
Implementing Coordinated Error Recovery for
Distributed Object-Oriented Systems with AspectJ

Fernando Castor Filho
(State University of Campinas, Brazil

fernando@ic.unicamp.br)

Cecília Mary F. Rubira
(State University of Campinas, Brazil

cmrubira@ic.unicamp.br)

Abstract: Exception handling is a very popular technique for incorporating fault tolerance into
software systems. However, its use for structuring concurrent, distributed systems is hindered
by the fact that the exception handling models of many mainstream object-oriented
programming languages are sequential. In this paper we present an aspect-based framework for
incorporating concurrent exception handling in Java programs. The framework has been
implemented in AspectJ, a general purpose aspect-oriented extension to Java. Our main
contribution is to show that AspectJ is useful for implementing the concerns related to
concurrent exception handling and to provide a useful tool to developers of distributed,
concurrent fault-tolerant applications.

Keywords: aspect-oriented programming, exception handling, coordinated atomic actions,
separation of concerns, distributed programming
Categories: D.3.3, D.2, D.3

1 Introduction

Exception handling [8] is a well-known technique for incorporating fault tolerance [2]
into software systems. An exception handling system (EHS) offers control structures
that allow developers to define and raise exceptions, indicating the occurrence of an
error, and exception handlers, responsible for putting the system back into a coherent
state. Handling contexts are regions where the same exception types are treated in the
same way. When an exception is raised, the underlying EHS interrupts the normal
processing and transfers control to an appropriate exception handler. If no appropriate
handler is available, the exception is signaled, or propagated, to an outer context,
usually the caller of the operation where it was raised.

Various modern object-oriented programming languages include EHS’s.
Although some of these languages natively provide constructs for concurrent
programming, in all of them exception handling is purely sequential. Some authors
[3] argue that special features for involving many concurrent objects in exception
handling are so difficult to develop and use that only sequential exception handling
should be employed. In spite of this, concurrent (or coordinated) exception handling
[4] is a powerful tool for structuring large, distributed, and concurrent software
systems [18,21] and means for mitigating its inherent complexity are required.

Journal of Universal Computer Science, vol. 10, no. 7 (2004), 843-858
submitted: 16/2/04, accepted: 21/6/04, appeared: 28/7/04 © J.UCS

Aspect-oriented programming (AOP) [14] has appeared recently as a means for
modularizing systems that present crosscutting concerns. A crosscutting concern can
affect several units of a software system and usually cannot be modularized by
traditional object-oriented design techniques. It has been argued elsewhere [16] that
exception detection and handling are crosscutting concerns that can be better
modularized by the use of aspect-oriented techniques. However, works on the subject
which employ AOP have focused solely on the sequential EHS’s available in
programming languages such as Java [5], C++ [11], and C# [10].

Although the model of Java for exception handling is representative of many
object-oriented programming languages, it is not well-suited for exception handling in
concurrent systems. Java does not prescribe adequate rules for propagation of
exceptions signaled by a participant of a group of threads cooperating in order to
achieve a common goal. For instance, in Java, if a participant is unable to handle an
exception, its thread is simply killed. This may produce incorrect behavior, such as
inconsistent results and deadlocks. Furthermore, it is not possible to associate
handlers to elements that are meaningful to the concurrent execution of the group of
objects. Romanovsky and Kienzle [17] argue that problems such as these are due to
the fact that exception handling issues are being considered separately from those of
system structuring. The authors suggest that exception handling should have a natural
integration with constructs for concurrent execution.

In this paper, we describe an approach to implementing an aspect-based
framework that complements the EHS of Java with coordinated exception handling.
This framework, which we call ACE (Aspect-based Coordinated Exception
handling), was implemented in AspectJ [13], a general purpose aspect-oriented
extension to Java.

Our goal is twofold: First, we want to analyze the benefits and disadvantages of
using aspects to build a framework for coordinated error recovery, instead of relying
on an exclusively object-oriented implementation [23]. Second, we want to provide
support for the construction of reliable object-oriented systems with requirements
such as concurrency and distribution.

This paper is organized as follows. Section 2 gives a brief overview of AspectJ.
Section 3 describes the approach we employ for coordinated exception handling.
Some background knowledge on sequential exception handling is assumed. Section 4
presents the design and implementation of ACE. Section 5 rounds the paper and
presents some ideas for future work.

