
Portlets as Web Components: an Introduction

Oscar Dı́az
(University of the Basque Country, Spain

oscar@si.ehu.es)

Juan J. Rodrı́guez
(University of the Basque Country, Spain

jibrojij@si.ehu.es)

Abstract: Today’s organisations are increasingly relying on the web to support their operations
and the integration of their processes with their partners’. Portlets, which are distributed web
components that encapsulate web applications, are considered a promising breakthrough towards
this aim. The goal is to define a component model to enable portlets to be easily plugged into web
portals. This article outlines the main challenges associated with the definition and use of portlets.
As any component model, portlets should have clear interfaces so that they can be plugged into
third-party applications. This includes the communication between the consumer of a portlet and
the portlet container, as well as the communication between the portlet container and the portlet
itself. Two standards, WSRP and JSR168, address these issues. After outlining them, we conclude
with some insights into the implementation of portlets.
Key Words: portal applications, web services, component-based development, portlets
Category: D.2.2, H.4.m

1 Introduction

The increasing growth of web applications in size and complexity requires a system-
atic way to development, which may be facilitated by following modular engineering
practices and using component-based development. Componentware is advocated as
a means to manage the development of large, complex and distributed web applica-
tions effectively [Repenning et al., 2001]. Szyperski defined the term component as fol-
lows [Szyperski, 1998]:

A unit of composition with contractually specified interfaces and explicit con-
text dependencies only. A software component can be deployed independently
and is subject to composition by third parties.

When looking for components in current web development practices, the most com-
mon artefacts are HTML pages. However, it is questionable whether an HTML page is a
component or not. It can certainly be deployed independently and be subject to compo-
sition by third parties through the href construct, but, it is not clear what kind of unity
it provides, neither its interface nor its context dependencies. Other common artefacts
are servlets and applets, which can both be considered as components although their
granularity is rather small and their reuse can be quite limited.

Journal of Universal Computer Science, vol. 10, no. 4 (2004), 454-472
submitted: 17/10/03, accepted: 2/2/04, appeared: 28/4/04 © J.UCS



Web services can be seen as a shift from component building blocks to the assembly
of services. Their interfaces are specified contractually by means of the Web Service
Definition Language (WSDL) [W3C, 2001], and can be subject to composition by third
parties. Most web services return raw data, and the caller is responsible for determining
how to use them. This allows to reuse the business logic, but it is up to the caller to
write the presentation logic, which is not reused or subject to composition by third
parties. However, this is a whole layer that deals with issues like state management,
error handling or navigation. Coding it is a cumbersome task and it certainly prolongs
the development. Portlets, a.k.a. web parts or gadgets, address this problem.

A portlet is a multi-step, user-facing application to be delivered through a web ap-
plication. They resemble windowed applications since they render markup fragments
that are surrounded by decoration containing controls. Portals have embraced this tech-
nology quickly, and they are currently the most notable portlet consumers. Hence, a
portal page can contain a number of portlets that users can arrange into columns and
rows, and minimise, maximise, or arrange to suit their individual needs. So far however,
the lack of a common model prevented portlet interoperability. This impedes a portlet
developed in, say, Oracle Portal, from being deployed at a Plumtree portal, and vice
versa. However, the recent delivery of the Web Services for Remote Portlets (WSRP)
specification [OASIS, 2003] promises to overcome this problem. WSRP uses WSDL
for portlet specification. Unlike traditional web services, portlet operations might not
only return raw data, but fully rendered markup that is to be included within a por-
tal page with very few changes. This leverage the use of web services from functional
integration to application integration where user-facing, multi-step concerns are consid-
ered. The goal is to define a component model that would enable portlets to be easily
plugged into web applications.

The rest of the paper is organised as follows: we introduce a portlet definition by
comparing them with web services and web applications [see Section 2]; then, the
WSRP and JSR168 standards are outlined [see Section 3]; later, we introduce a few
hints on implementing portlets [see Section 4]; finally, we present our conclusions [see
Section 5]. The aim of this article is not to provide an exhaustive description of the
standards, but an overall picture about this technology.

