appendix
their compilation schemes and state transition laws for the I"CMC machine
[Lins and Lira 1993].

2 Categorical Multi-Combinators

In this section we present the compilation algorithm and rewriting laws for Cat-
egorical Multi-Combinators.

2.1 Compilation Algorithm

In Categorical Multi-Combinators, function application is denoted by juxtapo-
sition, taken to be left-associative. The compilation algorithm for translating
A-expressions into Categorical Multi-Combinators is:

(T.1) ;... X .a] = (L L(R¥iq), ()
——

n

(T.2) [a...b] =]a]...[b]
(T.3) [c] = ¢, where ¢ is a constant.

(T.4) R™ % day, ... Xey.a = LM (REi-@iwh-a1q)
——
m

(T.5) Rz (a. . b) _ (in...zja L RT b)

e,z ) b, if bis a constant

(T-6) R*5b = {nk,if b=

In the case of rules T.1 and T.4 above, n and m stand for the largest possible
sequence of binders, i.e. @ may not be an abstraction. R¥i* is an auxiliary func-
tion which at T.6 replaces variables by its deBruijn number, the depth in the list
of bound variables generated by T.1 and expanded by T.4. Rule T.5 above, sim-
ply distributes the environment (list of bound variables) through applications.
Whenever applying rule T.6 above a variable b can be associated with more
than one zj one must choose the minimum corresponding ny, keeping locality
of binding.

2.2 Categorical Multi-Combinator Rewriting Laws

The core of the Categorical Multi-Combinator machine is presented on page 71
of [Lins 1987b]. For a matter of convenience the multi-pair combinator, which
forms evaluation environments, is written as (zo, ..., z,). Compositions, which
represent closures, are denoted as (a,b). Using this notation the kernel of the
Categorical Multi-Combinator rewriting laws is expressed as:
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(M*.l) (xmw"vxlﬂxo)) = Tn

(M*.3)

(n

(M*.2) (zoz1%2...20,Y) = (X0,Y) ... (Tn,Y)
(L™(y), (wo, .. ))Tox1 « - . TpTpt1 - Tz = (Y, (Toy v oy T )Y Tppg1 - - Tz
(

(M*.4) (k,(xm,-..,T1,20)) = k, where k is a constant

The state of computation of a Categorical Multi-Combinator expression is rep-
resented by the expression itself. Rule (M*.1) performs environment look-up,
this is the mechanism by which a variable fetches its value in the corresponding
environment. (M*.2) is responsible for environment distribution. Rule (M*.3)
performs environment formation. It is called multi-8 reduction, because it is
equivalent to performing several (-reductions in the A-calculus. Rule (M*.4)
discards the environment associated with a constant.

(Ma.a a)((XeXM.d)B)C is translated into Categorical Multi-Combinators and
rewritten as (we assume that [B] = B’ and [C] = (),

(L°(0 0), ))((L1(0), ) B)C" "5 (0 0), ((L*(0), ()) B)) €’
M2 (0, ((LY(0), ) B))(0, ((L1(0),0)) B"))) C"
M (LN0), () B' (0, ((LY(0), ()) B)) "
0,8, (0, (L1 (0), () B)))C
M0, ((L40), 0) BY) ¢
ML 0), ) B ¢
M2 0,8, 0"))
M:*>.IC,

2.3 Reduction Order

It is a well known fact that leftmost-outermost reduction of A-expressions is a
safe but non-optimal reduction strategy. In the A-expression

(da.a a)((XeM.d)B) C
the reduction of the rightmost redex yields
£ (Ma.a a)(M.d) C
d)(M.d) C

(M
(M.d) C
C

Yo Um Um
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The sequence of reductions above is shorter than the leftmost-outermost one, be-
cause the partial application, which forms the rightmost redex in the expression
above, was reduced before being copied. Functional programs often make use of
partially applied functions [Hartel et al.1996]. A program that makes intensive
use of partial applications which become shared during execution calls for an
efficient mechanism allowing the sharing of computation to be kept.

