
A Survey of Multimedia Software Engineering

Mercedes Amor
(University of Málaga, Spain
pinilla@lcc.uma.es)

Lidia Fuentes
(University of Málaga, Spain

lff@lcc.uma.es)

Mónica Pinto
(University of Málaga, Spain
pinto@lcc.uma.es)

Abstract: Developing multimedia applications entails understanding a variety of advanced tech-
nologies; in addition, multimedia programming poses a significant challenge in terms of handling
a variety of hardware devices, multimedia formats or communication protocols. Therefore, break-
through software engineering technologies should be applied to produce reference architectures
able to support ever-changing requirements. In this paper, we first present the challenges that
designers must face in multimedia programming, and how current frameworks address them,
specially regarding the management of architectural evolution. We then show what breakthrough
approaches or technologies can be used to produce more reusable, extensible and open multi-
media systems. We focus on presenting the benefits of applying component-based software de-
velopment and application framework technologies. We also illustrate how to componentize all
multimedia functionalities and (re)use the resulting components as COTS in application frame-
works. This approach helps to add multimedia capabilities to an application without requiring
specific knowledge on multimedia.
Key Words: multimedia systems, components, framework
Category: D.1, D.1.5, D.2, D.2.13

1 Introduction

Since the early 90s, multimedia has been recognized as one of the most important cor-
nerstones in the software engineering field. Recent technologies for digital multime-
dia as well the ever-increasing popularity of the Internet and the web justify the need
to provide new multimedia applications. Some current examples include multimedia
groupware, video on demand services, video conference, electronic shopping systems
or entertainment systems.

The management of multimedia data implies the ability to create and include im-
ages, audio and movies into the applications. The ability to deliver multimedia informa-
tion interactively is changing the way in which people communicate. It is the basis for
more interactive and customizable applications since the presentation of high-quality
media makes it possible to offer users more choices more naturally. Apart from cap-
turing and presenting multimedia information, such applications need to deliver large
amounts of data, which requires the use of appropriate Internet protocols. The Internet

Journal of Universal Computer Science, vol. 10, no. 4 (2004), 473-498
submitted: 17/10/03, accepted: 2/2/04, appeared: 28/4/04 © J.UCS



makes it possible to implement synchronous real-time services to distribute high-quality
audio and video according to different interaction models.

Therefore, developing multimedia applications entails understanding and using a
variety of advanced technologies, which increases the complexity of multimedia pro-
gramming. The main requirements that should be taken into account to design, imple-
ment and maintain such environments are the following:

– Multimedia applications need to deal with many different hardware devices, e.g.,
cameras, microphones, or speakers. Due to their continuous evolution, they need to
be upgraded continuously, e.g., to manage a brand-new multimedia mobile phone,
DVD, USB camera, or network camera.

– These devices capture or present multimedia data in different formats, which makes
format negotiation between the participants necessary. The nature of multimedia
data and presentation environments will continue to evolve, e.g., low-power mo-
bile systems. As a result, we should expect developers to cope with evolving data
formats and emerging host environments.

– Distributed multimedia applications need a communication protocol to transfer data
across the network, e.g., HTTP is used for on-demand access to multimedia docu-
ments and UDP is normally used for audio, whereas dynamic media require several
continuous stream delivery protocols such as RTP or IP-multicast.

– Developers of distributed multimedia applications must understand the constraints
imposed by a delivery protocol and the impact it can have on the interaction and
presentation of information. These constraints can be bandwidth, delay jitter, or
synchronization. Furthermore, such applications should be able to adapt to the con-
tinuous variations of the data delivery rate, decreasing or increasing data resolution
as the network traffic changes.

– Multimedia applications need to share some information among remote users from
time to time. Such applications build on share spaces that enable the collaboration
between the users that are inside the same place. Designers should offer applica-
tions flexible enough to allow almost any kind of interaction among a group of
users, which is not a trivial task. User access control, customization and awareness
are common issues in these applications.

As a result, the development of multimedia applications entails the important is-
sue of handling such a variety of hardware devices, multimedia formats, multimedia
databases or communication protocols. Furthermore, multimedia application develop-
ers need to understand the peculiarities of the main application areas or at least be able to
(re)use some existing domain specific software. Traditionally, software engineers have
not spend too much time on this task. Perhaps the issue is that software engineers do
not like multimedia, and multimedia engineers are not interested in applying software

474 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



engineering principles. As a consequence, we think that few efforts have been spent in
developing highly configurable multimedia software that really facilitates adding mul-
timedia capabilities to an application without requiring specific multimedia knowledge.
To cope with this challenge, it is crucial to use advanced software engineering technolo-
gies, i.e., the implementation cannot be seen as the only activity in the development of
a multimedia system [Gonzalez, 2000]. Designers should produce reference architec-
tures and distributed environments able to support the important architectural evolution
requirements of multimedia applications. This requires using software technologies that
make it possible to produce more reusable, extensible, and open multimedia systems.

In this context, there are two main technologies, namely: Component-Based Soft-
ware Development (CBSD) [Brown and Wallnau, 1999][Szyperski, 2002] and Appli-
cation Frameworks [Fayad and Schmidt, 1997]. They are becoming essential to reduce
costs and improve reusability, flexibility and maintainability. In a component-based
platform, components act as replacement units that can be composed to build extensible,
reusable, and open systems. This technology allows to build an application by plugging
in commercial off-the-shelf (COTS) components, developed at different times, by dif-
ferent people, and with different uses in mind. However, the flexibility provided by
components should be complemented by a framework that provides an underlying ar-
chitecture [Krieger and Adler, 1998]. A framework is a reusable, semi-complete appli-
cation that can be refined to produce custom applications [Fayad and Schmidt, 1997];
thus frameworks can be considered a better approach than isolated object-oriented or
component-oriented technologies.

We have enough experience in applying component and framework technologies
to multimedia applications. MultiTel [Fuentes and Troya, 1999] is a component frame-
work that is particularly well-suited to develop multimedia applications; later, we de-
veloped CoopTel [Pinto et al., 2001a], which is an aspect-component framework for
collaborative virtual environments (CVEs) that combines the benefits of components
and advanced separation of concerns [AOSD, 2004][Kiczales et al., 1997]. From our
experience, component, aspect and framework technologies are particularly well-suited
to address the strong architectural evolution requirements of multimedia applications.
However, to be able to offer multimedia COTS components, we first had to deal with
existing multimedia application frameworks. We used the Java Media Framework, or
JMF for short [de Carmo, 1999], and Lotus Sametime [IBM, 2003], which are two of
the most widely used multimedia frameworks for Java. Our first aim was to componen-
tize them and reuse the resulting components inside MultiTel and CoopTel.