2 AspectJ Overview

AspectJ [13] is a general purpose aspect-oriented extension to Java. It extends Java
with constructs for picking specific points in the program flow, called join points, and
executing pieces of code, called advice, when these points are reached. Join points are
used to capture crosscutting concerns, that is, concerns that affect several different
program units and can not be modularized by traditional object-oriented techniques. A
typical example of crosscutting concern is logging. The implementation of this
concern must be scattered across all the modules in a system, because some
contextual information must be gathered in order for the recorded information to be
useful. Other common examples of crosscutting concerns include profiling and

844 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

authentication.
AspectJ adds a few new constructs to Java, in order to support the selection of

join points and the execution of advice in these points. A pointcut picks out certain
join points and contextual information at those join points. Join points selectable by
pointcuts vary in nature and granularity. Examples include method call, method
execution, field access, and class instantiation. A pointcut may be formed by the
combination of various different join points selected only under specific conditions.

Advice are pieces of code that are executed when a join point is reached. These
may be executed before, after, or around the selected join point. In the latter case,
execution of the advice may potentially alter the flow of control of the application,
and replace the code that would be otherwise executed in the selected join point.

The language also allows programmers to modify the static structure of a program
by means of inter-type declarations. Inter-type declarations can introduce new
members in a class or interface, such as methods and fields, or modify the
relationships between types.

Aspects are units of modularity for crosscutting concerns. They are similar to
classes, but may also include pointcuts, advice, and inter-type declarations. The
following code snippet presents a simple aspect.

 01: public aspect SimpleAspect {
 02: public void Participant.exampleMethod() { ... }
 03: pointcut methodCallsFromParticipants(Participant p1):
 04: call(* Participant.exampleMethod(..)) && this(p1);
 05: before(Participant p1): methodCallsFromParticipants(p1){
 06: System.out.println(“method called”);}
 07: }

In the aspect above, line 2 presents an inter-type declaration that adds the method
exampleMethod() to the type Participant. If the latter is an interface, the
new method is added to both interface and implementing classes. Lines 3 and 4
present a pointcut that selects calls to exampleMethod(). This pointcut has one
argument of type Participant, corresponding to the caller of the method
(this(p1)). It selects calls to the exampleMethod() method, defined by the
type Participant (Participant.exampleMethod(..)). The method may
have any return type (as indicated by the “*” symbol) and take any parameters. Line 5
defines an advice that is executed before the join points selected by the pointcut in
line 3. This advice simply prints the message “method called” on the screen (line 6).

Aspects are associated to pure Java code by means of a process called weaving.
Therefore, the tool responsible for performing weaving is called weaver.

3 Action-Oriented Exception Handling

In most programming languages, exception handling is inherently associated with
system structuring concepts [17]. For instance, Java exception handling contexts are
blocks of statements within method declarations and exceptions are objects defined by
classes extending the class Exception. The exceptions that a method may signal
define exit points for its execution (similarly to its result) that are only used when an
error occurs. If an exception is raised within a method and no handlers for that

845Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

exception are available, the exception is propagated to the caller method.
In this paper, we use the concept of action to structure the concurrent execution

of software systems. An action consists of a set of participants, units of computation
such as threads or processes, that cooperate in order to achieve a common goal. The
concept of Coordinated Atomic Actions (CA actions) [22] is employed to structure
fault-tolerant concurrent systems in an action-oriented manner. CA actions
provide a conceptual framework for dealing with different kinds of concurrency and
achieving fault-tolerance by extending and integrating two complementary concepts:
atomic actions [4] and ACID transactions [9]. Atomic actions are used to control
cooperative concurrency and to implement coordinated error recovery. ACID
transactions guarantee consistent access to shared objects.

A CA action consists of a set of participants cooperating inside it and a set of
objects accessed by them (Figure 1). In a CA action, participants access shared
objects that have the ACID properties. A CA action may terminate normally, in which
case it produces a normal outcome and commits transactions on shared objects. If one
or more exceptions are raised by action participants during action execution, all the
participants are involved in coordinated exception handling. If two or more
exceptions are concurrently signaled, an exception resolution scheme is used to
combine these exceptions into a single one that represents all the exceptions signaled.
If handling is successful, the action completes normally. Otherwise, an exception is
propagated and responsibility for recovery is passed to the caller of the action. In this
case, transactions on all shared objects are aborted. Actions may be nested in order to
define different exception handling contexts. In the example of Figure 1, a nested
action Action2 is created within the action Action1.

Figure 1: A CA action with three participants and a nested CA action.

