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Abstract: Exception handling is a very popular technique for incorporating fault tolerance into 
software systems. However, its use for structuring concurrent, distributed systems is hindered 
by the fact that the exception handling models of many mainstream object-oriented 
programming languages are sequential. In this paper we present an aspect-based framework for 
incorporating concurrent exception handling in Java programs. The framework has been 
implemented in AspectJ, a general purpose aspect-oriented extension to Java. Our main 
contribution is to show that AspectJ is useful for implementing the concerns related to 
concurrent exception handling and to provide a useful tool to developers of distributed, 
concurrent fault-tolerant applications. 

Keywords: aspect-oriented programming, exception handling, coordinated atomic actions, 
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1 Introduction  

Exception handling [8] is a well-known technique for incorporating fault tolerance [2] 
into software systems. An exception handling system (EHS) offers control structures 
that allow developers to define and raise exceptions, indicating the occurrence of an 
error, and exception handlers, responsible for putting the system back into a coherent 
state. Handling contexts are regions where the same exception types are treated in the 
same way. When an exception is raised, the underlying EHS interrupts the normal 
processing and transfers control to an appropriate exception handler. If no appropriate 
handler is available, the exception is signaled, or propagated, to an outer context, 
usually the caller of the operation where it was raised. 

Various modern object-oriented programming languages include EHS’s. 
Although some of these languages natively provide constructs for concurrent 
programming, in all of them exception handling is purely sequential.  Some authors 
[3] argue that special features for involving many concurrent objects in exception 
handling are so difficult to develop and use that only sequential exception handling 
should be employed. In spite of this, concurrent (or coordinated) exception handling 
[4] is a powerful tool for structuring large, distributed, and concurrent  software 
systems [18,21] and means for mitigating its inherent complexity are required. 
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Aspect-oriented programming (AOP) [14]  has appeared recently as a means for 
modularizing systems that present crosscutting concerns. A crosscutting concern can 
affect several units of a software system and usually cannot be modularized by 
traditional object-oriented design techniques. It has been argued elsewhere [16] that 
exception detection and handling are crosscutting concerns that can be better 
modularized by the use of aspect-oriented techniques. However, works on the subject 
which employ AOP have focused solely on the sequential EHS’s available in 
programming languages such as Java [5], C++ [11], and C# [10].  

Although the model of Java for exception handling is representative of many 
object-oriented programming languages, it is not well-suited for exception handling in 
concurrent systems. Java does not prescribe adequate rules for propagation of 
exceptions signaled by a participant of a group of threads cooperating in order to 
achieve a common goal. For instance, in Java, if a participant is unable to handle an 
exception, its thread is simply killed. This may produce incorrect behavior, such as 
inconsistent results and deadlocks. Furthermore, it is not possible to associate 
handlers to elements that are meaningful to the concurrent execution of the group of 
objects. Romanovsky and Kienzle [17] argue that problems such as these are due to 
the fact that exception handling issues are being considered separately from those of 
system structuring. The authors suggest that exception handling should have a natural 
integration with constructs for concurrent execution. 

In this paper, we describe an approach to implementing an aspect-based 
framework that complements the EHS of Java with coordinated exception handling. 
This framework, which we call ACE (Aspect-based Coordinated Exception 
handling), was implemented in AspectJ [13], a general purpose aspect-oriented 
extension to Java.  

Our goal is twofold: First, we want to analyze the benefits and disadvantages of 
using aspects to build a framework for coordinated error recovery, instead of relying 
on an exclusively object-oriented implementation [23]. Second, we want to provide 
support for the construction of reliable object-oriented systems with requirements 
such as concurrency and distribution.  

This paper is organized as follows. Section 2 gives a brief overview of AspectJ. 
Section 3 describes the approach we employ for coordinated exception handling. 
Some background knowledge on sequential exception handling is assumed. Section 4 
presents the design and implementation of ACE. Section 5 rounds the paper and 
presents some ideas for future work. 