2 Comparing Portlets with Previous Technologies

2.1 Portlets versus Web Services

Web services provide an enabling technology to deliver on the current promise of
Internet-based business-to-business connectivity. Web service standards facilitate shar-
ing business logic, but suggest that the consumers should write their own presenta-
tion layers. As an example, consider a web service that offers two operations, namely,
searchFlight and bookFlight. The former retrieves flights that match some input
parameters, e.g., departureAirport or flightDates, and bookFlight takes the

455Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



Figure 1: Interaction diagram

selected flight and payment data, and books a seat on this flight. This WSDL-based API
can then be used by a consumer application. First, the application would collect the
departureAirport, flightDates and other parameters with an input form within
which an HTTP request might support a call to searchFlight which, in turn, returns
a set of flights whose presentation is left to the calling application. Next, the user se-
lects one of the flights and, with another form, the web application collects the user’s
information and payment data. This interaction will in turn invoke bookFlight. This
example illustrates the traditional approach in which web services provide the business
logic, and both presentation and control layers are left to the calling application.

This scenario illustrates the traditional use of web services as a function-integration

456 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



technology whereby an application can invoke code in another application. However,
such an approach underscores the presentation layer [Reshef, 2002]: not only addresses
this layer aesthetic aspects, but a whole range of concerns like usability, state man-
agement, error handling, or navigation. Indeed, most of the aspects that characterise a
good web site are related to interactive issues [Marquis, 2002], and re-creating the pre-
sentation in each front-end increases time-to-market and can jeopardise a company’s
corporate image. As the previous example highlights, the reconstruction of the screen-
shots not only involves aesthetic aspects but also leaves to the consumer application the
re-composition of the workflow among the API operations. Therefore, an API-based
approach as the one provided by traditional web services, falls short for complex in-
teractive applications whose flow spans over several web pages. The presentation logic
realises brand and customer experience strategies that are becoming critical business
factors for a company to be ahead of their competitors. Letting the consumer applica-
tion decide both how parameters are requested or results rendered back, can jeopardise
the prestige of the service provider.

What is required is to leverage web services technology as an application-integration
enabler? True application integration results from making one application available
within the context of another, and this can also include the user interface [Wong, 2001].
Microsoft OLE objects are a case in point. For instance, this technology allows to em-
bed an Excel spreadsheet into a Word document by dragging and dropping an icon.
Once embedded, you can work on the spreadsheet from the Word document as if you
were within Excel. This is the scenario that portlet proponents aim for web applications.

Consider our flight-booking application again, but delivered as a portlet now. A
flightSearch portlet is defined to encapsulate the previous sequence of operations
(multi-step) and the XHTML fragments (user-facing). This portlet can then be used as
a web component to be plugged into third-party applications. [Fig. 1] shows the three
actors involved, namely, the end-user, the portlet consumer and the portlet producer.
What the consumer is now reusing is a whole application. First, portlet operations do
not return raw data but markup, a.k.a. fragments, to be included within the portal page
with very few changes. Second, all interactions with a given portlet belong to the same
session, and hence, session and state maintenance should be preserved along these in-
teractions. Although it depends on the approach, this can be the duty of the portlet
producer. While in the portlet realm, the consumer is relieved from the burden of main-
taining complex sessions and control flow.

2.2 Portlets versus Web Applications

The previous comparison presents portlets as full-fledged applications. However, and
unlike web applications, portlets have an additional requirement: they can be subject to
composition by third parties. This has two important implications: clear interfaces and
configurability are needed.

457Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



Clear interfaces implies the existence of well-defined and programmatic interfaces
for a portlet to be plugged into a consumer application. Moreover, interoperability ad-
vises this interface to be generic so that the caller can interact with portlets in an stan-
dardised way. This is the endeavour of the WSRP standard. Broadly speaking, the life-
cycle of a portlet session begins when the first getMarkup request is issued [see Fig. 1].
Once the first markup is rendered, a two-phase protocol is initiated. The getMarkup

operation retrieves the markup that corresponds to the current state of the portlet. If sev-
eral getMarkup are requested in a row, the same markup should be returned. There is
however an exception if the state of the portlet is shared with other portlets that are ag-
gregated from the same producer. Common causes of such shared state include the use
of a common backed system, e.g., database and producer-mediated data sharing. For
these reasons, there is a “two-step” capability built into the protocol [OASIS, 2003].
As a result, the consumer next invokes performBlockingInteraction on the port-
let with whose markup the end-user has interacted. This is a synchronous operation
that routes the user-enacted interaction to the producer. The consumer has to wait for
the response from performBlockingInteraction before invoking getMarkup on
the portlet it is aggregating. The portlet will receive only one invocation of perform-
BlockingInteraction per client interaction, except for retries. If this operation ends
successfully, the consumer can then retrieve the next markup by invoking getMarkup

on all the portlets within the portal.
As for configurability, it is well-known in the component community that, the larger

the component, the more reduced the reuse. Portlets might be coarse-grained compo-
nents since they encapsulate a whole application. Therefore, mechanisms should be
in place to configure the portlet to the environment where the portlet is going to be
“hooked on”. This includes both the consumer and the end-user environments.