4 Framework Design

ACE was built with the goal of complementing the EHS of Java with action-oriented
exception handling, more specifically, with the concept of CA actions. In order to
achieve this goal and to produce a reusable implementation, framework development
has been guided from the beginning by the following design directives.
The concept of action should be explicit to application programmers. Application
code based on ACE should employ the concept of action explicitly. This approach is
adopted by the exception handling mechanism proposed by Garcia et al [7]. As
mentioned in Section 3, exception handling is closely related to system structure and,
in the case of concurrent exception handling, with constructs related to concurrent
execution. Trying to make action-oriented exception handling transparent to

846 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

application code may have a negative impact on system maintenance and
understandability.
Framework hotspots should be object-oriented. Framework users should only have
to deal with object-oriented concepts. Although the framework is implemented as a
combination of aspects, classes, and interfaces, application programmers should not
need to know AspectJ or anything related to aspect-oriented programming, in order to
use it. This directive makes framework usage easier for Java programmers and users
of other object-oriented reusable implementations of coordinated exception handling.

The implementation of ACE consists of five main concerns related to the basic
requirements of action-oriented exception handling and to some important non-
functional requirements. The “core” framework comprises two concerns: action
structuring (Section 4.1) and coordinated exception handling (Section 4.2). The
remaining three concerns implement non-functional requirements: distribution
(Section 4.3), preemptive abortion (Section 4.4), and transaction interface. The
following subsections describe these points in detail, except for transaction interface,
which is addressed elsewhere [15, 19]. In order to better assess our approach,
throughout this section, we compare ACE to the purely object-oriented framework
devised by Zorzo and Stroud [23] for building dependable multiparty interactions.
The authors have used this framework, which we call DMI in the rest of this section,
to implement the concept of CA actions.

4.1 Action Structuring

The action structuring concern makes it possible to organize concurrent systems as
actions where participants cooperate in order to achieve a certain goal. In our
approach for action structuring, participants are built by implementing the
Participant interface. This interface defines only one method, execute(), that
implements the basic functioning of the participant. It takes as argument an object of
type Transactional which is shared by all action participants. The
Transactional interface is defined by ACE and used for accessing objects in a
transactional manner. Implementations of this interface should be provided by
framework users.

Actions are represented by the Action interface, which extends
Participant. This interface and a ready-to-use implementation are provided by
ACE and implement the basic mechanisms for action structuring.

Implementation of the action structuring concern is complemented by an aspect,
ActionStructuring. By means of inter-type declarations, this aspect makes
Participant a subtype of Runnable, the interface provided by Java for defining
objects that run in their own threads. Furthermore, it adds a new method to
Participant, run(), that is called when a thread is started and is responsible for
invoking execute() in each participant.

ActionStructuring is also responsible for managing references between
actions and their participants. The following pointcut is used for this means. It selects
all calls to the addParticipant() method, defined by Action.

847Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

 01: pointcut participantAddition(Action cp, String id,
 02: Participant part): target(cp) && args(id, part) &&
 03: execution(* *..Action.addParticipant(
 04: String,Participant));

The addParticipant() method includes a new participant in an action. The
pointcut above captures the moment in which this method is executed, as well as
some contextual information. This information consists of (i) the Action object on
which the method was invoked (target(cp)), and (ii) the identifier for the
participant being added, as well as the participant itself (args(id, part)) (lines 1
and 2). When this pointcut is reached, an advice is executed after it, setting cp as the
action part belongs to. This information is stored by Participant in a new field
introduced by an inter-type declaration.

Creation and execution of an action is very simple. The following code snippet
creates an action a1, comprising two participants, p1 and p2, and executes it.

 01: Participant p1 = new ParticipantImpl();
 02: Participant p2 = new ParticipantImpl();
 03: ActionFactory fac = ActionFactory.getInstance();
 04: Action a1 = fac.createAction(“a1”, 2000);
 05: Transactional shared = new TransactionalImpl(“An action”);
 06: a1.addParticipant(“Participant1”, p1);
 07: a1.addParticipant(“Participant2”, p2);
 08: a1.execute(shared);

Lines 1 and 2 create two participants, p1 and p2. Line 4 creates a new action with
identifier a1 and which will wait at most 2000ms for participants to complete their
execution. Actions are started by calling the execute() method on the action
object (line 8). This method starts each participant in a new thread, passing the shared
objects (line 5) as arguments to each of them.

Discussion

Part of the ActionStructuring aspect could be implemented as a class from
which all participants would inherit. We have avoided this approach, however,
because Java only allows single inheritance and user applications might require
participants to extend a certain class. Moreover, it is argued by some authors [6, 12]
that code inheritance promotes very strong coupling between classes, and that
interfaces, together with aggregation, should be used whenever possible. In our
approach, all the extra functionalities required by concurrent exception handling that
would otherwise be implemented in a superclass are provided by aspects.