If we analyse the sequence of reductions for Categorical Multi-Combinators
we can see that the Categorical Multi-Combinator sub-expression equivalent to
the rightmost redex in the A-expression is not reducible by applying any of the
rewriting laws above. Categorical Multi-Combinators will make copies of the
partial application and “wait” until all arguments are present to perform multi-
0 reduction. As functional languages only print expressions of ground type, we
know that the extra arguments needed will be in place whenever the partial ap-
plication becomes the leftmost-outermost redex, thus making multi-§ reduction
possible. However, not being able to share the result of evaluation of partial
applications has performance implications.

3 Partial Categorical Multi-Combinators

In this section we introduce Partial Categorical Multi-Combinators, a rewriting
system which allows to reduce partially applied functions.

3.1 Compilation Algorithm

The compilation algorithm for translating A-expressions into Partial Categor-
ical Multi-Combinators is different from that presented above for Categorical
Multi-Combinators. Now, instead of working with the deBruijn representation
for variables we work with the co-deBruijn number, as we want variables to
which arguments are passed first to be represented by smaller numbers than
the ones which correspond to arguments passed later on. Parenthesisation of
expressions is also made explicit. Thus the compilation algorithm for Partial
Categorical Multi-Combinators from fully parenthesised A-lifted expressions in
the A-Calculus is:

(T°.1) [Xi...Xej.a] = (L"1(R%%ia), ()
——

(T°.2) [(...(ab)...0)) = (... ([a][b]).--[c])

(T°.3) [¢] = ¢, where c is a constant.

(T’.4) ijx, )\,Ek . )\'El a = mel(Rx;...zkzj...zia)

m
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(T.5) R%-i(...(ab)...c) = (R™~Ta.. &), . REoic

b, if b is a constant

. TjoTif =
( 6)R b {nk,ifb:xk

The compilation algorithm for Partial Categorical Multi-Combinators follows
the same remarks made on the compilation algorithm of Categorical Multi-
Combinators. Again, if whenever applying rule T°.6 above a variable b can be
associated with more than one xj, then one must choose the maximum corre-
sponding ny. This enforces the locality of binding of variables. Observing the
compilation algorithm above one can see that the only difference to the Cate-
gorical Multi-Combinators (rules T.1 to T.6) is the representation of variables
by the co-deBruijn number.

3.1.1 Example of Compilation

Here follows an example of the compilation of a A-expression into Partial Cate-
gorical Multi-Combinators, using the algorithm above:

[(((a.a a)((deM.d)B)) O)] =" (([(Ya-a a)] [(

R%(a a
L°(R%a R%a),()) [(eM.d)B))) [C])
)

([ xeXd.d)B))) [C])
(
(
((L°(0 R%a), ()) [(XeX.d)B)]) [C])
(
(
(

(
)); 0) [((GeMd.d)B)]) [C])

) [((GeXd.d)B)]) [C])

) (PeM.d] [B))) [C])

) (L (R*<d), () [B]) [C])
((L1(D),0) [BD) [€])

The size of compiled expressions in Partial and Categorical Multi-Combinators
is exactly the same and is linear with their A-calculus equivalent.

3.2 Partial Categorical Multi-Combinators Rewriting Laws

In this section we generalise multi-3 reduction to allow a function to fetch fewer
arguments than its arity passed to it. Thus one has,

(o (L™ () (wr, - )))xo) - Jzm) = (L1 ({y, (o, -, 2m))), ) if m<n
Now, one needs to adjust the argument fetching mechanism in such a way to
allow variables to work with partial multi-8 reduction.

T, f n<m

n, (Tm, ..., T1,%0)) :>{

n —m — 1, otherwise
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The complete set of rewriting laws for Partial Categorial Multi-Combinators is:

Tp, fn<m

(P-1) {n, (@m s 21, 70)) = {n —m — 1, otherwise

(P‘2) <£L‘0(E1£L'2 <o Ty y> = <£L‘0,y> cee <xn,y)

(P.3) (...((L™"(y), (w1, .- )))T0) - - )Tn)Trt1) - - )T2) =
(o oy (®oy oo, )y Tpg1) -+ ) T2)

(P.4) (.. (L"(y), (wr,.. o) .- ) =
(L1 (g, (20, ), ) i m <

(P.5) (k,(zm,...,x1,20)) = k, where k is a constant

The fundamental difference between Partial and Categorical Multi-Combinators
above is rewriting law P.4 above. It allows a function with less arguments than
its arity to process the existing arguments yielding another function on the
remaining arguments. Law P.4 restores an adequate degree of currying to the
system of Categorical Multi-Combinators lost by A-lifting, without incurring the
penalty of having redundant laziness.

