
A Modular Rewriting Semantics for CML

Fabricio Chalub
(Universidade Federal Fluminense, Brazil

frosario@ic.uff.br)

Christiano Braga
(Universidade Federal Fluminense, Brazil

cbraga@ic.uff.br)

Abstract: This paper presents a modular rewriting semantics (MRS) specification for
Reppy’s Concurrent ML (CML), based on Peter Mosses’ modular structural operational
semantics specification for CML. A modular rewriting semantics specification for a
programming language is a rewrite theory in rewriting logic written using techniques
that support the modular development of the specification in the precise sense that
every module extension is conservative. We show that the MRS of CML can be used
to interpret CML programs using the rewrite engine of the Maude system, a high-
performance implementation of rewriting logic, and to verify CML programs using
Maude’s built-in LTL model checker. It is assumed that the reader is familiar with
basic concepts of structural operational semantics and algebraic specifications.

Key Words: rewriting logic, semantics of programming languages, modularity, Con-
current ML

Category: F.3.1, F.3.2

1 Introduction

Rewriting logic is a logical framework [14] which can represent in a natural way
many different logics, languages, operational formalisms and models of computa-
tion. Having different high-performance implementations [2, 5, 8], including the
Maude system, RWL can be used to create powerful analysis tools for program-
ming languages, such as JavaFAN [7], a rewriting logic-based analysis tool for
Java programs. Modular rewriting semantics (MRS) [4, 16] is a novel technique
for the modular specification of programming languages semantics in rewrit-
ing logic. A MRS specification is a rewrite theory in rewriting logic developed
according to some techniques that supports modular definitions, that is, each
module extension being a conservative one.

MRS has a close relation with Mosses’ modular structural operational seman-
tics (MSOS) [21]. This is due to the fact that structural operational semantics
has a direct representation in rewriting logic [12, 3, 27, 16, 4] and that MRS
and MSOS use a similar technique to achieve modularity based on the encap-
sulation of the semantic information. Moreover, MRS builds on MSOS insights
with new techniques to achieve modularity and reuse of programming languages
semantics specifications. In [16] the second author and José Meseguer propose

Journal of Universal Computer Science, vol. 10, no. 7 (2004), 789-807
submitted: 16/2/04, accepted: 21/6/04, appeared: 28/7/04 © J.UCS

a semantics-preserving transformation from MSOS to MRS with a formal proof
of bisimulation between the models of MSOS and MRS.

Reppy’s Concurrent ML (CML) [25], is an extension of Milner’s Standard ML
[18] with concurrency features. Both languages have formal semantics and have
several implementations [11, 26, 13, 1] including several different tools, such
as [23, 22].

The objective of this paper is twofold: (i) to define a MRS for CML; and (ii)
to show how CML programs can be executed and model checked in rewriting
logic using the MRS of CML and the Maude system. The MRS of CML is the
result of the application of the semantics-preserving translation between MSOS
and MRS, developed by the second author and Meseguer, to Mosses’ MSOS
specification of CML [19].

This paper is organized as follows. Section 2 gives the necessary background
in rewriting logic and modular rewriting semantics. Section 3 presents the mod-
ular rewriting semantics of CML. Section 4 presents the execution and model
checking of CML programs using Maude and the MRS of CML. We conclude
this paper in Section 5 with our final remarks.

2 Rewriting Logic and Modular Rewriting Semantics

2.1 Rewriting Logic and Modularity Requirements

By a rewriting semantics for a programming language L we mean a rewrite the-
ory RL = (Σ, E, φ, R), where the programs and semantic entities associated to L
are specified by the equational theory (Σ, E), and where the operational seman-
tics of L is formally specified by the rewrite rules R. The notion of modularity is
defined in the context of an incremental specification, where syntax and corre-
sponding semantic axioms are introduced for groups of related features. That is,
modularity is a property of semantic definitions of language extensions. In the
following paragraphs, assume that we have defined the semantics of a language
fragment L0 by means of a rewrite theory RL0 , and the semantics of a language
extension L1, with L0 ⊆ L1, by means of another rewrite theory RL1 .

The most basic and obvious modularity requirement is monotonicity: there
is a theory inclusion RL0 ⊆ RL1 . Monotonicity means that we do not need to
retract earlier semantic definitions in a language extension. Monotonicity is not
easy to get. For example, standard SOS specifications are typically nonmonotonic
and therefore unmodular [21]; that is, often many SOS rules for L0 have to be
redefined in order to extend L0 to L1.

A second natural modularity requirement is ground conservativity: for any
ground Σ0-terms t, t′ ∈ TΣi,k (the set of k-kinded ground Σi terms) we have,
(i) E0 � t = t′ ⇔ E1 � t = t′, (ii) RL0 � t −→ t′ ⇔ RL1 � t −→ t′.
Ground conservativity means that new semantic definitions do not alter the

790 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

semantics of previous features on the previously defined language fragments.
The issue then is finding methods ensuring that incremental rewriting semantics
definitions of programming languages are modular in the sense of satisfying the
above requirements.

MRS uses pairs, called configurations; the first component is the program
text, and the second a record whose fields are the different semantic entities
associated to a program’s computation. We can specify configurations in Maude
with the following membership equational theory (a Maude functional module
importing the RECORD module, shown later):

fmod CONF is
protecting RECORD .

sorts Program Conf .

op <_,_> : Program Record -> Conf [ctor] .
endfm

The module CONF is declared using the syntax fmod. It first includes the mod-
ule RECORD in protecting mode, that is, adding no more data (“no junk”) and no
new equalities (“no confusion”) to records. Then the sorts Program and Conf are
declared using syntax sorts. Finally, the mixfix operator < , > is declared using
syntax op. The ctor attribute specifies that this operation is a constructor for
sort Conf.