The rest of the paper is organized as follows: we present a short survey of multime-
dia APIs and frameworks [see Section 2]; then, we go into deeper details, and report on
JMF and Sametime [see Section 3]; later, we report on how to componentize JMF and
Sametime [see Section 4]; finally, we present our conclusions [see Section 5].

475Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



2 Related Work

Currently, there is a plethora of solutions for multimedia software development by
means of APIs, SDKs, or application frameworks. Well-known examples include the
Java Media APIs by Sun Microsystems [Sun Microsystems, 2004a], the Windows Me-
dia SDK by Microsoft [Microsoft, 2004] and the Digital Media Library by Silicon
Graphics [Silicon Graphics, 1996]. Other approaches consist of software products that
offer a complete solution for programming basic multimedia services as well as sophis-
ticated multimedia services like collaborative applications, e.g., IBM Lotus Sametime
[see Tab. 1].

Java Media APIs provide a unified, non-proprietary and platform-neutral solution
for adding multimedia capabilities to Java applications. Low-level APIs, such as 2D,
3D, Advance Imaging, Image I/O, and Sound and Speech, support the integration of
audio and video clips, animated presentations, 2D fonts, graphics, images, speech in-
put/output, and 3D models. More advanced APIs, such as the Java Shared Data Toolkit
(JSDT) in conjunction with the Java Media Framework (JMF), provide high-level sup-
port to develop collaborative and multimedia applications. JSDT can be used to create
shared whiteboards, chat environments, remote presentations, shared simulations, and
to distribute data in workflow applications [see Section 3.1 for an overview of JMF].

Microsoft offers a similar set of SDKs. One of them is the Windows Media Tech-
nology, a set components that are suited to build multimedia applications in Windows.
Some of their capabilities include: (i) the Player Component, which provides a program-
ming interface for rendering a variety of network streaming and non-streaming multi-
media formats; (ii) the Format Component, which can be used to read, write and edit
files in Windows Media Format, both for multimedia playing and content creation; (iii)
the Encoder Component, which supports streaming delivery, together with the automa-
tion of the local and the remote encoding process; and (iv) the Services Component,
which is used to configure, manage, and administer Windows Media Servers. Another
important Microsoft SDK is DirectShow, which offers an architecture to capture and
playback multimedia streams using Windows Driver Model devices in a variety of for-
mats, e.g., MPEG, AVI, MP3, WAV. Sample applications include DVD players, video
editing applications, format converters, MP3 players, and digital video capture applica-
tions. Since DirectShow is based on the Component Object Model (COM) [Box, 1998],
multimedia programmers can develop their own COM components or (re)use compo-
nents provided by DirectShow.

Microsoft provides a set of products for adding collaborative features to applica-
tions. The Collaboration Data Objects technology is appropriate for building messag-
ing applications. NetMeeting supports standardized data, audio and video conferencing,
Windows application-sharing and shared whiteboards. Furthermore, Microsoft Win-
dows Messenger includes an API to register and run new peer-to-peer applications for
Messenger clients. The main drawback of these SDKs is that the resulting components
can run only in Windows, which reduced drastically their (re)use in other platforms. In

476 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Java Media APIs - 2D, 3D, Advanced imaging and image I/O APIs for graphic, image and visual

environment creation and manipulation

- Sound and speech APIs for audio playback, capture, mixing, MIDI sequencing, MIDI

synthesis and speech recognition

- Shared data toolkit to add collaboration features to applets and applications

- The Java Media Framework for ...

- Media files and live stream capture and presentation

- Media conversion

- Video and audio conference using RTP

- Multimedia data management reference architecture

- Cross-platform technology

Windows Multimedia

Technologies

- Windows Media SDK and Windows DirectShow SDK to capture, edit and play back

Windows media-based content and multimedia streams

- DirectX, OpenGL, WIA and GDI APIs to add graphics, video, 3D animation and sound

to Windows applications

- Windows messaging and collaboration technologies to support collaborative capabilities

Digital Media Library - Audio and video files and live stream creation

- Presentation of audio and video

- Encoding of audio and video

Sametime Toolkit - Sametime Java Toolkit for ...

- Login, basic awareness and messaging

- Video and audio conference using IP

- Chats, application sharing and shared whiteboard

- Sametime Community Server Toolkit for adding new real-time services to Sametime

Table 1: Related Work in Multimedia Development Approaches

addition, multimedia programmers are supposed to have broad technical skills on low-
level multimedia and Windows programming. Nevertheless, these Microsoft products
cover the most important issues of multimedia programming.

The Digital Media Library encompasses a set of APIs for data format description,
live audio and video input/output with built-in conversion capabilities, and some fa-
cilities to work with multimedia files. Silicon Graphics also supplies end-user desktop
media tools for capturing, editing, recording, playing, compressing, and converting au-
dio data and images. From the point of view of code reuse and modularization, using

477Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Digital Media implies programming using the rather old-fashioned C language.
IBM Lotus Sametime consists of a family of web-based collaboration products that

provide real-time meeting services with awareness, screen-sharing capabilities, and IP
audio and video conferencing. Sametime can be used to develop custom multimedia
applications since it includes two kinds of application development toolkits, namely:
the client and the community toolkits. Client toolkits enrich client applications with
collaborative and real-time capabilities; the community toolkit allows writing and in-
cluding new Java server applications into the Sametime server. Although Lotus claims
that these toolkits cover nearly all software development platforms, i.e., COM, Java,
and C++, Sametime APIs are not prepared to be (re)used inside component platforms
as stand-alone components [see Section 3.2 for an overview of Sametime].

These technologies provide a similar set of toolkits or APIs for multimedia pro-
gramming. To provide a deeper insight into the steps involved in the development of
multimedia applications, henceforth we focus on two of them, namely: JMF and the
Sametime Java Client Toolkit. They both use Java and attempt to provide powerful ab-
stractions and mechanisms to ease the development of multimedia services. However,
JMF is a low-level API that allows programmers to capture and configure hardware de-
vices, encode and transmit media streams, and so on, whereas the Sametime Java client
toolkit can be considered a high-level API that provides a set of components that use
the Sametime server functionality and hides low-level details.

3 Application Frameworks for Multimedia Software Development

Usually, multimedia services must support heterogeneous users since applications must
be deployed across different software platforms. Therefore, using Java helps avoid plat-
form dependencies. JMF and Sametime are two examples of object-oriented frame-
works written in Java that can be used to develop portable multimedia applications.
In this section we present an overview that focuses on how easy to use they are and
what multimedia requirements they support. We also present a comparison regarding
the extensibility and adaptability of each framework.