2 AspectJ Overview 

AspectJ [13] is a general purpose aspect-oriented extension to Java. It extends Java 
with constructs for picking specific points in the program flow, called join points, and 
executing pieces of code, called advice, when these points are reached. Join points are 
used to capture crosscutting concerns, that is, concerns that affect several different 
program units and can not be modularized by traditional object-oriented techniques. A 
typical example of crosscutting concern is logging. The implementation of this 
concern must be scattered across all the modules in a system, because some 
contextual information must be gathered in order for the recorded information to be 
useful. Other common examples of crosscutting concerns include profiling and 
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authentication. 
AspectJ adds a few new constructs to Java, in order to support the selection of 

join points and the execution of advice in these points. A pointcut picks out certain 
join points and contextual information at those join points. Join points selectable by 
pointcuts vary in nature and granularity. Examples include method call, method 
execution, field access, and class instantiation. A pointcut may be formed by the 
combination of various different join points selected only under specific conditions.  

Advice are pieces of code that are executed when a join point is reached. These 
may be executed before, after, or around the selected join point. In the latter case, 
execution of the advice may potentially alter the flow of control of the application, 
and replace the code that would be otherwise executed in the selected join point. 

The language also allows programmers to modify the static structure of a program 
by means of inter-type declarations. Inter-type declarations can introduce new 
members in a class or interface, such as methods and fields, or modify the 
relationships between types.  

Aspects are units of modularity for crosscutting concerns. They are similar to 
classes, but may also include pointcuts, advice, and inter-type declarations. The 
following code snippet presents a simple aspect.  

  01: public aspect SimpleAspect { 
  02:   public void Participant.exampleMethod() { ... } 
  03:   pointcut methodCallsFromParticipants(Participant p1): 
  04:       call(* Participant.exampleMethod(..)) && this(p1); 
  05:   before(Participant p1): methodCallsFromParticipants(p1){ 
  06:        System.out.println(“method called”);}                       
  07: } 

In the aspect above, line 2 presents an inter-type declaration that adds the method 
exampleMethod() to the type Participant. If the latter is an interface, the 
new method is added to both interface and implementing classes. Lines 3 and 4 
present a pointcut that selects calls to exampleMethod(). This pointcut has one 
argument of type Participant, corresponding to the caller of the method 
(this(p1)). It selects calls to the exampleMethod() method, defined by the 
type Participant (Participant.exampleMethod(..)). The method may 
have any return type (as indicated by the “*” symbol) and take any parameters. Line 5 
defines an advice that is executed before the join points selected by the pointcut in 
line 3. This advice simply prints the message “method called” on the screen (line 6). 

Aspects are associated to pure Java code by means of a process called weaving. 
Therefore, the tool responsible for performing weaving is called weaver.  

3 Action-Oriented Exception Handling 

In most programming languages, exception handling is inherently associated with 
system structuring concepts [17]. For instance, Java exception handling contexts are 
blocks of statements within method declarations and exceptions are objects defined by 
classes extending the class Exception. The exceptions that a method may signal 
define exit points for its execution (similarly to its result) that are only used when an 
error occurs. If an exception is raised within a method and no handlers for that 
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exception are available, the exception is propagated to the caller method.   
In this paper, we use the concept of action to structure the concurrent execution 

of software systems. An action consists of a set of participants, units of computation 
such as threads or processes, that cooperate in order to achieve a common goal. The 
concept of Coordinated Atomic Actions (CA actions) [22] is employed to structure 
fault-tolerant concurrent systems in an action-oriented manner.  CA actions 
provide a conceptual  framework for dealing with different kinds of concurrency and 
achieving fault-tolerance by extending and integrating two complementary concepts: 
atomic actions [4] and ACID transactions [9]. Atomic actions are used to control 
cooperative concurrency and to implement coordinated error recovery. ACID 
transactions guarantee consistent access to shared objects. 