The first key modularity technique is record inheritance, which is accom-
plished through pattern matching modulo associativity, commutativity, and iden-
tity. Features added later to a language may necessitate adding new semantic
components to the record; but the axioms of older features can be given once
and for all in full generality: they will apply just the same with new components
in the record. The Maude specification of the equational theory of records is as
follows.

fmod RECORD is
sorts Index Component .
sorts Field PreRecord Record .

subsort Field < PreRecord .

op null : -> PreRecord [ctor] .
op _,_ : PreRecord PreRecord -> PreRecord [ctor assoc comm id: null] .
op _:_ : [Index] [Component] -> Field [ctor] .
op {_} : [PreRecord] -> [Record] [ctor] .
op duplicated : [PreRecord] -> [Bool] .

var I : Index .
vars C C’ : Component .
var PR : PreRecord .

eq duplicated((I : C), (I : C’), PR) = true .
cmb {PR} : Record if duplicated(PR) =/= true .
endfm

791Chalub F., Braga C.: A Modular Rewriting Semantics for CML

A Field is defined as a pair of Index and a Component; illegal pairs will be of
kind [Field]. A PreRecord is a possibly empty (null) multiset of fields, formed
with the union operator , which is declared to be associative (assoc), com-
mutative (comm), and to have null as its identity (id). Maude will then apply
all equations and rules modulo such equational axioms [5]. Note the conditional
membership (cmb) defining a Record as an “encapsulated” PreRecord with no
duplicated fields.

Record inheritance means that we can always consider a record with more
fields as a special case of one with fewer fields. For example, a record with an
environment component indexed by env and a store component indexed by st

can be viewed as a special case of a record with just the environment component.
Matching modulo associativity, commutativity, and identity supports record in-
heritance, because we can always use an extra variable PR of sort PreRecord to
match any extra fields the record may have. For example, the function get-env ex-
tracting the environment component can be defined by eq get-env(env : E:Env,

PR:PreRecord) = E . and will apply to a record with any extra fields that are
matched by PR.

The second key modularity technique is the systematic use of abstract in-
terfaces. That is, the sorts specifying key syntactic and semantic entities are
abstract sorts such that: (i) they only specify the abstract functions manipulat-
ing them, that is, a given signature, or interface, of abstract sorts and functions;
no axioms are specified about such functions at the level of abstract sorts; (ii) in a
language specification no concrete syntactic or semantic sorts are ever identified
with abstract sorts: they are always either specified as subsorts of corresponding
abstract sorts, or are mapped to abstract sorts by coercions; it is only at the
level of such concrete sorts that axioms about abstract or auxiliary functions are
specified.

This means that we make no a priori ontological commitments as to the
nature of the syntactic or semantic entities. It also means that since the only
commitments ever made happen at the level of concrete sorts, one remains forever
free to introduce new meaning and structure in a language extension.

Systematic use of the above two new techniques will ensure that the rewriting
semantics of any language extension L0 ⊆ L1 is always modular, that is, that it
meets the two requirements explained in Section 2.1, provided that: (i) the only
rewrite rules in the theories RL0 and RL1 are semantic rules

〈f(t1, · · · , tn), u〉 −→ 〈t′, u′〉 if C,

where C is the rule’s condition, f , is a language feature, e.g., if-then-else,
u and u′ are record expressions and u contains a variable PR of sort PreRecord

standing for unspecified additional fields and allowing the rule to match by record
inheritance; (ii) the following information hiding discipline should be followed in

792 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

u, u′, and any record expression appearing in C: besides any record syntax, only
function symbols appearing in the abstract interfaces of some of the record’s fields
can appear in record expressions; any auxiliary functions defined in concrete sorts
of those field’s components should never be mentioned; and (iii) the semantic
rules of each programming language feature f should all be defined in the same
theory, that is, either all are in RL0 or all in RL1 .

2.2 Relationship with Modular SOS

In this section we briefly discuss on the need of controlling rewriting steps in
rewriting logic in order to represent the so-called “small step” specifications. For
a complete discussion on the relationship with MSOS we refer to [16].

There are two main techniques for the specification of transition rules in
operational semantics: structural (or small-step), proposed by Plotkin [24] and
natural (or big-step), proposed by Kahn [10]. Therefore, in the context of repre-
senting an operational semantics specification in rewriting logic it is important
to be able to control the number of steps of rewrites in the conditions of a rule.
Note that in a rewrite rule

Q −→ Q′ if P1 −→ P ′
1 ∧ · · · ∧ Pn −→ P ′

n

the rewrites Pi −→ P ′
i in the conditions are considerably more general: they

can have zero, one, or more steps of rewriting because the rewriting relation is
reflexive and transitive in rewriting logic. The point is that, by definition, in
rewriting logic all finitary computations are always derivable as sequents. Thus,
to be able to control the rewrite steps in MRS specifications the following has to
be done: (i) The module CONF is extended to a system module (rewrite theory):

mod RCONF is
extending CONF .

op {_,_} : [Program] [Record] -> [Conf] [ctor] .
op [_,_] : [Program] [Record] -> [Conf] [ctor] .

vars P P’ : Program .
vars R R’ : Record .

crl [step] : < P, R > => < P’, R’ >
if { P, R } => [P’, R’] .

endm

(ii) Each semantic rewrite rule is of the form,

{t, u} −→ [t′, u′] if {v1, w1} −→ [v′1, w
′
1] ∧ · · · ∧ {vn, wn} −→ [v′n, w′

n] ∧ C (1)

where n ≥ 0, and C is a (possibly empty) equational condition involving only
equations and memberships. Any such application of the step rule exactly mim-
ics a one-step rewrite with a rule of the form of Equation 1.