3.1 Overview of JMF

The Java Media Framework API (JMF) is an application programming interface for
incorporating audio, video and other time-based media into Java applications and ap-
plets [Sun Microsystems, 2004b]. JMF was Sun’s answer to the demands for multime-
dia application frameworks in Java. It raised important expectations from the beginning,
and has been used extensively. It is more than a simple API since it offers an application
framework that provides a frame architecture to model basic multimedia functionality.
Therefore, incorporating multimedia processing into Java applications should be easy
with JMF, but, unfortunately, the complexity of multimedia software development is
similar to other approaches for non-experts. We think that this is due to two reasons:

478 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



1. It deals with specific multimedia management only, and it is not appropriate to con-
struct complete multimedia applications, e.g., e-learning environments. JMF sup-
ports the capture and transmission of multimedia data between participants only;
tasks such as user authentication, media negotiation, or service scheduling need to
be programmed from scratch.

2. It covers all the issues related to the capture, transmission and presentation of mul-
timedia data at a low level of detail. Although providing a complete framework
permits a more accurate development, complexity increases enormously. For in-
stance, JMF developers do not work with objects representing real world devices
like cameras, microphones or speakers, as we would expect; instead, they have to
deal with objects such as data sources, players and processors, which need to be
combined to capture and reproduce multimedia data.

Therefore, the core abstractions in the JMF programming model are data sources,
players and processors, namely: a data source encapsulates the media streams captured
for any kind of input device supported by JMF, e.g., video/audio files, cameras, micro-
phones; the player reproduces media streams by using the appropriate output devices,
e.g., speakers, video panels; processors allow to process multimedia data before it is
rendered, e.g., format conversion, enconding, decoding. [Fig. 1] shows the relationships
among these elements. First, a datasource object gets the data stored in a video/audio
file [label 1]. Next, a processor allows to demultiplex the stream to separate the audio
and video tracks in the file (demultiplexer plug-in), to add effects (effect plug-in), to
encode it (codec plug-in), and to mix the audio and video tracks again (multiplexer
plug-in) [label 2]. The processor can reproduce the stream or either generate a new
datasource that will be the input for another processor or player [label 3] . Finally, this
media stream can be either reproduced by a local player or can be sent through the
network to a remote player [label 4].

In the second case, JMF offers the RTP API for the distribution of real-time streams
using the Real-Time Transport Protocol (RTP) [Schulzrinne, 1996]. RTP is a transport
protocol designed to be used by applications with real-time requirements. It provides
information about the format and the time of the data to be transferred, and allows the
correct reconstruction of data at the target. Furthermore, it offers control information
about the quality of the current transmission and the participants engaged in a session
by means of the RTCP protocol (Real-Time Transport Control Protocol). The rest of
this section describes JMF interfaces and how to build a multimedia service.

3.1.1 Device Capture

The first step in any multimedia application is to capture multimedia devices. JMF pro-
vides resource managers to deal with the registration and capture of real-time multime-
dia devices. The JMF resource manager is implemented by a CaptureDeviceManager

479Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Figure 1: JMF Presentation and Processing

component that offers methods to register new devices (addDevice()) and to provide
information to capture them (getDevice() and getDeviceList()) [see Fig. 2].

The use of the JMF resource manager has the advantage that all the devices in-
stalled in the user machine that are supported by JMF are directly available to JMF
programmers. JMF supports many different devices, specially in Windows. In addition,
JMF provides the JMFRegistry, which is a stand-alone Java application to register new
devices, data sources, or plug-ins. This registry is crucial to cope with the continuous
evolution of hardware devices. However, the JMF resource manager also entails some
drawbacks regarding the information a software developer needs to know to capture
a device. Using the getDeviceList(format) method in the CaptureDeviceMan-
ager object, developers need to specify exactly the format of the device to be captured.
This may lead programmers to cumbersome errors, e.g., if there is a camera installed,
but a format that is not supported by that camera is requested, the application will not
capture it. In addition, JMF allows to capture a device by using its unique device iden-
tifier (getDevice(devName)), but this solution is platform-dependent because device
identifiers change from one system to another, which reduces the reusability of applica-
tions in different platforms. For instance, vfw://0 may refer to a camera in Windows,
whereas the same device is referred to as sunvideo://0 in Solaris.

Anyway, interaction with the JMF resource manager is not sufficient to have access
to the multimedia data captured by a device. This is due to the fact that JMF does not
provide an atomic method to capture a device. Instead, applications must invoke several
methods that create a set of chained components, which increases the complexity of
the capture process and requires more expertise. [Fig. 2] shows the JMF device capture
process in detail. Once one knows the format of the device to be captured, the first step
is to use the CaptureDeviceManager object to get the list of devices with that for-
mat. By invoking the getLocator() method on one of the CaptureDeviceManager
structure elements returned by the JMF resource manager, we obtain a MediaLoca-

tor that allows to create a DataSource object from which multimedia data is read.

480 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Figure 2: JMF device capture process

Optionally, if the media format has to be processed, a Processor and a new Data-

Source need to be created. This code gives an idea of how vast the user’s knowledge
of multimedia programming has to be, and in particular regarding JMF API classes, to
be able to capture a device, which should be a simple task.

3.1.2 Format Configuration and Negotiation

If we need to change the format of the data that is being captured from a device, we
need to add a Processor component that makes the new coding. JMF supports an
extensive list of audio and video formats, e.g., AIFF, GSM, MPEG Layer II Audio, Sun
Audio, Wave, and MPEG-1 Video. With respect to the media that can be transmitted
through RTP, some examples include G.711, GSM mono, G.723, MPEG Layer I, II and
mono DVI for audio and JPEG, H.261, H.263 and MPEG-I for video. Anyway, it is
not realistic to expect that all the participants that may join a multimedia application
will transmit data in the same or a directly compatible format. Each participant may
have devices from different manufacturers or may have different requirements regarding
the available bandwidth or even user preferences. Thus, data format negotiation is a
significant issue in multimedia programming.

Although JMF allows to add new codecs as plug-ins, its architecture does not ad-
dress how the different participants can negotiate data formats. If we assume that RTP
is the communication protocol used, then every participant can know the transmission
format of any other participant or can change it if a problem is detected. But how can
participants negotiate the format? How do they know whether other participants will
be able to reproduce the data they are sending? JMF says nothing about this, so the
problem remains unsolved.

481Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Figure 3: JMF architecture for multimedia services

3.1.3 RTP Media Transmission

The software architecture for multimedia data delivering proposed by JMF is based on
the RTP protocol, whose definition is provided by the JMF RTP API. This API enables
you to open RTP sessions for sending and receiving RTP streams that are then repro-
duced using a JMF player. In addition, the session can be monitored using the stream
statistics that are sent through the RTCP protocol. [Fig. 3] shows the architecture for
RTP multimedia services. It is shared by all kinds of multimedia services transmit-
ting real-time media data, such as video conference and video on demand services.
The main steps required to create an RTP session and initiate the transmission of RTP
streams are outlined. After capturing the participating devices, the first step is to ini-
tiate the transmission by means of a SessionManager [label 1]. This class is a local
representation of an RTP session and performs media transmission operations for each
participant in the service. It maintains information about the participants and controls
the input and output data streams. Each participant sends and receives RTP data packets
and RTCP control packets through this component. Then, a SessionManager creates a
stream called SendStream and connects it to the device output DataSource (label 2 in
[Fig. 3]). At the target site, the service must wait for an event that provides information
about input data from a new participant. When this occurs the SessionManager cre-
ates a stream called ReceiveStream and a Player component for data presentation
[label 3].