The consumer environment includes the user-profiles being supported by the con-
sumer application. WSRP standardises the structure of user profiles, which has been
derived from P3P User Data. Extensibility is supported in both directions: the portal
indicates to the portlet producer what set of user profile extensions it supports during
registration, and a portlet’s meta-data declares what user profile items it uses (including
any extended user profile items) [OASIS, 2003]. The consumer environment can also
set the amount of page space that the portal will assign to the fragment generated by
the portlet, the so-called, windowState property. The options WSRP supports include:
normal, which indicates that a portlet is likely to share the aggregated page with other
portlets; minimised, which instructs the portlet not to render visible markup, but al-
lows it to include non-visible data such as JavaScript or hidden forms; maximised,
which specifies that the portlet is likely to be the only portlet being rendered in the
aggregated page, or that it has more space than usual; and solo, which denotes that a
portlet is the only portlet being rendered in the aggregated page. This property is set by
the portlet consumer among the values supported by the portlet producer.

Furthermore, the consumer can also be interested in ensuring a common look-and-

458 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



feel across the portlet markups to be rendered in the same portal page, e.g., similar
background, fonts or titles. To this end, the portlet markup should use Cascade Style
Sheets (CSSs) [W3C, 1998]. The portlet returns CSS-parameterised fragments that are
then processed by the portlet consumer. This process includes providing the actual val-
ues for the CSS parameters. Interoperability requires these parameters to be standard-
ised so that the portlet consumer can always expect the same terms regardless of the
producer. This is also been set by the WSRP standard.

As for the end-user environment, it traditionally refers to the client agent or browser,
and includes locale information, user agent software, or bandwidth. Appropriate param-
eters are defined in WSRP to pass this data to the portlet producer. However, this is not
enough. Portlets should not only consider the features of the client agent, but mecha-
nism should be provided for users to determine the information that they want to see
and how they would like it to be presented, i.e., portlet customisation. This is specially
important in a portal setting since they are targeted at customary users. This implies
that customisation can and must be achieved at a broader extent than in traditional web
applications, which need to cope with more occasional users. To this end, WSRP intro-
duces the edit mode. A mode is a way of behaving. Both the content and the activities
offered by a portlet depend on its current mode. For instance, when in the view mode,
the portlet renders fragments which support its functional purpose, e.g., booking a flight
seat. This is what we normally mean by interacting with a traditional web application.
In contrast, when in the edit mode, it provides content and logic that allows a user to
customise its behaviour. Besides the edit and view modes, the WSRP standard also sup-
ports the help and preview modes that instruct a portlet to provide a help screen and to
pre-render it before adding it to a portal page.

For the flightSearch portlet, the edit mode can be realised as the user selecting a
default value for a portlet parameter, e.g., departureAirport = Madrid, bookmark-
ing some form values for repetitive portlet invocations, e.g., a link labelled flightTo-
Munich can directly lead to a fragment with most of the fields already filled in to book
a ticket to visit Munich, or providing some aggregate information about previous en-
actments of flightSearch, e.g., total amount spent on flight tickets. When in the edit
mode, end-user interactions are targeted at customising a portlet’s functional behaviour.

3 The Architecture and the Standards

WSRP portlets lead to a distributed architecture that promotes the logical separation of
portlets from portal servers that use their services [see Fig. 2]. In the traditional portal
model, portlets ran on the same J2EE application server as the portal server and inter-
act via simple J2EE inter-process communication. However, scalability issues suggest
to move portlets to other machines. Furthermore, departments within an organisation
often want to keep control over their own portlets, something that is hard to accomplish
if portlets must be deployed to a centralised portal server. But WSRP was designed

459Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



Figure 2: The architecture

Vendor WSRP Consumer JSR 168 Container

Plumtree Enterprise Web Suite supported supported
IBM WebSphere Portal 5.02 preview preview
BEA WebLogic Portal 8.1 preview supported
OracleAS Portal 10g preview preview
Sun Java System Portal Server 6.2 announced preview
Vignette Application Portal 7.0 supported supported
MS Office Share Point Portal Server 2003 not planned not planned

Table 1: WSRP & JSR 168 backing

not only to allow remote portlet-to-portal communication. Even in an scenario where
portlets are deployed locally, WSRP keeps its value as a platform-independent specifi-
cation. Thus, a J2EE-based portal server could interoperate with a portlet running on a
.Net machine as long as it exposes its functionality via WSRP-compliant web services.