A CA action consists of a set of participants cooperating inside it and a set of 
objects accessed by them (Figure 1). In a CA action, participants access shared 
objects that have the ACID properties. A CA action may terminate normally, in which 
case it produces a normal outcome and commits transactions on shared objects. If one 
or more exceptions are raised by action participants during action execution, all the 
participants are involved in coordinated exception handling. If two or more 
exceptions are concurrently signaled, an exception resolution scheme is used to 
combine these exceptions into a single one that represents all the exceptions signaled. 
If handling is successful, the action completes normally. Otherwise, an exception is 
propagated and responsibility for recovery is passed to the caller of the action. In this 
case, transactions on all shared objects are aborted. Actions may be nested in order to 
define different exception handling contexts. In the example of Figure 1, a nested 
action Action2 is created within the action Action1.    

 

Figure 1: A CA action with three participants and a nested CA action. 

4 Framework Design 

ACE was built with the goal of complementing the EHS of Java with action-oriented 
exception handling, more specifically, with the concept of CA actions. In order to 
achieve this goal and to produce a reusable implementation, framework development 
has been guided from the beginning by the following design directives. 
The concept of action should be explicit to application programmers. Application 
code based on ACE should employ the concept of action explicitly. This approach is 
adopted by the exception handling mechanism proposed by Garcia et al [7]. As 
mentioned in Section 3, exception handling is closely related to system structure and, 
in the case of concurrent exception handling, with constructs related to concurrent 
execution. Trying to make action-oriented exception handling transparent to 
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application code may have a negative impact on system maintenance and 
understandability. 
Framework hotspots should be object-oriented. Framework users should only have 
to deal with object-oriented concepts. Although the framework is implemented as a 
combination of aspects, classes, and interfaces, application programmers should not 
need to know AspectJ or anything related to aspect-oriented programming, in order to 
use it. This directive makes framework usage easier for Java programmers and users 
of other object-oriented reusable implementations of coordinated exception handling. 

The implementation of ACE consists of five main concerns related to the basic 
requirements of action-oriented exception handling and to some important non-
functional requirements. The “core” framework comprises two concerns: action 
structuring (Section 4.1) and coordinated exception handling (Section 4.2). The 
remaining three concerns implement non-functional requirements: distribution 
(Section 4.3), preemptive abortion (Section 4.4), and transaction interface. The 
following subsections describe these points in detail, except for transaction interface, 
which is addressed elsewhere [15, 19].  In order to better assess our approach, 
throughout this section, we compare ACE to the purely object-oriented framework 
devised by Zorzo and Stroud [23] for building dependable multiparty interactions. 
The authors have used this framework, which we call DMI in the rest of this section, 
to implement the concept of CA actions. 

4.1 Action Structuring 

The action structuring concern makes it possible to organize concurrent systems as 
actions where participants cooperate in order to achieve a certain goal.  In our 
approach for action structuring, participants are built by implementing the 
Participant interface. This interface defines only one method, execute(), that 
implements the basic functioning of the participant. It takes as argument an object of 
type Transactional which is shared by all action participants. The 
Transactional interface is defined by ACE and used for accessing objects in a 
transactional manner. Implementations of this interface should be provided by 
framework users.  

Actions are represented by the Action interface, which extends 
Participant. This interface and a ready-to-use implementation are provided by 
ACE and implement the basic mechanisms for action structuring.  

Implementation of the action structuring concern is complemented by an aspect, 
ActionStructuring. By means of inter-type declarations, this aspect makes 
Participant a subtype of Runnable, the interface provided by Java for defining 
objects that run in their own threads. Furthermore, it adds a new method to 
Participant, run(), that is called when a thread is started and is responsible for 
invoking execute() in each participant.  

ActionStructuring is also responsible for managing references between 
actions and their participants. The following pointcut is used for this means. It selects 
all calls to the addParticipant() method, defined by Action.  
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  01:  pointcut participantAddition(Action cp, String id,  
  02:    Participant part): target(cp) && args(id, part)  && 
  03:    execution(* *..Action.addParticipant( 
  04:      String,Participant)); 

The addParticipant() method includes a new participant in an action. The 
pointcut above captures the moment in which this method is executed, as well as 
some contextual information. This information consists of (i) the Action object on 
which the method was invoked (target(cp)), and (ii) the identifier for the 
participant being added, as well as the participant itself (args(id, part)) (lines 1 
and 2). When this pointcut is reached, an advice is executed after it, setting cp as the 
action part belongs to. This information is stored by Participant in a new field 
introduced by an inter-type declaration. 