The use of aspects for implementing this concern helped making ACE easier to
use, since participant classes defined by user applications need only to implement an
interface. Furthermore, our aspect-based implementation completely encapsulates
thread management-related issues. For instance, in the DMI framework, the threads
on which each participant will be executed must be explicitly created and started by
framework users. In spite of this, the aforementioned benefits could also be achieved
by employing wrappers [6] for participants, in a purely object-oriented solution.
These wrappers would be responsible for executing participants in new threads and

848 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

maintaining references to the object representing the action. Hence, the aspect-based
implementation did not present advantages over existing object-oriented solutions.

4.2 Coordinated Exception Handling

This concern enriches action structuring with concurrent exception handling. It is
implemented by the CoordinatedExceptionHandling aspect. This aspect
requires that an exception handler class be created for each class defining a
participant, in a given application. Exception handler classes implement the
ExceptionHandler interface, which defines a single method,
handleExceptions(), responsible for handling one or more exceptions.

The CoordinatedExceptionHandling aspect defines a pointcut,
participantExecution, that intercepts all calls to the execute() method of
objects of type Participant that are not of type Action. Two advice are
associated with this pointcut. The first one creates, for each participant in an action,
an instance of the corresponding exception handler class and associates this object
with the participant. If no exception handler class is available or instantiation fails, an
empty exception handler that simply re-throws any exceptions received is associated
to the participant. Participant and exception handler classes are matched by adopting a
naming convention to their definition.

The other advice associated to the participantExecution pointcut catches
and records any exceptions signaled by participants. The following code snippet
presents part of this advice.

 01: void around(Participant p) : participantExecution(p) {
 02: p.setExceptionalResult(null);
 03: try {
 04: proceed(p);
 05: } catch (Exception e) {
 06: p.setExceptionalResult(e); }
 07: }

The proceed() (line 4) statement is defined by AspectJ and can only be used in
around advice. It resumes the execution of the intercepted code (in this example, the
execute() method of Participant) and, after it finishes, returns to the advice,
in the line following the proceed() statement. In the example above, if no
exceptions are raised, execution is finished with no additional behavior being
introduced. Otherwise, the exception is caught and stored in the participant itself, by
calling the setExceptionalResult() (line 6). This method is introduced in
Participant by an inter-type declaration.

CoordinatedExceptionHandling also defines a pointcut,
actionExecution, that intercepts calls to the execute() method of objects of
type Action. The following code snippet presents an advice associated to this
pointcut.

849Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

 01: void around(Action cp)
 02: throws Exception : actionExecution(cp) {
 03: try {
 04: proceed(cp);
 05: this.performExceptionHandlingIfNecessary(cp);
 06: } catch (Exception e) {
 07: cp.setActionExceptionalResult(e);
 08: throw e;
 09: }
 10: }

The performHandlingIfNecessary() method (line 5) called after the
proceed()statement (line 4) checks if any of the participants signaled an
exception during its execution. If none did, the method returns and the action
terminates. Otherwise, it collects all the exceptions signaled by action participants and
initiates exception resolution. Many different schemes are possible for exception
resolution. The one adopted by ACE, in conformance to Java´s EHS, assumes that
exceptions are defined by classes and chooses the most specific exception class that is
a supertype of the types of all exceptions signaled by participants.

Figure 2 presents a simple exception class hierarchy used to illustrate how
exception resolution works in ACE. If, during the execution of an action, two
participants simultaneously signal exceptions of types E3 and E4, exception
resolution will create a new exception of type E5, since it is the most immediate
superclass of both E3 and E4. If, on the other hand, exceptions of types E, E3, and
E4 are signaled at the same time, the resolved exception will be of type E, because it
is a superclass of both E3 and E4, and because we assume that the superclass
relation is reflexive.

Figure 2: A simple exception class hierarchy.

After exception resolution finishes, the resolved exception is delivered to all
participants and exception handling is initiated. For each participant, a new thread is
created and the handleExceptions() method is called on the associated exception
handler. This method takes the resolved exception as argument. Furthermore, the
exceptions signaled by the participants during normal execution are also supplied as
additional contextual information. Exception handling terminates normally if the
participants do not signal any exceptions, while handling the resolved exception.

E

E1

E2 E3 E4

E5

850 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

Otherwise, a FailureException is signaled, indicating that the action as a whole has
failed and system state may be inconsistent.

Discussion

The implementation of coordinated exception handling by an aspect did not require
any modifications to the code of the action structuring concern. Implementing similar
features in a purely object-oriented language would either require the use of code
inheritance, the solution adopted by the DMI framework, which we reject, or the
construction of additional wrappers. Both cases require either the application code or
the implementation of the action structuring concern to be modified. Therefore, the
aspect-based solution promotes better separation of concerns.

