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Abstract: This paper presents a distributed algorithm for the partial precedence constrained 
scheduling problem. In the classical precedence constrained scheduling problem all the 
dependent tasks must be scheduled before the task itself can be scheduled. The partial 
precedence constrained scheduling problem is a generalized version of the original precedence 
constrained problem in the sense that the number of dependent tasks to be scheduled before the 
task itself can be scheduled is considered a variable. Using a directed graph to model the partial 
precedence constrained scheduling problem in which n nodes represent the tasks and e edges 
represent the precedence constraints, it is shown that the distributed algorithm requires O(e) 
messages and O(n) units of time and is optimal in communication complexity to within a 
constant factor. 
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1 Introduction  

Consider a directed graph, G = (V, E), with V a nonempty set of nodes and E ⊆ V × V  
the set of edges. Let ||V|| = n and ||E|| = e. Without loss of generality, we assume V to 
be {1, 2, . . ., n}. The precedence constrained scheduling (PCS) problem is defined as 
follows: Given a set of n tasks denoted by {T(1), T(2), . . . , T(n)} and a set of 
precedence constraints, we are required to schedule each task to get the minimum 
total time for completion of all the tasks satisfying the given constraints, let us call 
this time the job completion time. This problem can be modelled by a directed graph 
G as follows. Each task T(i), i ∈ V, requires a duration d(i) time units for its 
completion. The set of precedence relations is given in the form of directed edges (i, j) 
∈ E and costs C(i, j) which indicate that the task T(i) can start only C(i, j) units of 
time after the completion of task T(j). T(l) is considered as the root task signifying 
that once task T(l) is completed the job is completed. Clearly G cannot have any 
cycle, since a cycle implies that a task can be started only after the completion of 
itself. This problem has widespread applications and can be solved in O(n + e) 
sequential time [Chakrabarti, 99; Coffman, 76]. Note that the well known Critical 
Path Scheduling (CPS) problem may be easily modelled by the PCS problem 
described above [Smith, 89]. 

                                                           
[1] A preliminary version of this paper was presented in the 2003 Design, Analysis and 
Simulation of Distributed Systems Conference, Orlando, FL [Chaudhuri, 03] 
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The partial precedence constrained scheduling (PPCS) problem considers that in 
order to schedule a task it is not always necessary that all the dependent tasks have 
been scheduled before it can be scheduled. Instead, it is assumed that a task can be 
scheduled only after the completion of a given number, NUM(i), of its dependent 
tasks (c.f., figure 1). This is a more general problem, since when NUM(i) includes all 
the dependent tasks of T(i) the problem degenerates to that of the standard precedence 
constrained scheduling problem. This more general problem was first introduced in 
1999 and a sequential O(e log n) time algorithm was also proposed [Chakrabarti, 99]. 
To the best of our knowledge no distributed algorithm has been reported in the 
literature for this problem. 

 

 

Figure 1 : An arbitrary precedence graph G1. Each node represents a task with a 
certain duration and each directed edge together with the associated cost represents 
a precedence constraint. The minimum number of dependent tasks that must be 
completed before the task itself can be scheduled is provided with each task. 

In this paper, a distributed algorithm for the more general PPCS problem is 
proposed that requires O(e) messages and O(n) time. The rest of the paper is 
organized as follows. Section 2 introduces the model of computation and the 
distributed algorithm for the PPCS problem is presented in Section 3. The proof of 
correctness and the complexity related issues are provided in Section 4 and Section 5 
illustrates the algorithm with the help of an example. Section 6 examines some 
variations in the PPCS problem. Finally, Section 7 concludes the paper. 
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2 Model of Computation 

The computational model used in this paper is an asynchronous network of processors 
with their own local memory, such that each processor of the network corresponds to 
a particular node of the digraph (that models the precedence constrained scheduling 
problem) under consideration. Moreover, corresponding to each edge of the digraph, 
one bidirectional, non-interfering communication link is assumed. A communication 
link between a pair of node processors i and j consists of two channels: one for 
transmitting messages from i to j and one for transmitting messages from j to i. No 
common or global memory is shared by the node processors for interprocessor 
communication. Instead, this is done by exchanging messages. It is assumed that the 
network is sufficiently reliable so that there is no node or channel failure during 
transmission. We consider a very simple protocol for message communication, 
similar to that used in [Dijkstra, 80; Misra, 82]. If node X sends a message to a 
neighbor node Y, then the message gets appended at the end of the input buffer of Y 
and this process takes a finite arbitrary time (due to the transmission delay). Two or 
more messages arriving simultaneously at an input buffer are ordered arbitrarily and 
appended to the buffer. A node receives a message by removing it from the 
corresponding buffer.  

A simple message format is assumed for inter-node communication. A message 
is defined as a triple and is expressed as: 
 
<type; sender id; parameter>.  
 