Creation and execution of an action is very simple. The following code snippet 
creates an action a1, comprising two participants, p1 and p2, and executes it. 

  01: Participant p1 = new ParticipantImpl(); 
  02: Participant p2 = new ParticipantImpl(); 
  03: ActionFactory fac = ActionFactory.getInstance(); 
  04: Action a1 = fac.createAction(“a1”, 2000); 
  05: Transactional shared = new TransactionalImpl(“An action”); 
  06: a1.addParticipant(“Participant1”, p1);  
  07: a1.addParticipant(“Participant2”, p2); 
  08: a1.execute(shared); 

Lines 1 and 2 create two participants, p1 and p2. Line 4 creates a new action with 
identifier a1 and which will wait at most 2000ms for participants to complete their 
execution. Actions are started by calling the execute() method on the action 
object (line 8). This method starts each participant in a new thread, passing the shared 
objects (line 5) as arguments to each of them.  

Discussion 

Part of the ActionStructuring aspect could be implemented as a class from 
which all participants would inherit. We have avoided this approach, however, 
because Java only allows single inheritance and user applications might require 
participants to extend a certain class. Moreover, it is argued by some authors [6, 12] 
that code inheritance promotes very strong coupling between classes, and that 
interfaces, together with aggregation, should be used whenever possible. In our 
approach, all the extra functionalities required by concurrent exception handling that 
would otherwise be implemented in a superclass are provided by aspects.  

The use of aspects for implementing this concern helped making ACE easier to 
use, since participant classes defined by user applications need only to implement an 
interface. Furthermore, our aspect-based implementation completely encapsulates 
thread management-related issues. For instance, in the DMI framework, the threads 
on which each participant will be executed must be explicitly created and started by 
framework users. In spite of this, the aforementioned benefits could also be achieved 
by employing wrappers [6] for participants, in a purely object-oriented solution. 
These wrappers would be responsible for executing participants in new threads and 
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maintaining references to the object representing the action. Hence, the aspect-based 
implementation did not present advantages over existing object-oriented solutions. 

4.2 Coordinated Exception Handling 

This concern enriches action structuring with concurrent exception handling. It is 
implemented by the CoordinatedExceptionHandling aspect. This aspect 
requires that an exception handler class be created for each class defining a 
participant, in a given application. Exception handler classes implement the 
ExceptionHandler interface, which defines a single method, 
handleExceptions(), responsible for handling one or more exceptions. 

The CoordinatedExceptionHandling aspect defines a pointcut, 
participantExecution, that intercepts all calls to the execute() method of 
objects of type Participant that are not of type Action. Two advice are 
associated with this pointcut. The first one creates, for each participant in an action, 
an instance of the corresponding exception handler class and associates this object 
with the participant. If no exception handler class is available or instantiation fails, an  
empty exception handler that simply re-throws any exceptions received is associated 
to the participant. Participant and exception handler classes are matched by adopting a 
naming convention to their definition. 

The other advice associated to the participantExecution pointcut catches 
and records any exceptions signaled by participants. The following code snippet 
presents part of this advice. 

  01: void around(Participant p) : participantExecution(p) { 
  02:   p.setExceptionalResult(null); 
  03:   try { 
  04:     proceed(p); 
  05:   } catch (Exception e) { 
  06:     p.setExceptionalResult(e); } 
  07: } 

The proceed() (line 4) statement is defined by AspectJ and can only be used in 
around advice. It resumes the execution of the intercepted code (in this example, the 
execute() method of Participant) and, after it finishes, returns to the advice, 
in the line following the proceed() statement. In the example above, if no 
exceptions are raised, execution is finished with no additional behavior being 
introduced. Otherwise, the exception is caught and stored in the participant itself, by 
calling the setExceptionalResult() (line 6). This method is introduced in 
Participant by an inter-type declaration. 