Once in a portlet container, the portlets can be developed using different platforms.
The JSR168 specification [Java Community Process, 2003] defines a standard set of
APIs for portlets to be plugged into J2EE-based portal servers. In the same way that
servlets run into a servlet container, JSR168 defines a portlet container that manages
portlets. The container is the true interlocutor with the portlet consumer, and the re-
sponsible for mapping WSRP requests into JSR168 operations. This allows a portlet
programmer to ignore the intricacies of WSRP. The container also offers some infras-
tructure for personalisation, presentation and security. Several vendors seem to be in-
terested in supporting these standards [see Tab. 1 or http://www.wsrp.info].

460 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



3.1 The WSRP Standard

WSRP is a joint effort of two OASIS technical committees, namely, the Web Ser-
vices for Interactive Applications (WSIA) and the Web Service for Remote Portals
(WSRP) [OASIS, 2003]. WSRP sits on top of the existing web service stack and uses
WSDL for defining a set of interfaces. It standardises the APIs between consumers and
producers of portlets, the communication protocol, and some aspects of the component
model, e.g., modes, personalisation descriptions, or CSS terms.

The 1.0 specification supports four interfaces, namely:

Service Description This interface allows consumers to ascertain both the capabilities
of the producer and the portlets it hosts. The latter includes the meta-data neces-
sary for a consumer to interact with each portlet. It defines the operation getSer-
viceDescription for acquiring the meta-data of the producer.

Markup This interface allows consumers to request and interact with markup frag-
ments. This includes the getMarkup operation that returns the presentation markup
which corresponds to the current portlet state, as well as the performBlocking-
Interaction operation which is the means used by the consumer to route the
chosen interaction to the producer. Since WSRP does not require neither the pro-
ducer nor the consumer to be stateful, these operations carry the state necessary
for the portlet to render the current markup to be returned to the consumer. If the
producer uses local state, then it will return a session identifier.

Registration A registration shows a relationship between a consumer and a producer.
It can include how the service is going to be charged or book-keeping modalities.
This optional interface allows consumers to register, unregister and modify this
relationship information. The portlet functionality can be dependent on whether a
consumer is registered or not.

Portlet Management This optional interface allows consumers to have access to port-
let states and property information. It includes operations for getting portlet meta-
data, i.e., getPortletDescription, cloning portlets for further customization,
and setting/getting portlet properties.

According to the specification, producers are presentation-oriented web services
that host portlets. Hence, we model a WSRP producer as a compound of portlets [see
Fig. 3]. Both producer and portlet class attributes correspond to the meta-data as re-
trieved by the getServiceDescription and getPortletDescription methods.
As an example of a producer meta-data, consider requiresRegistration. This field
is a boolean which indicates whether or not the producer requires the consumer to be
registered previously. On the other hand, PortletHandle is a portlet attribute. A han-
dle serves to uniquely refer to the portlet at hand. Finally, a clones association is
introduced to indicate the association between a portlet and its clones.

461Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



Figure 3: WSRP description concepts

Both producers and portlets can have properties to share information between a
consumer and a producer. Properties of the producer, e.g., billingMethod, are set at
registration time and influence all of the portlets. In contrast, properties of the portlet
are set when a portlet clone is created. A property has a name, a type, a label, i.e., a
short, human-readable name which is used for display and administering purposes, and
a hint, i.e., a short description to be displayed as a tip when the property is edited.

[Fig. 4] depicts the model for our running example. Attributes of the meta-model are
mapped as tagged values on the model, and properties are modelled as attributes. The
example shows an EasyJet producer that offers the FlightSearch000 portlet. Prior
registration is not required (requiresRegistration = false). This portlet has a
set of tagged values that indicates meta-data about the returned markup. Some exam-
ples follow: the supported mime types, e.g, text/xhtml, the window states supported
for each returned mime type (markupType = ...), a brief description of the function-
ality (description = ...), a set of keywords for searching (keywords...), a flag
that indicates that the generated markup includes the method get in an HTML form
(usesMethodGet = ...), whether the portlet requires secure communication on its
default markup (onlySecure = ...) and so on. [Fig. 4] also shows how Flight-

Search000 is cloned into the FlightSearch111 portlet. This allows the initial portlet

462 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



Figure 4: Cloning flightSearch

to be configured to fit the idiosyncrasy of a specific portal. Notice that this is consumer-
based customisation, i.e., it applies to all invocations made through this consumer, not
to be confused with the user-based customisation which is made through the edit mode.
Only properties can be configured.