Although everybody agrees in that RTP is an appropriate protocol for multimedia
data transmission, it is not the only option available. Unfortunately, JMF lacks suffi-
cient flexibility to use other communication protocols for transporting multimedia data.

482 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



JMF does not offer a common interface modelling the connections between the partic-
ipant of a service, and therefore the networking part of JMF cannot be extended with
new communication protocols that may appear in the future, nor can designers choose
among protocols that offer, for instance, different quality of services. Consequently,
services that require the use of proprietary protocols or new ones, for instance, have to
implement them from scratch..

3.2 Overview of Sametime

Lotus Sametime is a family of collaboration products that provides a set of collaborative
tools and services such as real-time awareness, screen-sharing capabilities, and live
audio and video inside a community of users. Its architecture includes a server and a
set of client applications that enable real-time meetings over an intranet or the Internet.
An important contribution of Sametime is that it provides a set of APIs that allows
multimedia programmers to use Sametime services in in-house applications. We focus
on the Sametime Java Client API [IBM, 2004], which provides a collection of Java-
based interfaces that are used for accessing all the functions and services provided by
Sametime. [Fig. 4] shows the services provided by the Sametime Java API and how
they are organized, namely:

Sametime Community Services: These include sending text and/or binary messages
between users during a chat session (Instant Messaging Service or IM), or just han-
dling one-way messages (Announcement Service). The Awareness Service allows
to know the status of objects such as users, groups, and servers. The Community
Service is the core service used to log in and out from a Sametime server. Fur-
thermore, the Community Service provides the ability to handle messages from the
administrator to change your status and privacy in the community.

Meeting Services: They provide collaborative services like application sharing, shared
whiteboard, and IP audio and video. The Application Sharing Service (AppShare)
allows a user to share a local application with remote users. In addition, remote
users are able to view and/or control the shared application. This service is used
to include on-line editing, remote control, software demonstrations, and presenta-
tions. The Whiteboard Service allows a set of users to view and annotate contents
in a shared whiteboard by using a basic set of tools for drawing lines, boxes, circles,
and text. The Streamed Media Interactive Service provides two-way communica-
tion via audio and video. This service encompasses all the functionality needed to
participate and control two-way or multiple-way IP audio and video conference.
The Streamed Broadcast Media Service allows to receive audio, video, and data
content produced by an interactive media client. This service allows to view and
listen to the information only and uses multicast whenever possible, i.e., it is not
interactive, which makes it more scalable.

483Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Figure 4: The Sametime Java Client and Server Architecture

Community UI Components: They provide a standard user interface for the Com-
munity Services functionality, e.g., user awareness lists or chat windows. These
components allow a non-expert developer to listen to and display events from Com-
munity Services components without having to program a new user interface. The
problem is that it cannot be modified; thus if we want a different one we have to
program it from scratch, including the handling of the proper input events.

When developing a Sametime-based application we have to take into account that
the core abstractions are services, which are defined as Java interfaces and are imple-
mented by a class. Service invocation in Sametime is always asynchronous, i.e., event-
based. Sametime applications use the standard delegation-based Java event model, and
register themselves as listeners for service events. The Sametime API also provides
classes and attributes for representing connected users, groups of users and sessions in
the Sametime server. An important feature is that it provides virtual places to group
users who wish to meet and collaborate. A Sametime virtual place is an abstraction of a
meeting place which users enter to collaborate. Therefore, collaborative activities pro-

484 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



vided by Meeting services, such as application sharing or live audio and video, must
happen in Sametime virtual places. This architecture unifies the Meeting and Commu-
nity Services in Sametime, since it binds the activities provided by the Meeting Services
with a virtual place provided by the Places Service. Thus, the Places service allows cre-
ating places and adding meeting activities to them.

The main advantage of using Sametime is that it is a high-level programming API
with which it is easy to develop multimedia applications. The API undertakes all low-
level details of capturing devices and transmitting media streams in a transparent way.
Developers just need to learn how to use the appropriate services. It is thus well-suited
for non-expert developers in multimedia programming. However, the API requires skills
in Java programming for managing events and Java AWT components. One of the cur-
rent problems of Sametime-derived applications is that the graphical interfaces provided
by Sametime services are based on the rather old Java AWT package.

Although the high-level abstractions that Sametime provides help keep developers
away from specific media details, they prevent to control the devices, the formats and
the transmission process. Sametime simplifies capturing multimedia devices by provid-
ing atomic methods, but it does not allow to configure them or to add new devices.
Furthermore, the media formats supported are limited to both the G.711 and the G.723
audio formats and the H.261 and H.263 formats for video transmission using RTP. The
API does not provide any service for changing or negotiating media formats. Depend-
ing on the bandwidth requirements, the audio format is changed by accessing the server
management tool, and the resulting configuration is maintained for all transmissions.

Once the corresponding devices are captured and audio and video streams are ini-
tiated, the developer is released from synchronizing audio and video streams, which is
delegated to the Sametime server. In Sametime, the input video stream is always from
the same user who is transmitting on the incoming audio stream, which means that the
video player displays the user who is currently speaking and nobody else. Again, the
developer’s task is simplified, but it is limited to receiving from one source at a time.
For instance, it is not possible to display a user who is not speaking or to multiplex
several audio and video streams, which is a major drawback.

3.3 Comparing JMF and the Sametime Java Client Toolkit

In this section, we present a brief comparison between JMF and Sametime services
regarding how extensible, interoperable, easy to evolve and usable they are. We hope
that the results of this evaluation may guide programmers to choose the most suitable
API in each case.

Extensibility: Can new devices be added? Can new data formats be supported by
adding new codecs? Can new communication protocols for real-time media trans-
mission be added? JMF can be extended so as to accommodate new devices, data

485Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



sources and plug-ins such as codecs, effects, multiplexers and demultiplexers; how-
ever, Sametime offers a predefined set of services that cannot be extended. None of
them allow to use communication protocols other than RTP. Therefore, designers
must choose between high-level multimedia programming with reduced configu-
ration possibilities, i.e., Sametime, or tedious low-level multimedia programming
with adequate configuration options, i.e., JMF.