793Chalub F., Braga C.: A Modular Rewriting Semantics for CML

3 Modular Rewriting Semantics of CML

Standard ML (SML) is a general purpose language that has functional, impera-
tive, and exception handling constructions among other features. SML is strongly
typed with static bindings. Concurrent ML (CML) is an extension of SML with
concurrency primitives added. This section presents a modular rewriting dy-
namic semantics of a significant subset of CML, based on Peter Moses’ MSOS
specification as described in [19]. Therefore type checking and type inference is-
sues will not be addressed in this paper. Of course, MRS could also be used to
specify the static semantics for CML following, for instance, the same approach
in [19]. It is worth mentioning that the MRS of CML is correct with respect to
Mosses’ MSOS of CML, since our specification is produced as a result of the
systematic application of the semantics-preserving translation from MSOS to
MRS to Mosses’ MSOS of CML.

This section is organized as follows. For three language fragments, namely,
constant declarations (Section 3.1), variable assignment (Section 3.2) and thread
synchronization (Section 3.3), we: (i) show the CML syntax; (ii) give the intuitive
semantics for the language fragment; and (iii) present the MRS of the language
fragment. (The complete specification can be obtained in full at the address
http://www.ic.uff.br/~cbraga/losd/specs/cml.maude and also gives semantics
for pattern matching and exception handling constructions.)

3.1 Declarations

In SML, constant declarations are written as let in end expressions, such as:

let val x = 1
in

x + 1
end

The informal meaning for this simple example is that the expression x + 1 is
evaluated considering the environment determined by the binding from x to 1.
Moreover, if the identifiers x is also declared in an outermost let, the innermost
declaration prevail. The environment where x + 1 is evaluated into also has
the declarations made “outside” the let in end expression above, that are not
subsumed by x.

Let us know turn to the MRS for constant declarations. First we apply the
record inheritance technique. The declarations environment is represented by the
sort Env. In order to place this component in the record, we use the index env,
a constructor of sort Index. We also add a membership axiom stating that an
environment associated to the index env (through the “:” operator) is a Field,
that is, part of the record structure. These two declarations are written in Maude
as follows.

794 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

op env : -> Index [ctor] .
mb env : E:Env : Field .

Next we apply the abstract interface technique by declaring functions that
deal with bindings of a given environment. Two such functions are find and
override declared with following signature in Maude:

op find : Env Ide -> [BVal] .
op override : Env Ide BVal -> Env .

The function find is declared as a partial function since it may return val-
ues on the kind [BVal], that is, a certain identifier may not be present in a
given environment. The function find returns the value bound to the identifier
in the environment otherwise. The override function also behaves as expected
and returns a new environment where the binding containing the identifier is
overwritten. The environment is extended otherwise.

The following Maude rule specifies the semantics of a let expression with its
declarations part already evaluated.

crl { let b:Env in e:Exp end, { (env : rho:Env), pr:PreRecord} } =>
[let b:Env in e’:Exp end, { (env : rho:Env), pr’:PreRecord }]

if rho’:Env := override-env (rho:Env, b:Env) /\
{ e:Exp, { (env : rho’:Env), pr:PreRecord} } =>
[e’:Exp, { (env : rho’:Env), pr’:PreRecord }] .

This rule specifies that the expression e:Exp is to be evaluated considering
bindings in b:Env. The let expression may be nested deep inside into the program
text, so possibly there is already an outer binding environment, represented in
the rule as the variable rho:Env. Notice that the rest of the record is captured by
the variable pr:PreRecord. This is an example of the record inheritance technique
for modular specification, that is, when a new language fragment is added there
will be no need for this rule to be changed at all.

In order to evaluate e:Exp it is necessary to override the current environ-
ment rho:Env with the new bindings defined by b:Env. The new environment
is represented by rho’:Env and is the result of the application of the function
override-env. This is an abstract function, that is, at this point no assumptions
are made about how the function is implemented and the structure of the en-
vironment. For example, in a further extension one might want to create a new
implementation of the environment that keeps track of how many times a par-
ticular identifier was looked up. For that one would need to change the concrete
representation of bindings and add a counter to each binding, which would not
force any change to the rule above. This rule is written once and for all, and as
Mosses properly states, is definitive [20]. However it is not definitive only due to
the record inheritance but also due to the use of abstract interfaces [16].

The evaluation of e:Exp with the new environment rho’:Env rewrites to
e’:Exp and possible modifications to the rest of the record specified by pr’:Pre-

Record. However the original environment is kept on the right hand side of the

795Chalub F., Braga C.: A Modular Rewriting Semantics for CML

rule, specifying that the environment does not allow side effects. This evaluation
proceeds until the expression turns into a computed value. At this point the
whole let expression is replaced by the computed value.