3.3 Example of Evaluation

Let us analyse the Partial Categorical Multi-Combinator expression presented
in the example above under a reduction strategy similar to the one adopted for
the reduction of the A-expression in the last section, i.e. reducing the rightmost
redex first.

((L°(0 0), () ((L'(1), ) B") C") & (((L°(0 0), () ((L°((1, B") ), ())) C")
B (@00 0), 0) (£°(0),()) ) C")

at this point the partial parameterisation of the function on the right hand side of
the expression above was fully reduced, giving rise to a new function. Evaluation
proceeds as follows:
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Below, we prove that Partial Categorical Multi-Combinators have the Church-
Rosser property allowing rewritings to take place in any order to reach normal
form, if it exists. Notice that applicative order in Categorical Multi-Combinators
yields expressions equivalent to A-expressions in head-normal forms. Applica-
tive order reduction of Partial Multi-Combinator expressions yields expressions
equivalent to expressions in normal form in the A-Calculus.

4 Church-Rosser Theorems

The first Church-Rosser theorem for the A-Calculus proves the uniqueness of
normal forms of M-expressions, if they exist. This means that all terminating
sequences of reductions of a A-expression will lead to the same result. A rewrit-
ing system to which the Church-Rosser property is valid is called confluent or
Church-Rosser. The second Church-Rosser theorem for the A-Calculus shows
that the reduction of the leftmost-outermost redex at each point of the reduc-
tion sequence leads to normal form, if it exists.

In this section, we show that Partial Categorical Multi-Combinators have the
properties stated by the two Church-Rosser theorems.

4.1 Normal Forms

Here we prove that Partial Categorical Multi-Combinators have the property
that if one starts from a Partial Categorical Multi-Combinators expression any
terminating sequence of reductions leads to the same expression.

Our strategy for proving this property is based on Huet’s version of the
Knuth-Bendix algorithm [Huet 1980]. Huet proves that if a rewriting system if
left-linear and has no critical pairs it is confluent. A rewriting system is said to be
left-linear if no variable appears more than once on the left-hand side of any of its
rewriting rules. Critical pairs are computed by a superposition algorithm, where
one attempts to match in a most general way the left-hand side of some rewriting
rule with a nonvariable subterm of all rewriting rules in the system, including
itself. Critical pairs show the possibility of reduction sequences diverging.

The analysis of the of rewriting laws of Partial Categorical Multi-Combinators
shows that there is no repeated variable on the left-hand side of any of the rewrit-
ing rules. Considering that rules P.3 and P.4 are mutually exclusive, there is no
possible overlapping of patterns on the left hand side of any of the rewriting laws.
Any rewritable pattern matches trivially with a variable of any of the rewriting
laws in the system, therefore there are no critical pairs. We have proved that
Partial Categorical Multi-Combinators form a confluent rewriting system, thus
the Church-Rosser property of uniqueness of normal forms holds.



LinsR.D.: Partial Categorical Multi-Combinators ... 777

4.2 Normalisation Property

This section presents the proof that the reduction of the leftmost-outermost
redex at each point of the reduction sequence leads to normal form, if it exists.
A direct proof of this theorem is not simple. Our strategy is to produce a proof
in three steps. First, we present the A-Calculus with lazy explicit substitutions
[Lins 1996], a rewriting system which performs [-reductions with explicit, on
demand, variable substitution. The second step is to introduce the A-Calculus
with Multiple Substitutions, a rewriting system in which each rewriting step
is equivalent to several [-reductions. Variable substitution is also performed
explicitly and on demand. Then, we show that leftmost-outermost rewritings
of Partial Categorical Multi-Combinators are equivalent to leftmost-outermost
rewritings on the A-Calculus with Multiple Substitutions, therefore equivalent in
each step to a sequence of leftmost-outermost F-reductions on the A-Calculus.