Interoperability: Both JMF and Sametime support cross-platform deployment since
they are Java-based solutions, but some limitations exist. The implementation of
JMF 2.1.1 supports a performance pack for both Solaris, Linux and Window plat-
forms; in other cases, JMF provides a cross-platform version, which does not im-
plement any multimedia device. This makes it impossible for applications running
on these platforms to capture and transmit multimedia data if software developers
do not provide their own device implementations. Sametime is even more restric-
tive: although Community services such as Awareness or Instant Messaging can
be invoked from any platform, Meeting services, which support multimedia appli-
cations, can only be run on Windows. Even though the API is written mostly in
Java, there are two small native modules that connect with the operating system to
capture live audio and video, which are provided for Windows only. In addition,
Sametime can deal with only a small set of manufacturer cameras and sound cards.

Ease to evolution: We define this property as the ability of an API to be extended
and evolve without affecting applications developed with previous releases. The
interfaces defined in the specification of JMF have remained stable since 1999.
Since then, Sun has been upgrading the API implementation, including support
for new devices and JMF plug-ins. From our experience using Sametime, we can
conclude that the applications that were developed using Sametime 1.x are totally
incompatible with Sametime 2.x. The evolution between 2.x and 3.x releases was
smoother. Anyway, an application using version 2.x may not work properly with
Sametime 3.x. We are not sure what is going to happen with future releases.

Usability: The usability of a framework does not depend on its complexity only, but
also on the documentation provided. Even though JMF is a low-level complex API,
it provides enough documentation and working examples to make JMF one of the
most widely used multimedia APIs. However, its complexity makes extending it a
dreadful task. Contrarily, Sametime is a high-level API that hides low-level details
and makes developing a multimedia application easier, but it is poorly documented.

Last, but not least, we should mention that JMF is a freeware solution while the
Sametime Java API requires purchasing the Lotus Sametime family of products.

486 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



4 JMF, Sametime and Component-Based Software Development

On account of the previous sections, the reader might well have realized that developing
a multimedia service is not easy. In addition to the implicit complexity of distributed
applications, developers must learn how to manipulate multimedia data, configure hard-
ware devices, or even connect user hardware and software devices according to different
interaction patterns. Neither JMF nor Sametime are component-based technologies. It
is not possible to add a multimedia service from any commercial multimedia product
to our application as an external plug-in. This means that basic multimedia services are
not available to be (re)used as black-box components. As a consequence, software de-
velopers have to deal with low-level details of the API. We consider that the main goal
of multimedia software engineering is to produce highly (re)usable multimedia com-
ponents ready to be used in a certain application. Developers of multimedia software
should be able to search and (re)use such components in the component marketplace.
Component-based software development may encourage the (re)use of multimedia soft-
ware components even by non-experts in this field.

In this section, we report on our experience in the development of component-based
multimedia and collaborative applications by using JMF and Sametime to implement
simple and advanced multimedia services as stand-alone components. These compo-
nents were designed for the MultiTel and CoopTel component frameworks.

4.1 Combining JMF and the MultiTEL Framework

MultiTEL (Multimedia TELecommunication services) is a complete development so-
lution that applies component and framework technologies to multimedia and collab-
orative applications [Fuentes and Troya, 2001]. It defines both a compositional model
implemented as a composition platform, and an application framework. The former pro-
vides separation of concerns between computation and coordination by encapsulating
them into two different kinds of entities. The compositional units of the model are com-
ponents that encapsulate computation and connectors [see the circles in Fig. 5] that en-
capsulate the coordination protocols specified by state transition systems. A component
is able to receive messages and react to them by performing some internal computa-
tion that usually terminate by throwing an event that is handled by a connector [see the
dotted lines in Fig. 5]. Connectors interact with components by sending messages. By
applying the separation of concerns among computation and coordination, MultiTEL
increases the (re)use of both kind of entities in different contexts.

The connection between components1 and connectors is established in MultiTEL
at run time, which provides a powerful mechanism for late binding among them. This
� In this context, we do not distinguish between components and component instances, so we use

the term component to mean a set of classes assembled to be deployed together and executed
as a single software unit.

487Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Figure 5: MultiTEL architecture for multimedia services

is very useful for implementing multimedia applications in which components evolve
over time.

MultiTEL components and connectors are organized in three subsystems: the ser-
vice subsystem that models the multimedia service logic; the multimedia subsystem that
captures multimedia devices and establishes the connection among them; and the net-
work subsystem that encapsulates the communication protocol and performs the trans-
mission of data between participants. In this section, we focus on the multimedia and
network subsystems.

The architecture of the multimedia and network subsystems contains the main com-
ponents and connectors necessary to capture and transmit multimedia data [see Fig. 5].
MultimediaDevice components are atomically created by means of a ResourceM-

anager as they are requested by an AllocCont connector that knows which devices
have to be captured for each user in the service. In addition, for each multimedia device,
the multimedia subsystem creates a ContCom connector to control the device. Once de-
vices are captured, user connections are established through the ConnectC connector
according to the service logic defined by the service architecture. After this, the system
is ready to initiate the transmission and reception of multimedia data. During transmis-
sion, real-time media streams are captured from producer devices and are distributed
to be reproduced by target devices. In MultiTEL, the communication protocol used to
transmit the data is encapsulated in a VirtualConnection component. By changing
the implementation of this component it is possible to adapt the communication proto-
col, e.g., RTP, UDP over IP multicast, without an impact on the other components and
connectors in the application.

Once MultiTEL is described, we can illustrate how to use JMF to implement its
components. It is not difficult to realize that it can be useful to implement both the
MultimediaDevice and the VirtualConnection components [see Fig. 3 and 5].

488 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



4.1.1 JMF-based MultimediaDevice Implementation

In MultiTEL, the addition of a new device implies the implementation of a Multi-

mediaDevice component. This component has to implement the ProducerDevice

or the ReceiverDevice interfaces depending on whether we need to capture data
from devices or render information. As an example, we report on how to implement a
component called JMFCamera that allows to capture information from a new camera
device. This component extends the MultiTEL Component base class and implements
the ProducerDevice interface [see Fig. 6]. The main methods in this interface are
the setFormat() and the getFormat() methods for configuring and consulting the
format of the data to be captured, the initialize() and the release() methods
for preparing the camera to transmit or to release it, the startTransmission() and
the stopTransmission() methods to initiate and stop the capture of data, and, the
read() method for reading video frames from the camera.

To use JMF to implement the ProducerDevice interface we encapsulate all the
JMF objects needed to capture multimedia data into the JMFCamera component [see
Fig. 6]. Note that we hide the complexity of JMF since it is encapsulated into the Mul-
tiTEL framework. Thus, software developers who use it just need to know a few things,
for example, that a multimedia device has to be initialized before using it, that the for-
mat of the multimedia data captured can be changed or that multimedia streams can
be read. They need not care of low-level and complex concepts such as data sources,
processors, or media locators.