CoordinatedExceptionHandling also defines a pointcut, 
actionExecution, that intercepts calls to the execute() method of objects of 
type Action. The following code snippet presents an advice associated to this 
pointcut. 
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  01: void around(Action cp)    
  02:     throws Exception : actionExecution(cp) { 
  03:  try { 
  04:     proceed(cp); 
  05:     this.performExceptionHandlingIfNecessary(cp); 
  06:   } catch (Exception e) { 
  07:     cp.setActionExceptionalResult(e); 
 08:     throw e; 
 09:   } 
 10: } 

The performHandlingIfNecessary() method (line 5) called after the 
proceed()statement (line 4) checks if any of the participants signaled an 
exception during its execution. If none did, the method returns and the action 
terminates. Otherwise, it collects all the exceptions signaled by action participants and 
initiates exception resolution. Many different schemes are possible for exception 
resolution. The one adopted by ACE, in conformance to Java´s EHS, assumes that 
exceptions are defined by classes and chooses the most specific exception class that is 
a supertype of the types of all exceptions signaled by participants.  

Figure 2 presents a simple exception class hierarchy used to illustrate how 
exception resolution works in ACE. If, during the execution of an action, two 
participants simultaneously signal exceptions of types E3 and E4, exception 
resolution will create a new exception of type E5, since it is the most immediate 
superclass of both E3 and E4. If, on the other hand, exceptions of types E, E3, and 
E4 are signaled at the same time, the resolved exception will be of type E, because it 
is a superclass of both E3 and E4, and because we assume that the superclass 
relation is reflexive. 

  

Figure 2: A simple exception class hierarchy.  

After exception resolution finishes, the resolved exception is delivered to all 
participants and exception handling is initiated. For each participant, a new thread is 
created and the handleExceptions() method is called on the associated exception 
handler. This method takes the resolved exception as argument. Furthermore, the 
exceptions signaled by the participants during normal execution are also supplied as 
additional contextual information.  Exception handling terminates normally if the 
participants do not signal any exceptions, while handling the resolved exception. 

E 

E1 

E2 E3 E4 

E5 
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Otherwise, a FailureException is signaled, indicating that the action as a whole has 
failed and system state may be inconsistent.  

Discussion 

The implementation of coordinated exception handling by an aspect did not require 
any modifications to the code of the action structuring concern. Implementing similar 
features in a purely object-oriented language would either require the use of code 
inheritance, the solution adopted by the DMI framework, which we reject, or the 
construction of additional wrappers. Both cases require either the application code or 
the implementation of the action structuring concern to be modified. Therefore, the 
aspect-based solution promotes better separation of concerns.  

When an exception is raised, it is useful to collect some information regarding the 
context in which it was raised. This contextual information is then made available to 
exception handlers, in order to increase the effectiveness of exception handling. 
Relevant information usually includes the values of local variables declared within the 
raising method. Unfortunately, it was not possible to collect this contextual 
information with the current version of AspectJ (1.1), since it does not allow the 
definition of pointcuts related to local variables. 

4.3 Distribution 

ACE has been devised with the goal of supporting development of large scale fault-
tolerant object-oriented distributed systems. However, action structuring and 
coordinated exception handling concerns implicitly assume that all the participants of 
an action share the same address space and processing unit. This conflict between 
goal and assumptions is resolved by the distribution concern.  We have used Java RMI 
[5] as the underlying distribution technology. 

First Attempt: Aspects 

In order to introduce the distribution concern, we began by implementing distribution 
for server-side objects. We first tried the approach described by Soares et al [19] for 
adding distribution to object-oriented systems by means of aspects. First, a new 
interface, DistributedParticipant, was created. This interface defines all the 
methods implemented by participants that may be accessed remotely. The methods in 
this interface should specify the RemoteException exception in their throws 
clauses because Java requires it from all methods that might be called remotely. 
DistributedParticipant extends Remote, the interface used by RMI to 
indicate that an object is remote, and includes both the methods defined by the 
Participant interface and the methods added to Participant by inter-type 
declarations. We then created a new aspect, Distribution, and made 
Participant a subtype of DistributedParticipant by means of an inter-
type declaration. 