4.2.1 The A-Calculus with Lazy Substitutions

The rewriting system called the A-Calculus with lazy substitutions was intro-
duced in 1986 by the author [Lins 1996] as a way to prove that the leftmost-
outermost rewriting of Linear Categorical Combinators [Lins 1996, Lins 1987a]
was equivalent to performing leftmost-outermost -reductions in the A-Calculus.
Explicit substitutions were “rediscovered” and extended in [Abadi et al. 1991],
but reference [Ferreira et al. 1996] and all other references afterwards acknowl-
edge Lins as its original developer.
The rewriting laws in the A-Calculus with lazy substitutions are:

L1 (de.a)A = [A/z]a

X.a, if x £z
L2 [A/z]X.a = { X.[A/z]a, if x # z,and z not free in A
Xe.[A/x][w/z]a, where w is a new variable

1.3 [A/z] (a b) = ([A/z]a) ([A/z]b)
L4 [A/z)z= A
L5 [A)x] z = 2

Rule 1.1 above is (-reduction with an explicit variable substitution operator
[A/x]. Rules 1.2 and 1.3 shifts the substitution operator into the body of an ab-
straction and distributes it through an application, respectively. Rules 1.4 and
1.5 perform actual substitution of formal parameters for real parameters. It is
obvious that the leftmost-outermost reduction in the A-Calculus with lazy sub-
stitutions is equivalent to leftmost-outermost G-reduction in the A-Calculus.
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4.2.2 The A-Calculus with Multiple Substitutions
Assuming we have the following A-expression,
ey Arza) TUV ...

applying the rules of the A-Calculus with lazy substitutions it leftmost-outermost
reduces to:

l 1([T/z)y.Az.a) UV
12 Ow[T/2)\20) U V
11 ([U/[T/2]Aza) V...
12 ([U/y)\=[T/x)a) V
12 (\=.[U/y][T/a)a) V
[ (V/AW0 /)T /aa) ...

One can observe in the sequence of reductions above that no other rewriting
takes place until all the substitution operators appear. There is no reason for
not rewriting the top expression directly into the bottom one, as this is always
the leftmost-outermost rewriting path, yielding:

(e Xy Aza) TUV...= ([V/2][U/y][T/x]a) ...

Making this a new rewriting law and adopting a more convenient notation for the
substitution operator we present a new rewriting system called the A-Calculus
with Multiple Substitutions:

1 (Owq.. o Xep.0)Ar . Ay = Mg - A [Ar /2, A JT]a, i m<n
2 (Xe1....xep.a)Ar . AR Ay = [A o, A an]aAn g ., otherwise
m.3 [Ai/x1, ..., An/an|Xea = X A1 /21, ..., An/xn]a
m.4 [Ay/x1,.. . An/xn](a. . b) = ([Ar /21, . An/xp]a.  [Ar 21, .. Ap 2 ]b)
m.5 [Ai/z1,..., An/zn]z; = A;
m.6 [Ai/x1,..., An/Tn]z = 2

In rule m.3 we assume that for all i we have x; # z and that z does not appear free
in any expression A;, a-conversion may be needed to guarantee this condition.

One can see by construction that the leftmost-outermost reduction in the
A-Calculus with Multiple Substitutions is equivalent to a sequence of leftmost-
outermost reductions in the A-Calculus with Lazy Substitutions, therefore any
terminating sequence in the former gives rise to one in the latter; thus this
reduction strategy is normalising.
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4.2.3 Final Step

Now we prove that the rewriting of the leftmost-outermost pattern of Partial
Categorical Multi-Combinators corresponds to rewriting the leftmost-outermost
redex in the A-Calculus with Multiple Substitutions. We first introduce a trans-
lation function 7, which translates Partial Categorical Multi-Combinator ex-
pressions into expressions of the A-Calculus with Multiple Substitutions. The
translation function 7 is defined as:

(b1) Twn1( (@ b).. )l) = TO0m-wrqT Wmtonp,  T0met1]

(t'z) Twm.uwan(<y7 (1'1, S ,$m)>) =
(MWrrg1 « oo MOy T Emtnt Wy (g0 X))

(¢.3) Twm " {L"(y), (Tmy-.-,21))) = (K01 ... X1 T OmtnW1y)
(t.4) Tom 1y (zp, ... 21)) = [THay fwr, ..., Tha, fw,|T0m+nwry
(t.5) TWm"1in = w41, if n is a variable.

(t.6) Twm-wif =k, if k is a constant.