[Fig. 6] also shows part of the implementation of the JMFCamera component. Be-
fore using the camera it has to be initialized, which implies instantiating a set of classes
[see Fig. 2]. The implementation of the initialize() method encapsulates the steps
needed to capture a JMF device [see lines 1-8 in Fig. 6]. If the video format is known
[see line 1], the JMF resource manager is then consulted to obtain the list of devices
that support this format [see line 2]. Once the first such device is got [see line 3], a
media locator is created [see line 4] to feed a data source [see line 5]. Then, a processor
is created [see line 6] to process the data that the device captures, which is the input
to a new data source [see line 7]. Finally, this data source instance is connected to the
source described by the media locator [see line 8].

Following the MultiTEL compositional model, the initialize() method throws
an initialized() event to notify that the device was initialized when it finishes.
This event is captured by the ContCom connector [see Fig. 5], which changes its state
according its coordination protocol. Since this connector controls how the device works,
it waits in the new state until an event initiating the transmission is caught. On recep-
tion of this event, the connector sends the startTransmission() message to the
JMFCamera component. Method startTransmission() [see Fig. 6] starts the trans-
mission [see line 11] of the first stream of data captured [see line 10]. This method
throws a readyToSnd() event [see line 12] that is caught by the ContCom connector.
The data is captured from the device when the ContCom connector sends the read()

489Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Figure 6: Implementing a JMF-based MultiTEL Camera

message to the component. This method blocks and reads an array of bytes from the
data stream selected [see line 13]. Finally, the method throws the putFrame(byte[])
event with the array of bytes as a parameter [see line 14]. Note that the MultiTEL frame-
work specifies that media frames are captured as an array of bytes. This is the reason
why we use the JMF PullDataSource class [see Fig. 6], which is a subclass of the
DataSource class that gives us the required behavior by blocking and reading data
from the device streams as byte array.

Once implemented, the new device has to be registered with the MultiTEL Re-

sourceManager. The resource manager hides the device platform dependencies by
providing a unique identifier and a common interface for each device type. [Fig. 7]
shows how the AllocCont connector, which is part of the MultiTEL multimedia sub-
system, asks the resource manager to capture devices by means of their unique identi-
fiers (“camera” and “speaker”). Thus, multimedia applications need not know the actual

490 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Figure 7: MultiTEL Resource Manager

implementation class; it only has to invoke the methods of the common interface im-
plemented by the device component. Only the local resource manager knows the imple-
mentation class, which is stored in the ResourceInfo structure. Thus, the components
that model the devices join the service at run time by means of a plug&play mechanism.

4.1.2 JMF/RTP-based VirtualConnection Implementation

It is not difficult to realize that the MultiTEL VirtualConnection component is sim-
ilar to the SessionManager class in JMF [see Figs. 3 and 5]. The VirtualConnec-
tion component is local to each participant and encapsulates all of the connections
that use the same communication protocol, similar to the JMF SessionManager class.
The only difference is that the latter is specific to the RTP protocol, whereas the former
is general enough to encapsulate any communication protocol. Anyhow, encapsulating
the RTP protocol as a VirtualConnection component is not easy because the classes
to capture streams and the classes to transmit it over RTP are highly coupled. That is to
say, a DataSource that represents a device stream is an input parameter to the cre-

ateSendStream() method in the SessionManager class, cf. the following snippet,
which is part of the implementation of a MultiTEL VirtualConnection component
to encapsulate the JMF SessionManager class:

// Create RTP Session
SessionManager rtpsm = new RTPSessionMgr();
...
// Create SendStream

491Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



SendStrem st = rtpsm.createSendStream(pds, 0);

where pds is an instance of the PullDataSource object created by a JMFCamera [see
Fig. 6]. Since JMF does not offer a way to convert an array of bytes to a DataSource
object, we need to adapt MultiTEL to use the JMF RTP API to implement the Virtu-
alConnection component. Anyway, due to the separation of concerns between com-
putation and coordination encouraged by the MultiTEL compositional model, changes
required are located in a few components and connectors, namely:

– The implementation of the JMFCamera component needs to be changed so that
frames are not represented as an array of bytes, but as a DataSource object. We
emphasize that the ProducerDevice needs not to be changed, but the implementa-
tion of the component. The reason is that the frames that are captured are provided
by throwing an event instead of returning them with the read() method. Thus,
software developers just need to change the implementation of the read() method
[see Fig. 6] to throw an event that has a parameter of type DataSource or Object
instead of an array of bytes.

– The interface of the ContCom connector needs to be changed to be able to catch the
new kind of events. This is easy since the coordination protocol that the connector
encapsulates remains the same; only the type of the parameter of an event changes.

– Furthermore, the interface of the VirtualConnection component needs to be
changed to receive a DataSource instance. This is needed because this compo-
nent encapsulates an instance of the JMF SessionManager object that needs a
DataSource to create the send stream.

Therefore, there are a number of situations in which JMF is not flexible enough to be
completely and transparently encapsulated into COTS components, and some of its fea-
tures need to be made visible. This results in an important drawback, since the (re)use
of these components in different contexts decreases since they are JMF-dependent. Fur-
thermore, after creating an RTP SendStream object from a data source, MultiTEL
loses control over the transmission of data, which relies exclusively on the JMF classes.
These problems arise because the interaction model defined by the JMF RTP API is
incompatible with the interaction model of components and connectors in MultiTEL.

Despite these limitations, the integration of JMF with the multimedia and network
architectures of MultiTEL results highly appropriate and entails important benefits for
both MultiTEL and JMF, namely: MultiTEL benefits from using the RTP protocol,
which needs not be implemented from scratch; JMF benefits from the services offered
by the MultiTEL service architecture, which allows to implement a complete multi-
media service, not just to capture and transmit multimedia data; furthermore, software
developers can use JMF without the inconvenience of learning such a complex API
since it has been componentized into the MultiTEL framework.

492 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



4.2 Combining Sametime and the CoopTEL Framework

CoopTEL [Pinto et al., 2001b] is a component-aspect middleware platform that derives
from MultiTEL and separates other cross-cutting properties, in addition to the coordi-
nation aspect. CoopTEL implements a component-aspect model in which components
and aspects are first-order entities that can be weaved at run time. Components encapsu-
late the functional behavior, and aspects model extra-functional features present along
multiple components. Aspects can change or evolve independently from components.
Components communicate by sending messages and/or throwing events, and aspects
are evaluated during component communication. Another important feature is that the
architecture of the applications is separated from the constituent components, which
makes both components and aspects independent from each other and autonomous.
Therefore, the information about connections between aspects and components is not
hard-wired, but resides on a middleware layer. It also stores the data shared among
several components, which is defined as application specific properties. Properties help
define truly independent software components and aspects, putting any kind of data
dependency as a shared property.