3.2 Variable Assignment

SML supports imperative constructions while maintaining the functional char-
acteristics of the bindings by associating values to identifiers through a refer-
ence [24]. Referenced values are created with the ref construction and can be
bound to identifiers (for example val x = ref 0). One can access the original
value by dereferencing a variable using the dereference operator !, as in !x. The
assignment of a new value to a variable is done with the := construction, which
expects that the left hand side is bound to a reference value. The result of an
assignment is simply the empty tuple. An example that explores these three
constructions is as follows.

let val x = ref 0
in

x := ! x + 1
end

In the MRS of CML references live in a new record component, the store.
The store associates memory locations with values. As before, no assumption
about the structure of memory locations and its associated storage is made. We
then use both components, the environment and store, by binding identifiers to
memory locations in the memory that in turn are associated with values in the
store. In this way, although the bindings from identifiers to memory locations
can not change, the values referenced by those memory locations can.

Similarly to the environment, we declare an index operator and a membership
equation, therefore applying the record inheritance technique. The sort SVal

represents the set of “storable” values. The index st holds an element of sort
Store and the specification that a pair st : S:Store is of sort Field, that is, part
of the record structure, is given by the membership equation below.

op st : -> Index [ctor] .
mb st : S:Store : Field .

Abstract functions on the data type Store are also defined such that no
commitments are made with respect to the internal structure of stores. The
functions lookup and update behave as expected. The former is a partial function
that returns the value assigned to a given location in a given store, if the given
location exists. The latter updates the given store in the given location with a
given value or extends the store otherwise.

op lookup : Store Loc -> [SVal] .
op update : Store Loc SVal -> Store .

796 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

The evaluation of an assignment begins with the evaluation of the expression
E1:Exp := E2:Exp. (The rule is not shown here.) First E1:Exp is evaluated until
it becomes a memory location; then E2:Exp is evaluated until it becomes a com-
puted value. The following Maude rule formalizes the assignment of a computed
value to a memory location.

crl { l:Loc := v:Value, {(st : sigma:Store), pr:PreRecord} } =>
[tuple(), {(st : sigma’:Store), pr:PreRecord}]

if sigma’:Store := update (sigma:Store, l:Loc, v:Value) .

The assignment of a value (v:Value) to a memory location (l:Loc) modi-
fies the store component from its original value (sigma:Store) to its new value
(sigma’:Store) where the old value associated with the memory location is re-
placed with the new value. The remaining of the record (pr:PreRecord) is left
unchanged. The entire assignment is then rewritten to the empty tuple (tuple()).

3.3 Concurrency Primitives

Reppy’s Concurrent ML [25] is an extension of SML with concurrency primitives.
This section shows the MRS specification for thread creation and synchronization
constructions with a discussion regarding the latter.

New threads are created with the spawn construction. Sending and receiving
values is done using the send and recv constructions respectively. The commu-
nication between threads is done through channels that are created with the
channel construction. In the example below two threads are created: one, bound
to the identifier x, sends a value through the channel bound to the identifier c

and another, bound to the identifier y, that expects to receive a value from the
same channel c. The communication between threads is synchronous, that is,
both threads block on send and receive.

let val c = channel () ;
x = (fn () => send c, 10) ;
y = (fn () => recv c)

in spawn x ; spawn y
end

The MRS specification for concurrency primitives is based on a simplified
version of Reppy’s CML semantics. It introduces two new components into the
record, of the following sorts: Acts, with record index ac, that captures the signal
of creation of a new thread, and Pids, with record index pids, that keeps the ids of
the existing threads. Each thread is a sequence of expressions with an associated
thread id. A new thread id is created using the new-pid abstract function. The
inclusion of a pid into the list of current pids is done with the add-pid abstract
function. The spawn construction is defined by the following rule.

797Chalub F., Braga C.: A Modular Rewriting Semantics for CML

crl { spawn v:Value, {(pids : ps:Pids), (ac : a:Acts), pr:PreRecord} }
=> [pi:Pid, {(pids : add-pid(ps:Pids, pi:Pid)),

(ac : concat(a:Acts, act(prc(pi:Pid, (v:Value tuple()))))),
pr:PreRecord}] if pi:Pid := new-pid (ps:Pids) .

This rule specifies the spawning of an anonymous function. The variable
v:Value contains a closure, a function abstraction structured as a pair, with the
following components: (i) another pair, composed by a function body and its
formal parameters; and (ii) the environment available to the function declaration.
The closure value is appended to the element of sort Acts bound to the index
ac. When a new thread is inserted on the ac component, the rule below detects
this and moves the thread from the ac component to the pool of threads.

crl { prc(pi1:Pid, e1:Exp), {(ac : a:Acts), pr:PreRecord} } =>
[(prc(pi1:Pid, e’1:Exp) || p:Procs), {(ac : a:Acts), pr’:PreRecord}]

if { e1:Exp, {(ac : a:Acts), pr:PreRecord} } =>
[e’1:Exp, {(ac : a’:Acts), pr’:PreRecord}] /\
act(p:Procs) := last(a’:Acts) .

The semantics for thread evaluation is implemented by means of nondeter-
ministic choice, thus specifying an interleaving semantics. Initially the entire
program is contained in a single thread. As threads are created, they join a pool
of threads which has the associative-commutative operator || as constructor.
As the computation proceeds, each thread is nondeterministically selected for
evaluation from the thread pool.