When an exception is raised, it is useful to collect some information regarding the
context in which it was raised. This contextual information is then made available to
exception handlers, in order to increase the effectiveness of exception handling.
Relevant information usually includes the values of local variables declared within the
raising method. Unfortunately, it was not possible to collect this contextual
information with the current version of AspectJ (1.1), since it does not allow the
definition of pointcuts related to local variables.

4.3 Distribution

ACE has been devised with the goal of supporting development of large scale fault-
tolerant object-oriented distributed systems. However, action structuring and
coordinated exception handling concerns implicitly assume that all the participants of
an action share the same address space and processing unit. This conflict between
goal and assumptions is resolved by the distribution concern. We have used Java RMI
[5] as the underlying distribution technology.

First Attempt: Aspects

In order to introduce the distribution concern, we began by implementing distribution
for server-side objects. We first tried the approach described by Soares et al [19] for
adding distribution to object-oriented systems by means of aspects. First, a new
interface, DistributedParticipant, was created. This interface defines all the
methods implemented by participants that may be accessed remotely. The methods in
this interface should specify the RemoteException exception in their throws
clauses because Java requires it from all methods that might be called remotely.
DistributedParticipant extends Remote, the interface used by RMI to
indicate that an object is remote, and includes both the methods defined by the
Participant interface and the methods added to Participant by inter-type
declarations. We then created a new aspect, Distribution, and made
Participant a subtype of DistributedParticipant by means of an inter-
type declaration.

This approach did not work, however, because classes defining remote objects
must directly implement their remote interfaces. The solution described above
works in the example application presented by Soares et al [19] because the classes
defining remote objects implement the remote interface directly.

851Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

In the implementation of the distribution concern, the implementation classes are
not known beforehand (because these are application-specific participants). In order
to bypass the limitation described in the previous paragraph, we specified an inter-
type declaration stating that all implementations of the Participant interface
should also implement the interface DistributedParticipant. In this manner,
classes defining remote objects would directly implement the remote interface. This is
defined as follows.

 01: declare parents: (Participant+ && !Participant)
 02: implements DistributedParticipant;

This solution works fine when no aspects define inter-type declarations affecting
Participant. However, this is not the case for our implementations of the action
structuring and coordinated exception handling concerns. Hence, an alternative
solution should be found.

A Solution Based on Aspects and an OO Design Pattern

We have adapted the work of Alves and Borba [1] to introduce distribution in ACE.
This work proposes a design pattern, called Distributed Adapters Pattern (DAP), for
implementing distribution in layered systems. This pattern isolates distribution-related
code in two classes, called distributed adapters. Our implementation of distributed
adapters defines five roles: local interface, local object, remote interface, client-side
adapter, and server-side adapter.

The local interface specifies services to be made remote. In ACE,
Participant, including and all the methods added to it by means of inter-type
declarations, is a local interface. Instances of classes implementing the local interface
are called local objects. The remote interface DistributedParticipant
defines the same methods as the local interface, but the exception
RemoteException is specified in the throws clause of each of them, since they
will be called remotely. The client-side adapter is defined by the
DistributedClient class. It implements the local interface and maintains a
remote reference to the server-side adapter. The client-side adapter makes distribution
transparent to clients by delegating method invocations received from them to the
server-side adapter. The server-side adapter is defined by the
DistributedParticipantImpl class. It implements the remote interface and
maintains a reference to the local object. This adapter delegates received remote
method invocations to the local object.

The problem with using the distributed adapters pattern in a purely object-
oriented manner is that adapter creation must be invoked explicitly by application
code, even if factories [6] are used to hide the actual instantiation process. We have
employed aspects to try to alleviate this limitation of the object-oriented approach. A
new aspect has been created, DistributionWithDAP, that localizes the solution
to this problem. Our approach is divided in two parts: server-side and client-side
distribution.

852 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

Server-Side Distribution

A simple implementation pattern adopted by many distributed applications created
with Java RMI consists in placing the code responsible for instantiating and
publishing remote objects in the main() method of one or more server classes. In
our approach, we assume that this pattern is adopted by framework users. However,
instead of creating distributed objects and publishing them, the implementation of
such methods should only instantiate the local objects to be made remote. The
DistributionWithDAP aspect checks, for each instantiated local participant, if a
corresponding remote participant has been published. This task is performed by a
before advice associated to the callToMain pointcut, which intercepts calls to the
main() method of a participant. The following code snippet presents part of this
advice.

 01: try {
 02: String addr = addresses.getProperty(participantId);
 03: if(addr!=null && addr.trim().length() > 0) {
 04: Remote r = Naming.lookup(addr);
 05: toBePublished[i] = false;
 06: }
 07: }catch(NotBoundException nbe) { toBePublished[i] = true; }

The address for one of the participants, addr, is obtained (line 2) by means of a list
of properties loaded at aspect initialization. If a participant has already been published
at addr (line 4), it should not be published again (line 5). Otherwise, a
NotBoundException is raised and caught, indicating that the participant was not
published yet (line 7).