The parameter field of a message depends on its type field. The exact content of the 
parameter field for different types of messages will be discussed in Section 3. 

In such a computational model, two types of complexity measures are important. 
One is the time complexity and the other is the message or communication 
complexity. We assume that the insertion of an element in a given sorted list, so that 
the resulting list after the insertion also remains sorted is a primitive operation. 
Precisely, this insertion can be implemented by using a binary search like operation in 
O(log k) time if the given sorted list consists of k elements. However, later we shall 
see that the number of elements in the given sorted list prior to the insertion operation 
is always less than the maximum degree of any node in the digraph G. Although 
theoretically the maximum degree of a node in G can be n - 1, for all practical 
purposes it can be considered as no more than a small constant k and, as a 
consequence the assumption that is, the time required for the insertion operation can 
be considered as constant. However, the most important assumption in this model is 
that each processor processes messages from its neighbors, performs local 
computations and sends messages to its neighbors such that no time is required for all 
these actions. In order to obtain the time complexity in this model, we assume that the 
delay between the time any message is transmitted along any edge and the time it is 
processed at its destination is at most one time unit. It may be noted that this 
assumption is for obtaining complexity only and it has no effect on the correctness of 
the algorithm. That is, the algorithm will work correctly even without the assumptions 
regarding the transmission delay and local computations, etc. The communication or 
message complexity is the total number of messages (independent of types) sent 
during algorithm execution. This type of a computational model, or similar concepts 
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have been extensively used for solving various graph theory and related problems 
(see, e.g. [Awerbuch, 85; Chaudhuri, 94; Chaudhuri, 97; Chaudhuri, 98; Dijkstra, 80; 
Korach, 84; Misra, 82; Sharma, 89; Tel, 00]). 

3 The Algorithm 

The distributed algorithm following for the PPCS problem presented in this section 
uses the following terminology. 

 
PRED(i): The set of predecessors of node i, i.e., PRED(i) = {j | j ∈ V ∧  (j, i) ∈ E}. 

 
SUCC(i): The set of successors of node i, i.e., SUCC(i) = {j | j ∈ V ∧ (i, j) ∈ E}. 

 
NUM(i): The minimum number of dependent tasks, represented by the successor  

 nodes, which must be completed before task represented by node i can be  
 initiated. Note that if  |SUCC(i)| ≥ 1, then NUM(i) ≥ 1. 

 
C(i, j):  The time i must wait after j’s completion before i itself can start. 

 
LIST(i): The list of the sum of the completion time of task j and cost C(i, j), ∀ j ∈  

 SUCC(i), sorted in increasing order. 
 

ST(i): Earliest possible starting time of task represented by node i. 
 

CT(i): Earliest possible completion time of task i.  
 

d(i): The duration of task i. 
 

JCT: The minimum total time required for completion of the job satisfying all the  
  constraints. 
 

In addition, we use the following functions: 
 
insert(x, y): Inserts element x in a sorted list y such that the resulting list also remains 
       sorted. 
view( L, k ): Returns the kth largest element of list L. Duplicate entries are taken into 
        account.  

 
The algorithm uses the following types of messages: 
SCHEDULE: A SCHEDULE message from node j to node i, where i ∈ PRED(j), 

informs node i about the earliest possible completion time of the 
task represented by node j. 

 
TERMINATE: A TERMINATE message from node j to node i, where i ∈ 

SUCC(j), provides with node i the minimum total time required for 
completion of the job satisfying all the constraints and also informs 
node i that node j has terminated its algorithm.  
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The parameter field of a SCHEDULE message from node j to node i carries the 
earliest possible completion time of task j, i.e., CT(j). On the other hand, the 
parameter field of any TERMINATE message carries the earliest possible completion 
time of the root and hence of the job. A detailed description of the algorithm is given 
below. Although, we have written the algorithm for the root node (task) r ∈ V 
separately, the nodes which have no successors (i.e. the terminal nodes) act as the 
initiator nodes. However, all the nodes of G act as the terminator nodes. The 
algorithm is terminated when all the nodes of G have terminated.  

 
Algorithm D_SCHEDULE:  
 
Input: The set of predecessors, PRED(i), the set of successors, SUCC(i), and the 
minimum number of dependent tasks which must be completed before task 
represented by node i can be initiated, i.e. NUM(i), are available at each i ∈ V. 

 
Output: At the termination of the algorithm, each node i ∈ V knows the earliest 
starting and completion times of task T(i) and also the minimum total time required 
for completion of the job satisfying all the constraints. 