One can observe that the translation function 7 is a correct mapping between
the two rewriting systems by analysing the behaviour of original and translated
expressions. One can see that 7 and R behave almost as inverses of each other.
We show that if a Partial Categorical Multi-Combinator expression A leftmost-
outermost rewrites in one step to an expression A’, then the translation of A into
the A-Calculus with Multiple Substitutions, 7 A, leftmost-outermost rewrites to
7T A’, in one step. So, the following diagram commutes:

AL T A
b 4
ALTA

We will analyse each of the rewritable patterns for Partial Categorical Multi-
Combinators.

P.1
7l (n, (zg,...,Tm)) 4 [’Tﬂxo/wl, e ,T[]xm/wmﬂ]’fw""““‘wln
LP1  Ut5
T[]xn [T[]J)Q/wl, . ,T[]xm/wm+1]wn+1
I m.5

T“xn
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The second clause in rule P.1 is never the leftmost-outermost redex in a Partial

Multi-Combinator expression. If it were, there would be a situation equivalent
to existing a free variable in the code.

P2
Tz, ..., 20), (v1, ... vm))) 2
L P2
TU((zo, (01, .., 0m))) o (@ (01, -+ -, 0m)))
Jt1
TU((@o, (01, om))) - TU (@, (01, .., 0m)))
Lt
[T[]vl/wl, STy [T[]vl/wl, Ty,
. [’Tﬂvl/wl, o ,Tﬂvm/wm]’]’w’”“'(mo, cey )
bt
[T[]vl/wl, LTy Ty,
U m.4
[Ty jwy, .. JTY xg .. [Ty fwn, .. )Ty,
P3

TUC . (L), (v, - - 01))20) - )an) - )as) £

L P3
T ((y, (o, 20 )V Epg1) .. )22)
Jt1
TV, (o, s wp)) Ty ... Tlha,
Jta

[T[] (xo /w1, ... ,T[]xn/wn_,_l)] T“’"+1"'w1yT[]xn+1 T,

1T (W), (s )V T Vg Ty, Tz,
VL3

(dwy ... /\wn+1.Tw”'+1"'w1y)T[]x0 v Ty Ty,
I m.2

[’TH (zo /w1, ... ,’Tﬂfcn/wnﬂ)] Tw”“"'wly’]'ﬂxnﬂ Ty,
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P.4
TV (L), (v, 01))@0) - . D) E1
| P4
T (L (s (20, -, 2m)))
|[t.2
(X041 oo X1 T (y (20, ooy T )
|[t.4
(wy o X [Tz fwy, . Ty, fwpgd] Tty
t1 70 (L), (v, o))V T Vg ... Ty,
| t.3
(Qws ... )\wn+1.T“’"+1'““’1y)T“a:0 T,
U m.1
Ows o X [TVzo fwy, . T2y, fwmgr] T 01y)
P.5

Tk, (21, ... 2m)) t4 [Tz jwr, . .., T fwom] TPk

I P5 ||t.6
Tk tA4 [Tz fwy, .., T, fwm] k
||t.6 I m.6
k k

The translation function 7 makes no redex transposition during translation, thus
the leftmost-outermost Partial Categorical Multi-Combinator redex corresponds
to the leftmost-outermost redex in the A-Calculus with Multiple Substitutions, in
the sense that the rewriting of the leftmost-outermost redexes in both systems are
equal modulo translation. We can conclude that leftmost-outermost rewritings
of Partial Categorical Multi-Combinators is a normalising strategy.

5 Conclusions

Partial Categorical Multi-Combinators form a rewriting system, which performs
the equivalent to a sequence of B-reductions in one rewriting step, but also al-
low for the reduction of partially parameterised functions. This paper shows
that Partial Categorical Multi-Combinators have the Church-Rosser properties
of uniqueness of normal forms and that the rewriting of the leftmost-outermost
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pattern leads to normal form, if it exists. The introduction of Partial Categor-
ical Multi-Combinator to I'CMC brought full lazyness to the machine, allow-
ing for partial applications to be shared. This strategy has proved efficient in
our implementation of Haskell [Carvalho Jr. et al. 2002, Lima et al. 2004], yield-
ing a performance improvement of about 20% for the Pseudoknot benchmark
[Hartel et al.1996].
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A Appendix:
Compiling Partial Categorical Combinators

Language compilation is a far more efficient implementation technique than in-
terpretation. I'CMC [Lins and Lira 1993] was the first abstract machine for the
implementation of lazy functional languages to transfer the execution flow con-
trol to C, as much as possible. I'CMC glues together procedure calls, unevaluated
expressions and functions, data-structures, etc. Categorical Multi-Combinators
[Lins 1987b] are the basis for the evaluation model of the I'CMC abstract ma-
chine.