CoopTEL also defines an application framework for developing collaborative vir-
tual environments (CVE) for the web. CVEs are distributed applications that integrate
local and remote resources, i.e, users, documents, collaborative applications, in a shared
space. The shared space of a CVE is divided into room components, which are con-
tainers of other CVE resources, e.g., documents or applications, and help organize the
shared environment hierarchically, which provides a reference for user navigation. Each
room component maintains a state that is retrieved by a persistence aspect when the
component is instantiated, which occurs when a user enters the room. The application
framework also provides several awareness components that supply information about
which users are connected to the application and their location, i.e., in which room, or
status, e.g., “idle”, or “do not disturb”. This information is very useful in a collaborative
environment because we can easily locate or interact with other users.

The application framework defines an open-ended list of shared components, e.g.,
a clock, a database, or a software note. The components that model collaborative tools
such as the audio or video conference component, a shared whiteboard component or
a windows application sharing component were implemented using the Sametime Java
toolkit. Next, we report on our integration of the Sametime API in CoopTEL.

4.3 Sametime-based Component Implementation

In CoopTEL, the addition of Sametime collaborative components implied wrapping
different Sametime stand-alone applications as CoopTEL components. Our goal was to
include the resulting CoopTEL components in CVE applications as resources of a room.
We hope this can serve as a practical example of how to address componentization of
coarse-grained multimedia frameworks.

493Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



Sametime Java Toolkit

+setSpeakingMode()

+getVideoRecorder()

+getAudioRecorder()

+grabMicRequest()

+getAudioPlayer()

+getVideoPlayer()

+initAudio()
+initVideo()

StreamedMediaInteractiveService

+loginByPassword()

CommunityService

+createPlace()

PlacesService

PlacesListener

LoginListener

CoopTEL

+activityAdded()
+entered()

AVConference

-audioController : AudioController
-videoController : VideoController

+isloggedIn()
+init()

SametimeComponent

-session : STSession
-place : Place

Component

<<use>>

<<use>>

<<use>>

Figure 8: Implementation of a Sametime-based Component for Audio and Video Con-
ference

During the design and implementation of these components, we realized that there
are several steps regarding the Sametime server connection, initialization and service
invocations that must be included by any Sametime-based application. This common
functionality was finally included in a class called SametimeComponent that inherits
from the Component class, which encapsulates the basic functionality that any Coop-
TEL component can offer [see Fig. 8]. The SametimeComponent constructor is in
charge of creating a session in the Sametime server, which is encapsulated in a STses-
sion object, and loading the components that allow using Sametime services. Since
there can be more than one Sametime-based component running at a time and they
have to share the same STSession object to access Sametime services, this object is
stored in the platform as an application property. The first Sametime component that
is created when the multimedia service is launched opens a session in the Sametime
server and loads the Sametime service components. Immediately after this component
stores the session object, successive Sametime-based components will get this object.
Sametime component can log into a Sametime community and use the Community Ser-
vice interface (CommunityService) by means of this session [see Fig. 8]. A client can

494 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



log in by providing a user name and a password or anonymously; anyhow, user authen-
tication cannot be considered part of the SametimeComponent functionality since it is
modeled as an aspect. Thus, we use the Aspect Factory service provided by CoopTEL to
wrap the user login as an aspect. After a user introduces his or her login and password,
the Login aspect stores both strings as an application property; later the Sametime-

Component component will retrieve this information from the platform. This way, we
can configure a multimedia application to have authenticated access or not by simply
adding or removing the Login aspect. Furthermore, both the Login aspect and the com-
ponent to which it is applied can be (re)used separately since there are no dependencies
between them. Other aspects that can be applied to this component are the awareness
aspect that informs about new users, the access control list aspect that allows the owner
of a collaborative application to define who can join it, the access control aspect that
verifies if a user has permission to access an application, and the persistence aspect that
stores and retrieves the state of a collaborative application.

To receive login events from the login service, the SametimeComponent class is
registered as a login listener and implements the LoginListener interface. Since col-
laborative applications require the use of meeting services, this component creates and
enters a virtual place in which collaborative activities such as shared whiteboard or live
audio and video conference can be performed (it uses the PlacesService interface
[see Fig. 8]). Again, the component is registered as a listener to receive events thrown
by the Places service after being notified about a successful place creation.

When a CoopTEL component is created in the context of a room, it throws an event
to notify remote instances of the same room that a new application has been started. The
room component displays a notification component to inform the users in that room
that a new collaborative application is running and inviting them to collaborate. For
Sametime-based components, this event contains the identifier of the Sametime virtual
place in which collaborative activities were added. If a user accepts the invitation to join
this Sametime application, he or she will enter the room and will be able to participate
in joint activities.

By encapsulating the common functionality of Sametime-based applications into a
class we avoid rewriting it for every different Sametime-based collaborative component.
Thus, to develop a new collaborative component we have to implement a class that
inherits the SametimeComponent class and overrides the entered() method to add
different collaborative activities to that place.

For the sake of illustration, we show how we implemented an audio/video confer-
ence inside a Sametime-based CoopTEL component. This component uses the Same-
time StreamedMediaInteractive Service to access live audio and video inside a
virtual place to provide audio and video conference to CVE rooms. This component
adds audio and video activities to a Sametime virtual place, and uses the Streamed-
MediaInteractive interface to capture devices and retrieve audio and video streams
controller objects. These controllers are used to get the graphical component that allows

495Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



to reproduce and control the audio and video streams, e.g., pause or resume it, and to
modify some device parameters, e.g., audio volume. Each controller object controls a
player or a recorder device. A player device refers to a device used to reproduce remote
multimedia data locally, e.g., a local sound card that plays audio into the local speak-
ers; a recorder device refers to a device that can be used to capture local multimedia
data, e.g., a local sound card from which local microphone input is gathered. The lo-
cal recorder and player devices for audio and video streams are controlled by means
of the AudioController and VideoController interfaces, which can be accessed
through the StreamedMediaInteractive interface by invoking one of the following
methods: GetAudioRecorder(), GetAudioPlayer(), GetVideoRecorder(), or
GetVideoPlayer() [see Fig. 8]. Since the StreamedMediaInteractive service
handles the explicit opening and closing of the audio and video device, we are only
responsible for initializing the audio and video activities in a virtual place.

Once we get controllers for players and recorders for audio and video streams, we
use the initAudio() and initVideo() methods provided by the StreamedMedi-
aInteractive interface to initiate the transmission of streams. When the application
finishes, it is needed to stop the audio and video devices by calling the appropriate
method of the controllers. During the video conference transmission, the audio and
video players reproduce the streams of a participant at a time. In Sametime, the mul-
timedia streams that are being played locally are determined by the interaction mode
selected, namely: in the fully interactive mode, any user with a microphone can speak
at any time, whereas, in the conducted mode, a participant must request a turn before
speaking. The StreamedMediaInteractive interface is also used to switch between
these modes by the setSpeakingMode() method [see Fig. 8].