The following rule nondeterministically selects one thread from the pool of
pids to execute. Note that only one rule is necessary because of the associative-
commutative matching. (This simplification is not present in Mosses’ MSOS spec-
ification of CML, which uses two rules for the nondeterministic choice.)

crl { p1:Proc || PS2:Procs, r:Record } =>
[PS1:Procs || PS2:Procs, r’:Record]

if { p1:Proc, r:Record } => [PS1:Procs, r’:Record] .

Synchronization is achieved with two new components, of the following sorts:
Chans, whose elements are in the chans index which keeps track of the created
channels, and Offers, whose elements are in the offer index that holds the
requests for synchronization that a thread emits. Thus, when a thread wishes
to send or receive information on a channel, it creates an offer and stores it
in the offer index. In order for two threads to synchronize offers must agree.
The predicate agree below only returns true when the offers are: snd(ch:Chan,
v:Value) and rcv(ch:Chan). The partial function agree-value returns v:Value

when the offers agree. The following signature in Maude declares the offer index,
the Offer constructors snd and rcv, the agree predicate, and the agree-value

partial function.

op offer : -> Index .
mb offer : o:Offers : Field .

798 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

op snd : Chan Value -> Offer .
op rcv : Chan -> Offer .
op agree : Offer Offer -> Bool .
op agree-value : Offer Offer -> [Value] .

The following rule specifies the creation of new channels by adding them to
the ch component that holds elements of sort Chan.

crl { channel tuple(), {(chans : c:Chans), pr:PreRecord} } =>
[ch:Chan, {(chans : add-chn(c:Chans, ch:Chan)), pr:PreRecord}]

if ch:Chan := new-chn (c:Chans) .

When a thread wishes to send a value v:Value to a channel ch:Chan it signals
a send offer which is added to the offer component.

rl { send tuple(ch:Chan,v:Value),{(offer : o:Offers),pr:PreRecord} } =>
[tuple(), {(offer : set snd(ch:Chan, v:Value)), pr:PreRecord}] .

The recv construction needed special treatment in the Maude implementa-
tion of its MRS specification. Therefore let us first informally explain its MSOS
semantics. When a thread p wishes to receive a value from a given channel, it
places an offer of the form rcv(ch:Chan,v:Value) in the offer index. The vari-
able v:Value is then substituted by a computed value when p synchronizes with
another thread. The substitution of v:Value is accomplished in MSOS through
unification. However unification is not available in Maude 2.1, the latest alpha
release at this time.

The MRS rule for recv specifies the following. The term recv ch:Chan rewrites
to a placeholder recv-ph(ch:Chan) that will be substituted by the received value
when the thread that has signaled recv ch:Chan synchronizes with another
thread through channel ch:Chan.

rl { recv ch:Chan, {(offer : o:Offers), pr:PreRecord} } =>
[recv-ph (ch:Chan), {(offer : set rcv(ch:Chan)), pr:PreRecord}] .

When two threads signal offers that agree, they can be evaluated at the same
time, as specified by the following Maude rule.

crl { p1:Proc || PS:Procs, {(offer : o:Offers), pr:PreRecord} } =>
[p’1:Proc || update-recv (PS’:Procs, v:Value),

{(offer : o:Offers), pr:PreRecord}]
if { p1:Proc, {(offer : o:Offers), pr:PreRecord} } =>

[p’1:Proc, {(offer : set o1:Offer), pr:PreRecord}] /\
{ PS:Procs, {(offer : o:Offers), pr:PreRecord} } =>
[PS’:Procs, {(offer : set o2), pr:PreRecord}] /\
agree(o1:Offer, o2:Offer) /\
v:Value := agree-value (o1:Offer, o2:Offer) .

There are two important issues to be explained in the rule above: (i) the
application of function update-recv that performs the above mentioned substi-
tution, and (ii) the predicate agree and the function agree-value. We follow this

799Chalub F., Braga C.: A Modular Rewriting Semantics for CML

order and begin with the application of function update-recv. During synchro-
nization the substitution of the placeholder recv-ph ch by a value is done by
the function update-recv, which is actually a meta-function. Before discussing
update-recv, let us briefly comment on meta-functions in rewriting logic and
their implementation in Maude.

Rewriting logic is reflective [14], that is, a rewrite theory R can be meta-re-
presented as a term R, defined according to an universal rewrite theory that
can represent all other theories including itself. This is the intuition behind the
so-called reflective tower in rewriting logic which gives formal support for the def-
inition of meta-applications in Maude, such as execution environments for specifi-
cation languages (e.g. [3]). Such applications are implemented in Maude as meta-
functions (and meta-rules) that rely on the so-called descent functions: primitive
meta-functions in the Maude system. One such descent function is upTerm which
receives a term t and returns t the meta-representation of t. The downTerm func-
tion produces the object representation t of a given meta-represented term t.

Let us return to update-recv. This function is defined in terms of the
above mentioned upTerm and downTerm descent functions. As a meta-function,
update-recv is defined inductively on the structure of terms in the Maude
language, and not inductively on the CML syntax as would be the case
if update-recv was to be defined as a function at the object level.

A definition of update-recv at the object level would imply an axiomatiza-
tion by structural induction on the CML syntax. However, this approach is not
modular: any extension to CML would require an extension to this function.
Defining update-recv as a meta-function preserves the modularity of the specifi-
cation, as opposed to an object-level definition on the CML syntax, because, as
we mentioned before, it is defined inductively on the structure of terms in the
Maude language. Therefore, an extension to the CML syntax does not imply an
extension to update-recv.