This appendix briefly addresses the main issues on how Partial Categorical
Multi-Combinators were compiled into I"CMC.

A.1 The Original I'CMC Machine

The original I'CMC abstract machine is presented in [Lins and Lira 1993]. A
brief introduction to it is presented herein.

A.1.1 Compiling into I'CMC

A program in I'CMC is formed by a set of function definitions plus an expression
to be evaluated. The expression to be evaluated is compiled by scheme £ and
each function in the script is compiled depending on its nature. Strict functions
on all arguments which produce results of ground type are called special and are
compiled directly as procedures in C. All arithmetic expressions are also trans-
lated directly into C code. This is the key to the efficiency of I"CMC, because
in doing so it takes advantage of the very fast implementation of procedure calls
in RISC architectures. The compilation schemes for the kernel of I'CMC are
presented in [Lins and Lira 1993], and their behaviour can be summarised as
follows:

Scheme £ is responsible for the printing routine and driving the evaluation
mechanism.

Scheme S is responsible for starting-up the compilation of special functions
generating procedures in C.

Scheme &’ is ancillary to S and is responsible for the compilation of inner parts
of the body of a special function generating parts of procedure code in C.

Scheme 7 is responsible for the compilation of ordinary functions and gener-
ates code which is handled by the abstract machine.

Scheme G generates code which whenever executed fills the fields of a cell in
an evaluation environment.
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Scheme 7’ produces code which whenever executed generates cells on the top
of the T-stack. It also makes parameters ready for special functions or arith-
metic expressions whenever called inside an ordinary function.

Scheme Z’ makes parameters ready for special functions or arithmetic expres-
sions whenever called inside a cell generating scheme.

Scheme L is responsible for the compilation of lists and functions over lists.

A.1.2 Example of Compilation
Let us show an example of I’'CMC compiled code. The script:

fib n = if n<2 then 1 else fib(n-1) + fib(n-2)
twi £ x = f (f x)
twi fib 57?7

by using the schemes above whose rules are presented in [Lins and Lira 1993, is
compiled as,

twi fib 5-MKEcell(2); MKEpc(A, 1); MKEcte(5, 0);
Pushfun(twi); Popenv; print();
A—eval’(0); MKTk(O, fib((*(topT)) = rem.val));

twi-MKTcomp(A'); eval_env(1);

A —MKTvar(0); eval_env(1);

fib—if{n < 2}return(1)
else{return(fib(n — 1) + fib(n — 2))}

As one can see, the result of compilation of the special function fib is a procedure

in C, which needs only a heading with type declarations to be compiled and
executed by the C compiler.

A.1.3 State Transition Laws

I'CMC is as a state transition machine. A state of I'CMC is a 5-uple
(C,T,H,O,E)

in which each component is interpreted in the following way:

C: The code to be executed. This code is generated by the translation rules
presented by the compilation schemes above.

T: The reduction stack. The top of T points to the part of the graph to be
evaluated.

H: The heap where graphs are stored. The notation H[d = e;...e,| means
that there is in H a n-component cell named d. The fields of d are filled with
€1 ...eyn, in this order. Cells are fully-boxed.
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O: The output.

E: The environment stack. Its top contains a reference to the current environ-
ment.

I'CMC is defined as a set of transition rules. The transition
(C,T,H,O,E) = (C",T'H',O', E')

must be interpreted as: “whenever the machine arrives at state (C,T, H, O, E),
it can get to state (C',T',H',O', E")".

A.1.4 Sharing

Sharing of computation can bring substantial improvement to the performance
of the machine. A number of ways introduced sharing to I"CMC . The result of
evaluation of special functions and arithmetic expressions is assigned to tempo-
rary C variables, being automatically shared by whoever points at it. Sharing of
ordinary functions was implemented in I'CMC by a mechanism similar to the
one in CMCM [Thompson and Lins 1992], which is inspired in the frame update
mechanism of TIM [Fairbairn and Wray 1987]. Compile-time analysis generate
annotations (U combinator) to specify variables to be shared.