The other advice associated to the callToMain pointcut complements the one
presented above and binds unpublished remote participants to the supplied identifier,
after the execution of the main() method. Remote participants are created when
participant classes are instantiated. A pointcut, callToConstructor, selects all
calls to constructors of classes implementing the Participant interface. An advice
creates objects of type DistributedParticipant when
callToConstructor is reached. The following code snippet presents this advice.

 01: void around(Participant p) : callToConstructor(p) {
 02: proceed(p);
 03: if(!alreadyInstantiated(p)) {
 04: DistributedParticipant dpi = null;
 05: dpi = new DistributedParticipantImpl(p);
 06: storeDistributedParticipant(dpi);
 07: }
 08: }

First, the participant is created (line 2). The check in line 3 avoids the creation of
more than one object of type DistributedParticipant for the same
participant. This may happen due to calls to superclass constructors. In line 5, the
distributed participant is actually created and in line 6 it is stored, so that it can be
published later.

853Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

Client-Side Distribution

Transparency at the client-side is achieved by guaranteeing that remote references to
distributed objects are acquired as if they were local. Our approach consists of
requiring that local instances of the remote participants be created at the client-side
(as if it were not a distributed application), intercepting the moment in which a local
participant is added to an action, obtaining the remote reference corresponding to the
local object being added, and adding the remote reference, instead of the local one.

The participantAddition pointcut defined by the aspect
ActionStructuring intercepts calls to the addParticipant() method of the
Action interface. Hence, we moved this pointcut to an abstract aspect and made
both DistributionWithDAP and ActionStructuring extend this aspect. A
new advice, associated to participantAddition, was then added to
DistributionWithDAP. The code for this advice is presented below.

 01: void around(String id, Participant p, Action ac) :
 02: participantAddition(id, p, ac) {
 03: String addr = addresses.getProperty(id);
 04: try {
 05: Remote r = Naming.lookup(addr);
 06: if(!validParticipant(r)) proceed(id, p, ac);
 07: else proceed(id, new DistributedClient(
 08: (DistributedParticipant)r), ac);
 09: } catch(Exception e) { proceed(id, p, ac); }
 10: }

The identifier of the participant being added is used to obtain the address of the
corresponding remote object (line 3). This address is used to obtain the remote
reference (line 5). If it is not possible to obtain a valid remote reference, the local
participant is used instead (line 6). Otherwise, a new client-side adapter of type
DistributedClient is created to encapsulate the remote reference. This adapter
is then added to the action as a new participant (lines 8 and 9). If any error occurs
during this process, the local participant is used (line 9).

Discussion

The implementation of the distribution concern described in this section is clearly
superior to the purely object-oriented version. Complete transparency to application
code could be achieved due to the use of aspects. In order to use the distributed
version, only a small amount of Java code responsible for creating the distributed
objects is required. Furthermore, application code used to build distributed
applications makes no references to distribution-related issues. Hence, if a distributed
application needs to be used in a local setting, no modifications are required. It is
simply a matter of not weaving the DistributionWithDAP aspect.

Comparing our approach to the one presented by Soares et al [19] is difficult
because we have not evaluated the use of aspects together with distributed adapters in
more general contexts. Although the solution by Soares et al could not be employed to
implement distribution in ACE, we are still not aware of all the limitations of our own
approach. Hence, claiming that one is more or less general than the other would be
inadequate.

854 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

The main cause for the difficulties outlined in this section is the fact that the
current version of AspectJ (1.1) does not support the addition of new exceptions to the
throws clause of a method. Hence, it was necessary to define another remote
interface for distributed participants. This problem has been reported elsewhere [15,
19] and an extension to AspectJ that effectively solves it has been suggested [19].

4.4 Preemptive Abortion

When an exception is signaled by one of the participants of an action, all the other
participants should abort their executions so that exception handling can take place.
This makes execution faster and does not allow errors to spread throughout the
system. Usually, implementations of CA actions based on Java use the features
provided by the language for thread interruption, in order to implement participant
abortion. This is the solution adopted by the DMI framework.

The problem with Java´s features for thread interruption is that they do not
actually guarantee that a thread will be interrupted. Thread interruption is requested
by invoking a method that marks the thread as interrupted. Actual interruption only
occurs if an interrupted thread blocks waiting for locks or I/O operations. In
order to guarantee that a participant will not go on executing when it should abort, we
have implemented an aspect, PreemptiveAbortion, that aborts the execution of
a participant almost immediately.