We continue the explanation of the synchronization rule discussing the predi-
cate agree and the function agree-value. By the definition of agree, the synchro-
nization rule above is only applied when p1:Proc is currently executing a send

and p2:Proc is currently executing a recv. At this point p1:Proc will write an
offer on its offer component that will match the offer that p2:Proc also writes
on its own offer component. After that, both threads evaluate one step of com-
putation forward at the same time (compare with the interleaving rule above)
and update the p2:Proc thread by substituting the placeholder value with a
computed value.

With the rules so far, the means for a thread to block until its offer does
not match with another offer from another thread are not specified. This is
accomplished by the following rule.

800 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

crl { cml P:Procs, {(offer : offer-id), pr} } =>
[cml P’:Procs, {(offer : offer-id), pr’}]

if { P:Procs, {(offer : offer-id), pr} } =>
[P’:Procs, {(offer : offer-id), pr’}] .

This rule specifies that the multiset of threads may evolve when the offer

index is empty (offer-id). This captures both situations: when two threads
synchronize, or no thread at all requires synchronization.

4 Executing and Verifying CML Programs with MRS

4.1 Executing the Factorial Function

We used two different implementations of the factorial function: the traditional
recursive (functional) and a iterative (imperative) version. The execution of
the factorial of 300 took 198.57 seconds with 9,512,075 rewrites and 7.5 seconds
with 351,836 rewrites, respectively.

All the rules in the MRS of CML described in Section 3 are written in the
so-called small-step form. Therefore, all the intermediate steps in a given compu-
tation are observable. This is not the case in the so-called big-step operational se-
mantics. In big-step specifications, intermediate steps are not observable, which,
of course, reduces the number of steps in computations. For this reason, we have
developed a big-step, equational version of the MRS of SML, which can be found
at http://www.ic.uff.br/~cbraga/losd/specs/sml.maude. The equational version
of the MRS of SML was systematically produced from the MSOS of CML: infer-
ence rules are represented by conditional equations, transitions in the premises
of inference rules are represented by the so-called matching equations [5], and, of
course, the right hand side of equations are always values. In the equational ver-
sion of the MRS of SML, the execution of the factorial of 300 took 0.45 seconds
with 23,122 rewrites and 0.52 seconds with 33,511 rewrites, for the recursive
and iterative cases, respectively. It is interesting to note that these execution
times are comparable to the Moscow ML [26] implementation of SML, using
Joe Hurd’s bignum library1.

Table 1 summarizes these execution times. Column eq shows the execution
times and the number of rewrites of the equational, big-step specification of
SML. Column rl shows the execution times and the number of rewrites of the
rule-based, small-step specification of CML. Column mosml shows the execution
times of the Moscow ML interpreter. The recursive factorial function is repre-
sented by row fat-rec and the iterative version by row fat-nrec. Times are in
seconds.
1 http://www.cl.cam.ac.uk/~jeh1004/software/bignum.htmlx

801Chalub F., Braga C.: A Modular Rewriting Semantics for CML

rl eq mosml
time rewrites time rewrites time

fat-rec 198.57 9512075 0.45 23122 3.30
fat-nrec 7.50 351836 0.52 33511 0.54

Table 1: Executing the factorial function in Maude and Moscow ML

4.2 Executing a concurrent program

In this section we demonstrate the execution of a concurrent, nondeterministic
program. The following code consists of one single thread that spawns two ad-
ditonal threads that attempt to synchronize with the main thread, through the
pair send–recv. Two of them will eventually rendezvous, that is, a send event
will agree with a receive event, and either the value 10 or 11 will be transferred
from one thread to another through channel c.

cml let val c = channel ();
f = fn () => send (c, 10); g = fn () => send (c, 11);

in spawn f; spawn g; recv c; end

Using Maude’s search command, we find two final states, starting from the
initial state above. Remember that a thread consists of a program id and an
expression that will possibly be evaluated to a final value. On the first final
state, the main thread, with pid 1, contains the value 10 and on the second final
state, the main thread contains the value 11. On both states the other thread
that didn’t synchronize, that is, with pids 3 and 2, respectively, is stopped on the
send expression. The thread that executed the successful send ended up with the
empty tuple (tuple()) as a final value. We used ... to hide unnecessary details
from the code below.

search in EXPR-TEST :
< cml prc(pid(1),

let val pat(c) = channel .() seq
pat(f) = (fn p() => send .(c,rat(10))) seq
pat(g) = (fn p() => send .(c,rat(11)))

in spawn f ; spawn g ; recv c end), init >
=>! C:Conf .

Solution 1 (state 163)
states: 165 rewrites: 67305 in 3950ms cpu (4030ms real) (17039

rewrites/second)
C:Conf --> < cml (prc(pid(1), rat(10)) ||

prc(pid(2), tuple()) ||
prc(pid(3),

let < ... > in
let < mt-env > in

send tuple(chn(1),rat(11))
end

end)), {...} >

802 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

Solution 2 (state 164)
states: 165 rewrites: 67490 in 3970ms cpu (4044ms real) (17000

rewrites/second)
C:Conf --> < cml (prc(pid(1), rat(11)) ||

prc(pid(2),
let < ... > in
let < mt-env > in

send tuple(chn(1),rat(10))
end

end) ||
prc(pid(3), tuple())), {...} >

No more solutions.
states: 165 rewrites: 67490 in 3970ms cpu (4046ms real) (17000

rewrites/second)