3.1.1 A Conversation Between the Portlet Consumer and the Portlet Producer

1. The consumer finds out about the producer: This amounts to the consumer get-
ting the producer’s meta-data with its description of the registration requirements, and,
possibly, the list of portlets offered by the producer. A snippet of the returned Ser-

viceDescription structure follows:

<ServiceDescription xmlns="urn:oasis:names:tc:wsrp:v1:types">
<requiresRegistration>true</requiresRegistration>
<requiresInitCookie>none</requiresInitCookie>
<offeredPortlets>

<portletHandle>FlightSearch000</portletHandle>
<markupTypes>

<mimeType>text/html</mimeType>
<modes>wsrp:view</modes>
<modes>wsrp:edit</modes>
<windowStates>wsrp:normal</windowStates>
<windowStates>wsrp:solo</windowStates>

</markupTypes>
<title lang="us">

<value>FlightSearch</value>
</title>
<description lang="us">

<value>...</value>
</description>

</offeredPortlets>
</ServiceDescription>

463Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



The getServiceDescription operation provides a discovery means for a con-
sumer to ascertain the producer’s capabilities. In this example, these characteristics in-
clude: registration is required, no cookies are used, a FlightSearch000 portlet is
available that uses text/html as the mime type, and so on.

2. The consumer registers with the producer: If registration is permitted, the con-
sumer can state some of its characteristics at this time. For instance, it can restrict the
modes or window states it is willing to manage by executing register with the fol-
lowing parameters [see Section 7.1.1 of the WSRP specification]:

<RegistrationData xmlns="urn:oasis:names:tc:wsrp:v1:types">
<consumerName>myCompany_Portal</consumerName>
<consumerAgent>

...
</consumerAgent>
<methodGetSupported>true</methodGetSupported>
<consumerWindowStates>wsrp:normal</consumerWindowStates>

</RegistrationData>

In the example, the consumer, myCompany Portal, indicates that normal is the
only window state supported.

3. The consumers find out about the portlets being offered by the producer with
which it registered: Through getServiceDescription, the consumer knows the set
of portlets offered by the producer [see step 1]. Once the consumer is registered, get-
PortletDescription can be used to obtain detailed information about these portlets,
along with the preferences set during registration. The answer is a getPortletDe-

scriptionResponse document like the following:

<getPortletDescriptionResponse>
<portletDescription>

<portletHandle>FlightSearch000</portletHandle>
<markupTypes>

<mimeType>text/html</mimeType>
<modes>wsrp:view</modes>
<windowStates>wsrp:normal</windowStates>

</markupTypes>
<title lang="us">

<value>FlightSearch</value>
</title>

</portletDescription>
</getPortletDescriptionResponse>

4. The consumer finds out about the properties available to configure the port-
let: By this time, the consumer knows the configuration options available. Now, it dis-
covers the properties through which it can set the corresponding amendments. To this
end, getPortletPropertyDescription returns the following document:

464 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



<getPortletPropertyDescriptionResponse ...>
<modelDescription>

<propertyDescriptions name="preferredDeparture"
type="types:AirportsType"/>

<propertyDescriptions name="preferredArrival"
type="types:AirportsType"/>

...
</modelDescription>
<modelTypes>

<!-- XMLSchema Type definitions for the properties -->
<xsd:schema ... >

<xsd:simpleType name="AirportsType">
<xsd:restriction base="xs:NMTOKENS">

<xsd:enumeration value="BIO"/>
<xsd:enumeration value="MAD"/>

</xsd:restriction>
</xsd:simpleType>
...

</xsd:schema>
</modelTypes>

</getPortletPropertyDescriptionResponse>

This document states that portlet FlightSearch000 supports a set of properties
whose types indicate the range of values available.