The U combinator performs the following state transition:

48. (U(i).c,d. T, Hleo =...a;...], O, e0.E) = (¢, d. T, Hleo=...d.. ], O, e0.E)

The only exception not covered by this mechanism in I'CMC is the shar-
ing of partial applications. The CM-CM machine [Thompson and Lins 1992] ob-
tained sharing at the cost of having dynamic code generation, similarly to TIM
[Fairbairn and Wray 1987]. This low level mechanism claims for machine-level
programming and ruins code portability. A much neater solution is offered by
Partial Categorical Multi-Combinators, as explained below.

A.2 Partial Categorical Multi-Combinators in I'CMC

The adoption of Partial Categorical Multi-Combinators impose two conceptual
changes to I'CMC . The first one is variable representation by the co-DeBruijn
number. The second one deals with the possibility of evaluating partial applica-
tions.

A.2.1 Variables as co-DeBruijn numbers

Variables in Partial Categorical Multi-Combinators are represented by the co-
DeBruijn number, and fetch their argument from the corresponding environment
(the one on the top of E-stack), counting its depth in reverse order (left-to-right).
This imposes minor changes to compilation schemes. For instance, in scheme 7
[Lins and Lira 1993], the original rules (7) and (8) are replaced by:
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7. TYo-Yily;] = MKTvar(i — j); if y; is evaluated
8. TYo-Yily,] = eval_env(i — j); if y; is not evaluated

All other schemes which compile variables are modified in a similar fashion.

A.2.2 Compiling Partial Applications

The CMC based I'CMC implementation assumes that the compilation of an
ordinary function forming an incomplete application yields code which assumes
that needed parameters will appear dynamically, as the result of the evaluation
of expressions is of ground type.

The original I"CMC machine assumes that whenever the code of such a func-
tion appears, the function code is entered and its parameters are on the top of
the T-stack. In the case of a shared partial application, in the original I"CMC
, the first call to the function will find an Update (shared) annotation amongst
the parameters, such as,

The compilation of such an ordinary function in I"CMC is performed by:

5. TY0Yi[f,] = MKenv(n + 1); Pushfun(f,); Popenv;

The original I'CMC machine ignores the Update annotation, jumping over
it to fetch parameters, making the application complete.

The correct evaluation mechanism to allow the partial application f, xg ... x;
to be shared has to be able to process parameters xg to x; in f, and generate
another function, whose code is shared. The implementation of Partial Cate-
gorical Multi-Combinators in I"CMC allows MKenv to check for sharing anno-
tations amongst the parameters on T-stack. In the original I'CMC , whenever
MKenv(n) reaches the leftmost position of the code the following state transition
takes place:

10. (MKenv(n).c, di....dn...dn. T, HO, E) =
(¢,dnt1...dm. T, H [e=d1 ...dn], O, e.E)

The state transition law above transfers the n-top pointers on T-stack to
an environment cell in the heap H, referenced by the top of the environment
stack E. By construction ¢ is Pushfun(f,); Popenv;, which will enter the code for
function f, and dispose the corresponding environment cell (e), eventually.

In the case of the implementation of PCMC in I"CMC, the rule for MKenv
is replaced by:

10. (MKenv(n).c, di....d; U di+1 coodp .. me, H,O, E> =
<CZ 7di+1 e m.T, H [e:d1 .. d1]7 O7 eE>
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where, ¢’ is the version of function f, for which i parameters are shared and
n — 1 are not. This compilation strategy imposes that every ordinary function of
arity n is compiled into (n — 1) functions, allowing combinator definitions to be
curried.

The compilation of PCMC into I"CMC allows for an elegant way of obtaining
sharing of partial applications without any need for dynamic code generation.
The PCMC machine, which together with some other code optimisations, be-
came pul'CMC, was used to implement the lazy functional language Haskell
[Carvalho Jr. et al. 2002, Lima et al. 2004] and proved efficient. Sharing of par-
tial applications is intensively used in Pseudoknot [Hartel et al.1996]. In this
benchmark pI"CMC' performed about 20% faster than I"CMC, which can al-
ready be considered amongst the best lazy functional compilers available.