Participants of an action should be aborted when at least one of them has signaled
an exception. As described in Section 4.2, any exception signaled by a participant is
recorded by calling the setActionExceptionalResult() method. The
pointcut storingRaisedExceptions selects all invocations to this method. The
following advice, associated to this pointcut, is responsible for notifying the other
action participants that their executions should be aborted.

 01: void around(Participant p, Exception e) :
 02: storingRaisedException(p, e) {
 03: proceed(p, e);
 04: Action ac = p.getEnclosingAction();
 05: notifyParticipants(ac, p);
 06: }

First, the signaled exception is recorded (line 3). The Action object corresponding
to the action of which p (line 1) is a participant is then obtained by calling the
getEnclosingAction() method (line 4). Finally, all the participants within the
action ac (line 4) are notified (line 5).

Preemptive abortion is implemented by checking if, at any moment during the
execution of a participant, it was notified that it should abort. The following pointcut
selects all the statements within the execute() method of a class that implements
Participant, but not Action.

 01: pointcut participantsExecuteMethod(Participant p):
 02: withincode(* *..Participant+.execute(..)) && target(p)
 03: && !withincode(* *..Action+.execute(..));

855Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

Actual abortion is implemented by a simple advice, associated to the pointcut above,
which checks, after each statement, if execution should be aborted. In case it should,
this advice raises a special runtime exception, AbortionException.

Discussion

The implementation of the preemptive abortion concern nicely showcased the
possibilities of using aspect-oriented programming together with object-oriented
programming. It would not be feasible to implement this concern transparently to user
applications without employing AspectJ, since it requires intercepting all the
statements in a method body. This level of granularity is too low for typical solutions
for interception, such as wrappers and proxies [5].

Since the PreemptiveAbortion aspect uses inter-type declarations to
introduce some new methods in Participant, the implementation of the
distribution concern needed to be extended in order to accommodate these changes.
This could be achieved, however, without modifying any of the aspects, classes, or
interfaces implementing either distribution or preemptive abortion. A new aspect,
DistributedPreemptiveAbortion, was created which complements the
client and server adapters with the new methods introduced by
PreemptiveAbortion.

5 Conclusions

In this paper, we have described ACE, an aspect-based framework for implementing
coordinated exception handling in distributed object-oriented systems. Our main
contribution was to assess the adequacy of using AspectJ to implement a reusable
infrastructure for coordinated exception handling. To the best of our knowledge, all
the works published on the use of aspects to structure exception handling refer
exclusively to sequential exception handling. Moreover, we have compared ACE to a
purely object-oriented approach to implementing coordinated exception handling.
Strong and weak points of both our approach and AspectJ have been pointed out.

The aspect-based implementation of the action structuring concern did not present
advantages over an object-oriented one, mainly due to the design directives described
in Section 4. In spite of this, our results lead us to conclude that our aspect-based
reusable implementation for coordinated exception handling is superior to a purely
object-oriented one. Coordinated exception handling, distribution, and preemptive
abortion have been designed so that these concerns can be added to an action-
structured application in a non-intrusive manner. This level of transparency could not
be achieved by employing only object-oriented techniques, such as design patterns.

In order to assess our framework from a usability viewpoint, we intend to build a
large case study based on ACE, employing different communication technologies,
such as Enterprise Javabeans [20]. This will allow us to better understand its
advantages and, most of all, its limitations. Furthermore, it will clarify how our design
decisions influence the overall framework usability and provide suggestions for
features to be added in the future.

Another future work consists of extending ACE with features useful for building
component-based systems. This is an ongoing work that is in its initial stages. We are

856 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

currently studying the implications of using an aspect-based framework such as ACE
for building applications whose computational model requires black-box visibility.

Acknowledgements

We would like to thank the anonymous referees for helping to improve this paper. We
would also like to thank Paulo Borba for helping us to understand how aspects
interact, and Alexandra Barros and Lásaro Camargos for the comments and
suggestions on early drafts of the paper. Fernando Castor is supported by
FAPESP/Brazil under grant no. 02/13996-2. Cecília Rubira is supported by
CNPq/Brazil, under grant no. 351592/97-0.

References

[1] Alves, V. and Borba, P. (2001) “Distributed Adapters Pattern: A Design Pattern for Object-
Oriented Distributed Applications”. In: Proceedings of the First Latin American Conference on
Pattern Languages Programming (SugarLoafPLoP), Rio de Janeiro, Brazil.

[2] Anderson, T., and Lee, P. (1990) Fault Tolerance: Principles and Practice, 2nd Edition,
Prentice-Hall.