5. The consumer requests a unique configuration of one of the portlets offered by
the producer (provided it supports cloning): To this end, the consumer first creates a
clone of the desired portlet by executing clonePortlet. This operation returns a han-
dle that identifies the portlet clone. Once the clone is created, the consumer configures
the clone either through a configuration page or programmatically by setting properties
with setPortletProperty. The following snippet illustrates the input parameter of
this operation:

<setPortletProperties>
<registrationContext>

<registrationHandle>...</registrationHandle>
</registrationContext>
<portletContext>

<portletHandle>...</portletHandle>
</portletContext>
<userContext>

<userContextKey>...</userContextKey>
</userContext>
<propertyList>

<property name="preferredDeparture">BIO</property>
<property name="preferredArrival">MAD</property>

</propertyList>
</setPortletProperties>

In this example, the consumer configures the FlightSearch000 clone by setting
the preferredAirport to BIO and the preferredArrival to MAD. From now on,
the clone will provide markups tune to the consumer’s amendment behaviour.

465Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



1

����������	�
���	��
���

����������	�
���	�

������	������������

������	������
��

���������	���������

«Interface»
�����������	


������

��	������������

�	����	�

�����	���

«Interface»
�������

�����	��������

+doDispatch()
+doView()
+doEdit()
+doHelp()

class
+PreferredDeparture = 'BIO'
+PreferredArrival = 'MAD'
-MaxFlightsPerSearch = 10

{display-name = "Flight Search Portlet",
expiration-cache = 0,
name = FlightSearch,

portlet-info-keywords = "fligh, search",
portlet-info-title = "Flight Search Portlet"}

«preference»
«preference»
«preference»

«Portlet Descriptor»
�	
��������

�	
���������������

Figure 5: Portlet deployment descriptor model

6. The consumer receives a markup from the producer: This is achieved through the
getMarkup function. A snipped of the parameter returned follows:

<getMarkupResponse ...>
<markupContext>

<mimeType>text/xhtml</mimeType>
<useCachedMarkup>false</useCachedMarkup>
<markupString><table>...</table></markupString>

</markupContext>
...

</getMarkupResponse>

The <markupString> tag contains the XHTML.

3.2 The JSR168 Standard

The Java Standardization Request 168 is a Java Community Process initiative to stan-
dardise the way portlets are developed within the J2EE framework. It is defined as a set
of extensions to the Java Servlets API in which three actors are involved [see Fig. 5]:

Portlet Entity This is viewed as a new web component.

Portlet Application In a J2EE architecture, a web application is an aggregation of JSP
pages and servlets that are packaged into a WAR archive with a web.xml deploy-
ment descriptor. Likewise, a portlet application is a web application that includes
portlet components and a portlet.xml deployment descriptor that holds all the

466 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



meta-information the portlet container needs to run it. Hence, a portlet application
has both a web.xml file and a portlet.xml file. [Fig. 6] shows a portlet.xml
sample file that specifies the mode, the view, the portlet preferences, and so on.

Portlet Container Portlets are managed by portlet containers. They communicate by
means of an interface that includes processAction, which is intended to process
input from a user action, and render, which is called whenever a portlet is redrawn.
The latter can change its behaviour and output depending on the portlet mode. To
this end, this interface is implemented by the GenericPortlet class that imple-
ments the render method, and delegates the call to more specific methods which
handle the features of the current mode, e.g., edit, view.

JSR168 portlets can set and get transient data in the following scopes: (i) they can
include data such as parameters and attributes in the request; (ii) they can have session
data with either global or portlet scope (the former allows other portlets of the same
portlet application in the same user session to have access to these data, whereas the
latter is private); (iii) they can have context data that include custom portlet modes,
custom window states and WSRP user attributes, which allows to share information
among portlets deployed on the same portlet application independently from the user
session.

Furthermore, JSR 168 considers that the container should support the storage of
persistent properties that allow specific portlets to store the personalisation of each end-
user. To this end, a portlet can store configuration and personalisation options as portlet
preferences. The portlet can define which data the user is allowed to change when in the
edit mode, e.g., departureAirport, or which parameter can only be changed by an
administrator when in configuration mode, e.g., the ticket reservation system to be used.
The preferred mode to write preferences is the edit mode, which provides the user with a
customisation screen. Nevertheless, preferences can be set programmatically only dur-
ing processAction enactment, and read during the execution of render. Preferences
can be pre-set with default values in the deployment descriptor (portlet.xml).

Last but not least, the JSR168 specification also include a JSP tag library to help
displaying portlet pages with JSP technology. For instance, a custom JSP tag can auto-
matically declare a portlet request and response objects so that they can be used within
a JSP page. Other JSP tags can help construct URLs that refer back to the same portlet.