This approach did not work, however, because classes defining remote objects 
must directly implement their remote interfaces.  The solution described above 
works in the example application presented by Soares et al [19] because the classes 
defining remote objects implement the remote interface directly.  
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In the implementation of the distribution concern, the implementation classes are 
not known beforehand (because these are application-specific participants). In order 
to bypass the limitation described in the previous paragraph, we specified an inter-
type declaration stating that all implementations of the Participant interface 
should also implement the interface DistributedParticipant. In this manner, 
classes defining remote objects would directly implement the remote interface. This is 
defined as follows. 

  01: declare parents: (Participant+ && !Participant) 
  02:   implements DistributedParticipant; 

This solution works fine when no aspects define inter-type declarations affecting 
Participant. However, this is not the case for our implementations of the action 
structuring and coordinated exception handling concerns. Hence, an alternative 
solution should be found.  

A Solution Based on Aspects and an OO Design Pattern 

We have adapted the work of Alves and Borba [1] to introduce distribution in ACE. 
This work proposes a design pattern, called Distributed Adapters Pattern (DAP), for 
implementing distribution in layered systems. This pattern isolates distribution-related 
code in two classes, called distributed adapters. Our implementation of distributed 
adapters defines five roles: local interface, local object, remote interface, client-side 
adapter, and server-side adapter. 

The local interface specifies services to be made remote. In ACE, 
Participant, including and all the methods added to it by means of inter-type 
declarations, is a local interface. Instances of classes implementing the local interface 
are called local objects. The remote interface DistributedParticipant 
defines the same methods as the local interface, but the exception 
RemoteException is specified in the throws clause of each of them, since they 
will be called remotely. The client-side adapter is defined by the 
DistributedClient class. It implements the local interface and maintains a 
remote reference to the server-side adapter. The client-side adapter makes distribution 
transparent to clients by delegating method invocations received from them to the 
server-side adapter. The server-side adapter is defined by the 
DistributedParticipantImpl class. It implements the remote interface and 
maintains a reference to the local object. This adapter delegates received remote 
method invocations to the local object. 

The problem with using the distributed adapters pattern in a purely object-
oriented manner is that adapter creation must be invoked explicitly by application 
code, even if factories [6] are used to hide the actual instantiation process. We have 
employed aspects to try to alleviate this limitation of the object-oriented approach. A 
new aspect has been created, DistributionWithDAP, that localizes the solution 
to this problem. Our approach is divided in two parts: server-side and client-side 
distribution.  
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Server-Side Distribution 

A simple implementation pattern adopted by many distributed applications created 
with Java RMI consists in placing the code responsible for instantiating and 
publishing remote objects in the main() method of one or more server classes. In 
our approach, we assume that this pattern is adopted by framework users. However, 
instead of creating distributed objects and publishing them, the implementation of 
such methods should only instantiate the local objects to be made remote. The 
DistributionWithDAP aspect checks, for each instantiated local participant, if a 
corresponding remote participant has been published. This task is performed by a 
before advice associated to the callToMain pointcut, which intercepts calls to the 
main() method of a participant. The following code snippet presents part of this 
advice. 

  01: try { 
  02:   String addr = addresses.getProperty(participantId); 
  03:   if(addr!=null && addr.trim().length() > 0) { 
  04:     Remote r = Naming.lookup(addr); 
  05:     toBePublished[i] = false; 
  06:   } 
  07: }catch(NotBoundException nbe) { toBePublished[i] = true; } 

The address for one of the participants, addr, is obtained (line 2) by means of a list 
of properties loaded at aspect initialization. If a participant has already been published 
at addr (line 4), it should not be published again (line 5). Otherwise, a 
NotBoundException is raised and caught, indicating that the participant was not 
published yet (line 7).  

The other advice associated to the callToMain pointcut complements the one 
presented above and binds unpublished remote participants to the supplied identifier, 
after the execution of the main() method. Remote participants are created when 
participant classes are instantiated. A pointcut, callToConstructor, selects all 
calls to constructors of classes implementing the Participant interface. An advice 
creates objects of type DistributedParticipant when 
callToConstructor is reached. The following code snippet presents this advice. 