[3] Buhr, P. A. and Mok, W. Y. R. (2000) “Advanced Exception Handling Mechanisms”. In:
IEEE Transactions on Software Engineering, 26(9), pp 820 – 836, IEEE Computer Society
Press.

[4] Campbell, R. and Randell, B. (1986) “Error Recovery in Asynchronous Systems”. In: IEEE
Transactions on Software Engineering, SE-12(8), pp. 811 – 826, IEEE Computer Society
Press.

[5] Campione, M., Walrath, K., and Huml A. (2000) The Java Tutorial: A Short Course on the
Basics, 3rd Edition, Addison-Wesley.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994) Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

[7] Garcia, A., Beder, D., Rubira, C. (1999) “An Exception Handling Mechanism for
Developing Dependable Object-Oriented Software Based on a Meta-Level Approach”. In:
Proceedings of the 10th IEEE International Symposium on Software Reliability Engineering
(ISSRE´99), USA, pp. 52 – 61, IEEE Computer Society Press.

[8] Goodenough, J. B. (1975) “Exception Handling, Issues and a Proposed Notation”. In:
Communications of the ACM, 18(12), pp. 683 – 696.

[9] Gray, J. and Reuter, A. (1993) Transaction Processing: Concepts and Techniques, Morgan
Kaufmann.

[10] Hejlsberg, A., Wiltamuth, S., and Golde, P. (2003) The C# Programming Language,
Addison-Wesley, Reading, MA, USA.

[11] Koening, A. and Stroustrup, B. (1990) “Exception Handling for C++”, In: Jornal of
Object-Oriented Programming, 3 (2) , pp. 16 – 33.

[12] Hollub, A. (2003) “Why Extends is Evil”, In: JavaWorld.com. Available at:
http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-toolbox_p.html

857Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

[13] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten., M., Palm, J., and Griswold, W. G. (2001)
“Getting Started with AspectJ”. In: Communications of the ACM, 44(10), pp. 59 – 65.

[14] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and
Irwin, J. (1997) “Aspect-Oriented Programming”. In: Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP´97), Finland, LNCS 1241, Springer-
Verlag, pp. 220 – 242.

[15] Kienzle, J., Guerraoui, R. (2002) “AOP: Does it Make Sense? The Case of Concurrency
and Failures”. In: Proceedings of the European Conference on Object-Oriented Programming
(ECOOP´02), Málaga, Spain, LNCS 2374, Springer-Verlag, pp. 37 – 61.

[16] Lippert, M. and Lopes, C. V. (2000) “A Study on Exception Detection and Handling
Using Aspect-Oriented Programming”. In: Proceedings of the 22nd International Conference on
Software Engineering, Limerick, Ireland, pp 418 – 427.

[17] Romanovsky, A. and Kienzle, J. (2001) “Action-Oriented Exception Handling in
Cooperative and Competitive Object-Oriented Systems”. In: Romanovsky A., Dony, C.,
Knudsen, J. L., Tripathi, A. (Eds.), Advances in Exception Handling Techniques, LNCS 2022,
Springer-Verlag, pp. 147 – 164.

[18] Romanovsky, A., Periorellis, P., and Zorzo, A. F. (2003) “Structuring Integrated Web
Applications for Fault Tolerance”. In: Proceedings of the 6th IEEE International Symposium on
Autonomous Decentralized Systems (ISADS’03), Pisa, Italy, pp 99 – 106.

[19] Soares. S., Laureano, E., Borba, P. (2002) “Implementing Distribution and Persistence
Aspects with AspectJ”. In: Proceedings of the 17th ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’02), pp 174 – 190.

[20] Sun Microsystems. (2002) Enterprise Javabeans Specification v2.1 - Proposed Final
Draft.

[21] Tartanoglu. F., Issarny, V., Romanovsky, A., and Levy, N. (2003) “Coordinated Forward
Error Recovery for Composite Web Services”. In: Proceedings of the 22nd IEEE Symposium on
Reliable Distributed Systems (SRDS’03), Florence, Italy, pp 167 – 176.

[22] Xu, J., Randell, B., Romanovsky, A., Rubira, C., Stroud, R. J., Wu, Z. (1995) “Fault
Tolerance in Concurrent Object-Oriented Software through Coordinated Error Recovery”. In:
Proceedings of the 25th International Symposium on Fault-Tolerant Computing, Pasadena,
California, USA, p. 499 – 509.

[23] Zorzo, A. F. and Stroud, R. J. (1999) “A Distributed Object-Oriented Framework for
Dependable Multiparty Interactions”. In: Proceedings of the 14th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’99), Denver,
Colorado, USA, p. 435 – 446.

858 Filho F.C., Rubira C.M.F.: Implementing Coordinated Error Recovery ...