4.3 Model Checking Dekker’s Algorithm for Mutual Exclusion

Maude comes with a built-in LTL model checker [6]. In what follows it is exem-
plified the use of the MRS of CML together with the Maude model checker to
verify Dekker’s algorithm [6], one of the earliest correct solutions to the mutual
exclusion problem. The algorithm assumes threads that execute concurrently on
a shared memory machine and communicate with each other through shared
variables. There are two threads, p1 and p2. Thread p1 sets a Boolean variable
c1 to 1 to indicate that it wishes to enter its critical section. Thread p2 does the
same with variable c2. If one thread, after setting its variable to 1 finds that the
variable of its competitor is 0, then it enters its critical section right away. In the
case of a tie (both variables to 1) the tie is broken using a variable turn that takes
values in {1, 2}. See http://www.ic.uff.br/~cbraga/losd/specs/cml.maude

for Dekker’s algorithm in our CML syntax.
The program text consists of an initial thread that spawns two threads; each

thread in turn loops entering and leaving the critical zone. While inside the
critical zone each thread assigns 1 and 0 to the variables cz1 and cz2. Therefore,
if the implementation is correct, the store configuration with both variables set
to 1 will never occur.

Let ϕmv be a linear temporal logic proposition that states that the mutual
exclusion property was violated, that is, both memory regions related to cz1 and
cz2 have the value 1. Thus, it must be proved that �¬ϕmv is true. The following
module specifies ϕmv as the operator mutex-violation of sort Prop and the propo-
sition we are trying to prove is represented by the formula []~mutex-violation.

mod CHECK is
including CONCURRENCY-TEST .
including MODEL-CHECKER .

subsort Conf < State .

op mutex-violation : -> Prop .

803Chalub F., Braga C.: A Modular Rewriting Semantics for CML

eq < P:Program,{(st : <[[loc(1),rat(1)]] [[loc(2),rat(1)]] C:CStore>),
PR:PreRecord } > |= mutex-violation = true .

endm

The result, shown below, means that the configuration mutex-violation will
never occur, as expected. The computer used was an Pentium IV 2.4 GHz with
512 MB RAM.

reduce modelCheck(dekker, []~ mutex-violation) .
rewrites: 58380093 in 2315950ms cpu (2362140ms real)

(25207 rewrites/second)
result Bool: (true).Bool

Other checks are possible. For example: consider the proposition competing,
meaning that both threads are competing for the critical zone. This is true when
both memory regions referenced by the variables c1 (location 5) and c2 (location
6) are 1, as in:

op competing : -> Prop [ctor] .

eq < P:Program, {(st : <[[loc(5),rat(1)]] [[loc(6),rat(1)]] C:CStore>),
PR:PreRecord } > |= competing = true .

Consider also the proposition turn(i) which is true when the turn is with
the thread identified by i. Recall that turn selects which thread is allowed to
enter the critical zone.

op turn : Int -> Prop [ctor] .

eq < P:Program, { (st : < [[loc(7),rat(i:Int)]] C:CStore >),
PR:PreRecord } > |= turn(i:Int) = true .

Finally, consider the following LTL formula: φ = �(competing → �turn(1)),
which can be understood as it is always true that when both threads are compet-
ing, the turn will always be with thread 1. When model checking this formula,
Maude produces a counter-example, after 6.9 seconds and 229,112 rewrites, with
33,204 rewrites per second. The counterexample shows all paths of computations
in which φ is not true. For example, one such computation is:

{< ...,{(env : < mt-env >),(st : < [[loc(1),rat(0)]] [[loc(2),rat(0)]]
[[loc(3),rat(0)]] [[loc(4),rat(0)]] [[loc(5),rat(1)]] [[loc(6),rat(1)]]
[[loc(7),rat(2)]] >),(val : < mt-val >),(pids : < pval[pid(1)] x
pval[pid(2)] x pval[pid(3)] >),(ac : < mt-ac >),tr : < mt-tr>} >,’step}

where one can see the memory location 7 containing the value 2, indicating that
the turn is now with thread 2.

Even though the model checking of φ took only a few seconds, the model
checking of ϕmv took almost forty minutes for a rather simple query and the
reason for that is the same as for the high execution times shown in Section 4.1:
the large number of states produced by a rule-based specification.

804 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

5 Final remarks

In this paper we have shown how CML programs can be executed and formally
verified within the Maude system using the MRS of CML, a modular specification
in rewriting logic for a significant subset of CML.

From this experiment it follows that the right balance between equational
and rule-based axiomatizations should be pursued, following the lines of [15],
which are already being followed in [17, 7]. Roughly speaking, the sequential
fragment should be equationaly specified and the concurrent fragment should
be rule-based. In this way the state space is restricted to concurrency-related
computations, interesting for reasoning with model checking techniques.

Moreover, model checking of CML programs with conditional rewrites repre-
senting the transition rules’ premises proved somewhat problematic since rewri-
tes in the conditions are assumed “scratch pad rewrites” in RWL [14]. Thus,
states that exist only in the conditions can not be specified in the query (LTL
formula) to the model checker. The current MRS specification for CML only
allows queries about the full program text, not its parts. With this limitation
queries to the model checker must be made by observing changes to mutable
components, such as the store, or by exploiting some property that involves the
entire program text, and not some part.