  01: void around(Participant p) : callToConstructor(p) { 
  02:   proceed(p); 
  03:   if(!alreadyInstantiated(p)) { 
  04:     DistributedParticipant dpi = null; 
  05:     dpi = new DistributedParticipantImpl(p); 
  06:     storeDistributedParticipant(dpi); 
  07:   }          
  08: } 

First, the participant is created (line 2). The check in line 3 avoids the creation of 
more than one object of type DistributedParticipant for the same 
participant. This may happen due to calls to superclass constructors. In line 5, the 
distributed participant is actually created and in line 6 it is stored, so that it can be 
published later. 
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Client-Side Distribution 

Transparency at the client-side is achieved by guaranteeing that remote references to 
distributed objects are acquired as if they were local. Our approach consists of 
requiring that local instances of the remote participants be created at the client-side 
(as if it were not a distributed application), intercepting the moment in which a local 
participant is added to an action, obtaining the remote reference corresponding to the 
local object being added, and adding the remote reference, instead of the local one.  

The participantAddition pointcut defined by the aspect 
ActionStructuring intercepts calls to the addParticipant() method of the 
Action interface. Hence, we moved this pointcut to an abstract aspect and made 
both DistributionWithDAP and ActionStructuring extend this aspect. A 
new advice, associated to participantAddition, was then added to 
DistributionWithDAP. The code for this advice is presented below. 

  01: void around(String id, Participant p, Action ac) :  
  02:     participantAddition(id, p, ac) { 
  03:   String addr = addresses.getProperty(id); 
  04:   try { 
  05:     Remote r = Naming.lookup(addr); 
  06:     if(!validParticipant(r)) proceed(id, p, ac); 
  07:     else proceed(id, new DistributedClient(  
  08:         (DistributedParticipant)r), ac); 
  09:   } catch(Exception e) { proceed(id, p, ac); }  
  10: } 

The identifier of the participant being added is used to obtain the address of the 
corresponding remote object (line 3). This address is used to obtain the remote 
reference (line 5). If it is not possible to obtain a valid remote reference, the local 
participant is used instead (line 6). Otherwise, a new client-side adapter of type 
DistributedClient is created to encapsulate the remote reference. This adapter 
is then added to the action as a new participant (lines 8 and 9). If any error occurs 
during this process, the local participant is used (line 9). 

Discussion 

The implementation of the distribution concern described in this section is clearly 
superior to the purely object-oriented version. Complete transparency to application 
code could be achieved due to the use of aspects. In order to use the distributed 
version,  only a small amount of Java code responsible for creating the distributed 
objects is required. Furthermore, application code used to build distributed 
applications makes no references to distribution-related issues. Hence, if a distributed 
application needs to be used in a local setting, no modifications are required. It is 
simply a matter of not weaving the DistributionWithDAP aspect. 

Comparing our approach to the one presented by Soares et al [19] is difficult 
because we have not evaluated the use of aspects together with distributed adapters in 
more general contexts. Although the solution by Soares et al could not be employed to 
implement distribution in ACE, we are still not aware of all the limitations of our own 
approach. Hence, claiming that one is more or less general than the other would be 
inadequate.  
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The main cause for the difficulties outlined in this section is the fact that the 
current version of AspectJ (1.1) does not support the addition of new exceptions to the 
throws clause of a method.  Hence, it was necessary to define another remote 
interface for distributed participants. This problem has been reported elsewhere [15, 
19] and an extension to AspectJ that effectively solves it has been suggested [19].  

4.4 Preemptive Abortion 

When an exception is signaled by one of the participants of an action, all the other 
participants should abort their executions so that exception handling can take place. 
This makes execution faster and does not allow errors to spread throughout the 
system. Usually, implementations of CA actions based on Java use the features 
provided by the language for thread interruption, in order to implement participant 
abortion. This is the solution adopted by the DMI framework.   

The problem with Java´s features for thread interruption is that they do not 
actually guarantee that a thread will be interrupted. Thread interruption is requested 
by invoking a method that marks the thread as interrupted. Actual interruption only 
occurs if an interrupted thread blocks waiting for locks or I/O operations.  In 
order to guarantee that a participant will not go on executing when it should abort, we 
have implemented an aspect, PreemptiveAbortion, that aborts the execution of 
a participant almost immediately.  