There is a close correspondence between JSR 168 concepts and WSRP concepts,
namely [Hepper and Hesmer, 2003]: (i) Portlet modes and window states are the same;
(ii) URL encoding and URLs that point to a portlet are the same; (iii) both standards use
a two-phase protocol with action and render phases; (iv) both standards store transient
state across requests using sessions; (v) storing persistent state to personalise a port-
let’s rendering is achieved with properties of arbitrary types in WSRP, whereas JSR168
supports preferences of type string or string array; (vi) WSRP registration data is rep-
resented as a PortalContext object in JSR168.

467Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



<portlet-app>
<portlet>

<portlet-name>FlightSearch</portlet-name>
<portlet-class>

org.atarix.FlightSearchPortlet
</portlet-class>
<expiration-cache>0</expiration-cache>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>

</supports>
<portlet-info>

<title>Flight Search Portlet</title>
<keywords>flight, search</keywords>

</portlet-info>
<init-param>

<name>MaxFlightsPerSearch</name>
<value>10</value>

</init-param>
<portlet-preferences>

<preference>
<name>PreferredDeparture</name>
<value>BIO</value>

</preference>
<preference>

<name>PreferredArrival</name>
<value>MAD</value>

</preference>
</portlet-preferences>

</portlet>
...

<user-attribute>
<description>PreferredTimeZone</description>
<name>timezone</name>

</user-attribute>
<user-attribute>

<description>PreferredLocale</description>
<name>locale</name>

</user-attribute>
</portlet-app>

Figure 6: A portlet.xml sample file

4 Portlet Implementation

Portlet implementation can be an important issue since it encapsulates not only the
business logic, but also the code to implement navigation, including state preservation
among interactions. A portlet can be seen as a state machine in which the states repre-
sent the rendering of a fragment, and the transitions stand for the actions to be executed.
These actions are enacted by the end-user when he or she interacts with the fragments.

468 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



����������

+init()
+processAction()
+doDispatch()

�	�
��

+processAction()

«jsp»
�
�

�	�
�������������

+processAction()
+doDispatch()

-mode : String

������������

+execute()
-condition : String

1..*
1..*

actions views

controllers1..*

actions

defaultAction

1..*

forward

toActions

Figure 7: The eXo architecture for portlet implementation

Therefore, a portlet supports a set of end-user interactions. Contrarily to servlets, a sep-
arate portlet class to handle each end-user interaction cannot be defined since there is
only one service method responsible for handling all HTTP requests. Consequently, this
single portlet needs to determine which action is being requested, how to process it, to
which state the portlet needs to transit, and what to render back to the user.

Without appropriate decoupling patterns, this code can make the separate evolu-
tion of each concern a cumbersome problem. The eXo platform, for instance, uses
MVC and introduces three notions [see Fig. 7]: action, that performs processAc-

tion to attain a change of state, view, which corresponds to JSP files that embed
enactments to the corresponding actions, and a controller that links action outcomes
to views. An XML document is used to describe this controller [see Fig. 8]. The con-
troller is composed of a set of <action> tags that are associated with classes, e.g.,
exo.flightSearch.InitSeach. Each possible outcome of the enactment of this
class is described by means of a separate <forward> tag that has a name that matches
one of the outcomes, and a page that indicates the next view to be rendered as a result of
this outcome. Recall that portlets follow a two-phase process where processAction
and doDispatch (an operation invoked by render) are interwoven: first, the end-user
interacts with the fragment of the portlet being presented, and the associated action is
triggered; in turn, this can lead to a change in the state of the portlet; second, the portlet
produces the next view based on its current state, which should not change.

469Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



<controllers>
<name>FlightSearchMVC</name>
<identifier>FlightSearchMVC</identifier>
<view-controller>

<default-action>ShowFirstViewScreen</default-action>
<action name="ShowFirstViewScreen"

class="exo.flightSearch.InitSearch">
<forward name="success" page="flight_1_Search.jsp"/>
<forward name="error" page="error.jsp"/>

</action>
...

</view-controller>
...

</controllers>

Figure 8: Controller sample for the eXo platform

Besides, the use of a pattern that facilitates the development and maintenance of the
portlet implementation, other considerations include the following:

HTML considerations A portlet generates markup fragments to be framed by the con-
sumer application. Specifically, the portlet fragment will become the content of an
HTML table cell. This restricts the HTML generated by the portlet to any HTML
tag that can be included in an HTML <body> tag.

Environment considerations Although a portlet can be invoked and its output readily
presented to the end-user, in most cases, the portlet will run within a framework
provided by the consumer. Portal frameworks are a case in point since they provide
a number of functions to obtain user-profiling information or session data.