After implementing the AVConference component, we can include it as part of
the application architecture of a CVE application. In addition, we can add some prop-
erties by means of aspects. Aspect evaluation is not hard-wired inside components; it
is attached to component communication, creation and finalization. Apart from the Lo-
gin aspect, we can define other extra-functional properties as aspects. For example, we
could apply access control to component creation. We can model it as an aspect that
encapsulates an access control list to control if a user has permission to start a collab-
orative application, or to join one that has been initiated. By using CoopTEL, we can
add or remove this access control aspect to any component without changing it.

5 Conclusions

In this article, we have introduced a breakthrough approach to improve the development
of multimedia services. Multimedia programming poses important challenges to devel-
opers. A multimedia programmer is supposed to have broad technical skills on low-level
multimedia issues like capturing devices, negotiating formats or real-time protocols,
which makes developing these services from scratch quite a difficult task. Furthermore,

496 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



multimedia services have to deal with the continuous evolution of hardware devices and
presentation environments, so multimedia APIs must provide extension mechanisms to
upgrade final applications smoothly. Furthermore, the society demands highly config-
urable services able to adapt dynamically to user preferences or run-time environments.
Unfortunately, as we have shown in this paper, current multimedia software does not
address all these issues adequately.

We have presented the functionality and programming styles of several multime-
dia APIs and application frameworks. We have focused on describing and comparing
JMF and Lotus Sametime, two successful object-oriented multimedia frameworks. Af-
ter concluding that none of them addresses adequately all the challenges posed by mul-
timedia software development, such as extensibility, interoperability, evolvability and
usability, we proposed to apply component and framework technologies to cope with
these “ilities”. We have shown that it is possible to apply component-based software
engineering and application framework technologies to the development of multimedia
services, which improves their design. We believe that compositional framework tech-
nology is a good approach to construct more open, reusable, and extensible multimedia
services easily. We have shown how to componentize the multimedia functionality that
JMF and Sametime application frameworks provide. Thus, we have made it possible to
(re)use the resulting components as COTS components inside two in-house multimedia
frameworks called MultiTEL and CoopTEL. With this approach, multimedia services
development can be undertaken from a higher abstraction level, without having to be
an expert in multimedia low-level programming. Since multimedia devices and even
collaborative applications can be added to the application as plug-ins, developers are
able to modify or add new components without changing the others. Furthermore, since
some properties are usually spread throughout different multimedia components, we
model them as software aspects, according to aspect-oriented software development
principles. Examples of these properties are coordination protocols, user authentication
and access control. Since aspects can evolve independently of the components they af-
fect, aspect- and component-based multimedia software development makes it possible
to improve the modularity and the management of derived applications.

Acknowledgment

The work reported in this article was supported by the Spanish Ministry of Science and
Technology under grant TIC2002-04309-C02-02.

References

[AOSD, 2004] AOSD (2004). Aspect-Oriented Software Development Web Site. http://
www.aosd.net.

[Box, 1998] Box, D. (1998). Essential COM. Addison-Wesley.
[Brown and Wallnau, 1999] Brown, A. W. and Wallnau, K. (1999). The current state of CBSE.

IEEE Software, 15(5):37–46.

497Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering



[de Carmo, 1999] de Carmo, L. (1999). Core Java Media Framework API. Prentice Hall.
[Fayad and Schmidt, 1997] Fayad, M. E. and Schmidt, D. C. (1997). Object-oriented applica-

tion frameworks. Communications of the ACM, 40(10):32–38.
[Fuentes and Troya, 1999] Fuentes, L. and Troya, J. M. (1999). A Java Framework for Web-

based Multimedia and Collaborative Applications. IEEE Internet Computing, 3(2):55–64.
[Fuentes and Troya, 2001] Fuentes, L. and Troya, J. M. (2001). Coordinating Distributed Com-

ponents on the Web: an Integrated Development Environment. Software-Practice and Experi-
ence, 31(3):209–233.

[Gonzalez, 2000] Gonzalez, R. (2000). Disciplining Multimedia. IEEE Multimedia, 7(3):72–
78.

[IBM, 2003] IBM (2003). IBM Lotus Instant Messaging and Web Conferencing (Sametime).
http://www.lotus.com/products/lotussametime.nsf/wdocs/homepage.

[IBM, 2004] IBM (2004). Sametime 3.1 Java Toolkit. Developer’s Guide. http://www.
lotus.com/sametimedevelopers.

[Kiczales et al., 1997] Kiczales, G. et al. (1997). Aspect-Oriented Programming. In Proceed-
ings of ECOOP’97, number 1241 in Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag.

[Krieger and Adler, 1998] Krieger, D. and Adler, R. M. (1998). The emergence of distributed
component platforms. The Computer Journal, 41(3):43–53.

[Microsoft, 2004] Microsoft (2004). Microsoft Windows Media Web Page. http://www.
microsoft.com/windows/windowsmedia.

[Pinto et al., 2001a] Pinto, M., Amor, M., Fuentes, L., and Troya, J. M. (2001a). Collaborative
Virtual Environment Development: An Aspect-Oriented Approach. In International Workshop
on Distributed Dynamic Multiservice Architectures (DDMA’01), pages 97–102, Arizona. IEEE
Computer Society Press.

[Pinto et al., 2001b] Pinto, M., Amor, M., Fuentes, L., and Troya, J. M. (2001b). Support-
ing Heterogeneous Users in Collaborative Virtual Enviroments Using AOP. In Batini, C.,
Giunchiglia, F., Giorgini, P., and Mecella, M., editors, Proceedings of the Ninth International
Conference on Cooperative Information Systems (CoopIS), volume 2172 of Lecture Notes in
Computer Science, pages 226 – 238, Trento, Italy. Springer-Verlag.

[Schulzrinne, 1996] Schulzrinne, H. (1996). RTP: A transport protocol for real-time applica-
tions. RFC 1889.

[Silicon Graphics, 1996] Silicon Graphics (1996). Digital Media Programming Guide.
[Sun Microsystems, 2004a] Sun Microsystems (2004a). Java Media API Web Page. http:
//java.sun.com/products/java-media.

[Sun Microsystems, 2004b] Sun Microsystems (2004b). The Java Media Framework Guide.
http://java.sun.com/products/java-media/jmf.

[Szyperski, 2002] Szyperski, C. (2002). Component Software. Beyond Object-Oriented Pro-
gramming. Addison-Wesley, second edition.

498 Amor M., Fuentes L., Pinto M.: A Survey of Multimedia Software Engineering