Participants of an action should be aborted when at least one of them has signaled 
an exception. As described in Section 4.2, any exception signaled by a participant is 
recorded by calling the setActionExceptionalResult() method. The 
pointcut storingRaisedExceptions selects all invocations to this method. The 
following advice, associated to this pointcut, is responsible for notifying the other 
action participants that their executions should be aborted.  

  01: void around(Participant p, Exception e) :  
  02:     storingRaisedException(p, e) { 
  03:   proceed(p, e); 
  04:   Action ac = p.getEnclosingAction(); 
  05:   notifyParticipants(ac, p); 
  06: } 

First, the signaled exception is recorded (line 3). The Action object corresponding 
to the action of which p (line 1) is a participant is then obtained by calling the 
getEnclosingAction() method (line 4). Finally, all the participants within the 
action ac (line 4) are notified (line 5). 

Preemptive abortion is implemented by checking if, at any moment during the 
execution of a participant, it was notified that it should abort. The following pointcut 
selects all the statements within the execute() method of a class that implements 
Participant, but not Action. 

  01: pointcut participantsExecuteMethod(Participant p):  
  02:   withincode(* *..Participant+.execute(..)) && target(p)  
  03:   && !withincode(* *..Action+.execute(..));       
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Actual abortion is implemented by a simple advice, associated to the pointcut above, 
which checks, after each statement, if execution should be aborted. In case it should, 
this advice raises a special runtime exception, AbortionException. 

Discussion 

The implementation of the preemptive abortion concern nicely showcased the 
possibilities of using aspect-oriented programming together with object-oriented 
programming. It would not be feasible to implement this concern transparently to user 
applications without employing AspectJ, since it requires intercepting all the 
statements in a method body. This level of granularity is too low for typical solutions 
for interception, such as wrappers and proxies [5]. 

Since the PreemptiveAbortion aspect uses inter-type declarations to 
introduce some new methods in Participant, the implementation of the 
distribution concern needed to be extended in order to accommodate these changes. 
This could be achieved, however, without modifying any of the aspects, classes, or 
interfaces implementing either distribution or preemptive abortion. A new aspect, 
DistributedPreemptiveAbortion, was created which complements the 
client and server adapters with the new methods introduced by 
PreemptiveAbortion. 

5 Conclusions 

In this paper, we have described ACE, an aspect-based framework for implementing 
coordinated exception handling in distributed object-oriented systems. Our main 
contribution was to assess the adequacy of using AspectJ to implement a reusable 
infrastructure for coordinated exception handling. To the best of our knowledge, all 
the works published on the use of aspects to structure exception handling refer 
exclusively to sequential exception handling. Moreover, we have compared ACE to a 
purely object-oriented approach to implementing coordinated exception handling. 
Strong and weak points of both our approach and AspectJ have been pointed out. 

The aspect-based implementation of the action structuring concern did not present 
advantages over an object-oriented one, mainly due to the design directives described 
in Section 4. In spite of this, our results lead us to conclude that our aspect-based 
reusable implementation for coordinated exception handling is superior to a purely 
object-oriented one. Coordinated exception handling, distribution, and preemptive 
abortion have been designed so that these concerns can be added to an action-
structured application in a non-intrusive manner. This level of transparency could not 
be achieved by employing only object-oriented techniques, such as design patterns.  

In order to assess our framework from a usability viewpoint, we intend to build a 
large case study based on ACE, employing different communication technologies, 
such as Enterprise Javabeans [20]. This will allow us to better understand its 
advantages and, most of all, its limitations. Furthermore, it will clarify how our design 
decisions influence the overall framework usability and provide suggestions for 
features to be added in the future. 

Another future work consists of extending ACE with features useful for building 
component-based systems. This is an ongoing work that is in its initial stages. We are 
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currently studying the implications of using an aspect-based framework such as ACE 
for building applications whose computational model requires black-box visibility.  
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