Presentation considerations Markups produced by different portlets that are rendered
together should have common look-and-feel features. Hence, portlet markups might
use CSS tags rather than hard-coding actual values into the HTML code. In this
case, the consumer should provide the actual values of the CSS tags beforehand.

5 Conclusion

Portlets can leverage existing web application development with the benefits of com-
ponentware. The recent delivery of WSRP and JSR168 will certainly facilitate a mar-
ket for portlets in the medium run that will make the Internet a marketplace of visual
web services, i.e., portlets, ready to be integrated into portals as stated in the WSRP
proposal. The broad support among portal vendors will certainly fuel the movement to-
wards application syndication as the next wave following the successful use of content
syndication in current web applications.

470 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



But, there is still work to be done. The items below are planned for inclusion in the
upcoming 1.1 and 2.0 versions of WSRP. According to [Anuff, 2004], the 1.1 version
is scheduled to be completed in 2004, and 2.0 is likely to be ready by the end of 2005
or the first half of 2006:

– Security was not addressed in the 1.0 specification, except for allowing a portlet to
be marked to require a secure connection. The current plan is to incorporate support
for WS-Security along with guidelines on how it should be used within WSRP to
ensure interoperability among vendors. In version 1.0, it is left up to each individual
vendor to determine how to attempt to secure WSRP usage. This will potentially
lead to a number of issues when trying to interoperate between vendors and address
application security. Support for this is planned in version 2.0.

– UDDI support will allow producers to post information about their services on
UDDI servers to make it easier for consumers to search for and find their offerings
when the location of the host is not known. Version 1.1 will add simple support of
UDDI so that a producer can describe its presence as well as each of the services it
offers. This is essentially a subset of the data that is found in the service description.
Version 2.0 is expected to introduce more detailed structures to provide support for
categorisation, too.

– Portlet integration is more than merely rendering their outputs together. Indeed,
much of the value of portals lies in providing a coordinated and seamlessly envi-
ronment for the end-user to interact with distinct, otherwise detached, applications.
WSRP 2.0 plans to provide a mechanism that allows portlets to broadcast event
information to other portlets if required. The key use case for this feature is so that
portlets can post contextual information about their interaction, and other portlets
can use it to tailor the content that they generate.

These issues illustrate that portlet technology, although promising, is still in its in-
fancy. However, the interest of most portal vendors in making their offerings compliant
with the standards, suggests that portlets are here to stay.

Acknowledgment

This work was partially supported by the Spanish Ministry of Science and Technology
(MCYT) under contract TIC 2002-01442, and the University of the Basque Country
under contract UE02/A16.

References

[Anuff, 2004] Anuff, E. (2004). WSRP and the Enterprise Portal. http://www.sys-com.
com/story/print.cfm?storyid=44674.

471Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction



[Hepper and Hesmer, 2003] Hepper, S. and Hesmer, S. (2003). Introduction to Port-
let Specification. http://www.javaworld.com/javaworld/kw-08-2003/
jw-0801-portlet_p.html.

[Java Community Process, 2003] Java Community Process (2003). JSR 168 portlet specifica-
tion. http://www.jcp.org/en/jsr/detail?id=168.

[Marquis, 2002] Marquis, G. (2002). Application of traditional system design techniques to web
site design. Information and Software Technology, 44(9):507–512.

[OASIS, 2003] OASIS (2003). Web Service for Remote Portals (WSRP) Version 1.0. http:
//www.oasis-open.org/commitees/wsrp/.

[Repenning et al., 2001] Repenning, A., Ioannidou, A., Payton, M., Ye, W., and Roschelle,
J. (2001). Using components for rapid distributes software development. IEEE Software,
18(2):38–45.

[Reshef, 2002] Reshef, E. (December 2002). Building Interactive Web Services with WSIA &
WSRP. Web Services Journal, pages 2–6.

[Szyperski, 1998] Szyperski, C. (1998). Component Software. Beyond Object-Oriented Soft-
ware. Addison-Wesley.

[W3C, 1998] W3C (1998). Cascading Style Sheet (CSS). http://wwww.w3c.org/
Style/CSS/.

[W3C, 2001] W3C (2001). Web Services Description Language(WSDL) 1.1. http://www.
w3c.org/TR/wsdl.

[Wong, 2001] Wong, S. (2001). Web Services: The Next Evolution of Application Integration.
http://e-serv.ebizq.net/wbs/wong_1.html.

472 Diaz O., Rodriguez J.J.: Portlets as Web Components: an Introduction