We are currently working on a new CML specification which should produce
several benefits when compared to the current, rule-based, one, by: (i) explor-
ing true concurrency, due to the congruence rule in RWL calculus, as opposed
to the interleaving model of the current, rule-based, specification; (ii) specify-
ing the sequential fragment of CML equationaly and the concurrent part with
rules, following the taxonomy proposed in [15]. This approach should lead to
a transition system with fewer states, due to the use of equations to specify
the sequential part, therefore making model checking faster. It is also believed
that this technique should shorten execution time; (iii) move towards a reduc-
tion semantics [9] together with a continuation-passing style [7] in order to avoid
conditional rewrites representing transition rules’ premises.

Acknowledgements

The authors would like to thank the anonymous referees for their comments
and suggestions, to Peter Mosses for comments on our specification. Braga
acknowledges partial support from CNPq under process 300294/2003-4, and
PROPP/UFF, and Chalub to EPGE-FGV.

References

1. P. Bertelsen, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen, N. Rothwell,
P. Sestoft, M. Tofte, and D. N. Turner. ML Kit. http://www.itu.dk/research/

805Chalub F., Braga C.: A Modular Rewriting Semantics for CML

mlkit/.
2. P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. Elan from a rewriting

logic point of view. Theoretical Computer Science, 285:155–185, 2002.
3. C. Braga. Rewriting Logic as a Semantic Framework for Modular Structural Oper-

ational Semantics. PhD thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro,
September 2001. http://www.ic.uff.br/~cbraga.

4. C. Braga and J. Meseguer. Modular rewriting semantics in practice. In N. Mart́ı-
Oliet, editor, Proceedings of 5th International Workshop on Rewriting Logic and
its Applications, WRLA 2004, Electronic Notes in Theoretical Computer Science.
Elsevier, 2004. To appear.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. The maude 2.0 system. In R. Nieuwenhuis, editor, Rewriting Tech-
niques and Applications (RTA 2003), number 2706 in Lecture Notes in Computer
Science, pages 76–87. Springer-Verlag, June 2003.

6. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In F. Gadducci and U. Montanari, editors, Fourth Workshop on Rewriting Logic
and its Applications, WRLA ’02, volume 71 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2002.

7. A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal analysis of Java programs
in JavaFAN. In CAV’04, Proc. 16th Intl. Conf. on Computer Aided Verification,
Boston, USA, Lecture Notes in Computer Science. Springer, 2004. To appear.

8. K. Futatsugi and R. Diaconescu. Cafeobj report. World Scientific, AMAST Se-
ries, 1998.

9. J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT
Press, Cambridge, MA, USA, 1996.

10. G. Kahn. Natural semantics. Report 601, Inria, Institut national de Recherche
en Informatique et en Automatique, Domaine de Voluceau, Rocquencourt B.P.105
78153 Le Chesnay Cedex Fance, February 1987.

11. B. Laboratories, P. University, Y. University, and A. Research. Standard ML of
New Jersey. http://www.smlnj.org/.

12. N. Mart́ı-Oliet and J. Meseguer. Handbook of Philosophical Logic, volume 61,
chapter Rewriting Logic as a Logical and Semantic Framework. Kluwer Academic
Publishers, second edition, 2001. http://maude.cs.uiuc.edu/papers.

13. D. Matthews. Poly/ML. http://www.polyml.org/.
14. J. Meseguer. Conditional rewriting as a unified model of concurrency. Theoretical

Computer Science, 96(1):73–155, April 1992.
15. J. Meseguer. Software specification and verification in rewriting logic. In Models,

Algebras and Logic of Engineering Software, NATO Advanced Study Institute, July
30 – August 11, 2002, pages 133–193. IOS Press, 2003.

16. J. Meseguer and C. Braga. Modular rewriting semantics of programming lan-
guages. In AMAST’04, Proc. 10th Intl. Conf. on Algebraic Methodology and Soft-
ware Technology, Sterling, UK, Lecture Notes in Computer Science. Springer, 2004.
To appear.

17. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. In
F. Baader, editor, Automated Deduction - CADE-19. 19th International Con-
ference on Automated Deduction, Miami Beach, FL, USA, July 28 - August 2,
2003, Proceedings, volume 2741 of Lecture Notes in Computer Science, pages 2–16.
Springer-Verlag, 2003.

18. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The definition of Standard ML
(Revised). MIT Press, 1997.

19. P. D. Mosses. Fundamental concepts and formal semantics of programming lan-
guages – an introductory course. Lecture notes, University of Aarthus, Denmark,
2002. http://wiki.daimi.au.dk/dSprogSem-01/dSprogSem-01.wiki.

20. P. D. Mosses. Definitive semantics. Lecture notes, Warsaw University, 2003. http:
//www.mimuw.edu.pl/~mosses/DS-03.

806 Chalub F., Braga C.: A Modular Rewriting Semantics for CML

21. P. D. Mosses. Modular structural operational semantics. Journal of Logic and
Algebraic Programming, 60–61:195–228, 2004. To appear.

22. U. of Cambridge Computer Laboratory. HOL, automated proof system for higher
order logic. http://hol.sourceforge.net/.

23. L. Paulson and T. Nipkow. Isabelle, a generic theorem proving environment.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

24. G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN - 19, Computer Science Department, Aarhus University, 1981.

25. J. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University, June 1992.
Technical Report TR 92-1285.

26. P. Sestoft. Moscow ML. http://www.itu.dk/research/mlkit/.
27. J. A. Verdejo. Maude como um marco semântico ejecutable. PhD thesis, Univer-

sidad Complutense Madrid, 2003.

All URLs in this paper are valid as of June 29th, 2004.

807Chalub F., Braga C.: A Modular Rewriting Semantics for CML