 
 
Algorithm for root: r  
 
Initialization  
do 
   count(r):=  |SUCC(r)|; 
   ST(r):= CT(r):= 0;  
od  
 
 
Upon receiving <SCHEDULE, i, CT(i)> message 
do  
  count(r) := count(r) - 1; 
  insert(CT(i) + C(r, i), LIST(r)); 

  if count(r) = 0 then   
     ST(r):= view( LIST(r), (NUM(r));  
     CT(r):= ST(r) + d(r);  
     JCT:= CT(r);  

     for each j ∈ SUCC(i) do  
          send <TERMINATE, r, CT(r)> to j; 
     od  
terminate  

 fi 
od 
 
 
Algorithm for node i (i ≠ r): 
 
Initialization  
do  
 count(i) := |SUCC(i)|; 
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 termc(i) := |PRED(i)|;  
 
ST(i):= CT(i) := 0; 

if count(i) = 0 then  
 ST(i) := 0;  
 CT(i):= d(i); 

 for each j ∈ PRED(i) do  
     send <SCHEDULE, i, CT(i)> to j;  
 od  

 fi  
od  
 
 
Upon receiving <SCHEDULE, j, CT(j)> message 
do 
 count(i) := count(i)-1; 
 insert(CT(j) + C(i, j), LIST(i)); 

 if count(i) = 0 then  
    ST(i) := view( LIST(i), (NUM(i)); 
    CT(i) := ST(i) + d(i); 

    for each j ∈ PRED(i) do  
        send <SCHEDULE, i, CT(i)> to j;  
    od  

 fi  
  
od 
 
 
Upon receiving <TERMINATE, j, CT(r)> message 
 
do 
  

  if termc(i) = |PRED(i)| then 
    JCT:= CT(r);  
  fi  

 
  termc(i) := termc(i) - 1 ; 
 

 if termc(i) = 0 then  
  for each j ∈ SUCC(i) do  
         send <TERMINATE, i,CT(r)> to j;          
   od  
terminate 

  fi 
od 
 
Note that in PPCS the final optimal solution may not require to schedule all the 

tasks. However, in the classical precedence constrained scheduling, every task must 
be scheduled before the root task can be scheduled. 
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4 Correctness and complexity 

In this section, we first establish the correctness of the algorithm and then provide an 
analysis of the complexity of the algorithm. In this section it is also shown that the 
algorithm is optimal in communication complexity to within a constant factor. 

 
Lemma 4.1: Every node i ∈ V – {k | SUCC(k) = ∅} receives a SCHEDULE message 
from a node j ∈ SUCC(i) within a finite time. 

 
Proof: According to algorithm D_SCHEDULE, a node x ∈ {k | k ∈ V ∧ SUCC(k) = 
∅} in G initiates a SCHEDULE message after initializing some local variables. Node 
x sends this SCHEDULE message with parameter field CT(x) to each of its 
predecessor nodes y ∈ PRED(x). Each internal node i ∈ V – {r} ∪ {k | SUCC(k) = 
∅} upon receiving a SCHEDULE message from each of its successor nodes finds the 
earliest time when task T(i) can be started. This is basically the NUM(i)-th smallest 
earliest start time obtained from the sequence of the earliest starting times of all the 
successor tasks of task T(i). This information is then transmitted in terms of a 
SCHEDULE message to all the predecessor nodes of node i. Since every node which 
has no successors initiates the algorithm by sending a SCHEDULE message to each 
of its predecessor nodes and the network is assumed to be sufficiently reliable with 
finite transmission delay, each predecessor node receives SCHEDULE messages from 
all of its successor nodes within a finite time. With this as the basis, we now complete 
the proof by induction.  

Assume that an internal node i ∈ V - {r} ∪ {k | SUCC(k) = ∅} has received 
SCHEDULE messages from all of its successor nodes SUCC(i). Then according to 
algorithm D_SCHEDULE, node i sends a SCHEDULE message to each of its 
predecessor nodes PRED(i) after some local computations. All these local 
computations take no time according to the assumption made in the computational 
model. Therefore, each node j ∈ PRED(i) must receive a SCHEDULE message from 
each node i ∈ SUCC(j) within a finite time. 

We have seen that the lemma holds for every node x ∈ {k | k ∈ V ∧ SUCC(k) = 
∅} (since each of these nodes has no successors, there is no question of any 
SCHEDULE message arriving at these nodes) and every node which is a predecessor 
of node x. Also we have shown that if the lemma holds for any internal node i ∈ V  - 
{r} ∪ {k | SUCC(k) = ∅} then it also holds for all of its predecessors j ∈ PRED(i). 
Therefore, the lemma follows.� 

 
Lemma 4.2: Every node i ∈ V – {r} receives a TERMINATE message from a node j 
∈ PRED(i) within a finite time.  

 
Proof: From lemma 4.1 it follows that within a finite amount of time the root node r 
∈ V receives SCHEDULE messages from all of its successors SUCC(r). Once the 
root node r receives SCHEDULE messages from all of its successors it performs 
some local computations and then terminates its algorithm after sending a 
TERMINATE message to all of its successors with the earliest completion time of the 
root task (which is also the same as that of the job). With this as the induction basis, 
we can prove the lemma by using a same line of reasoning as in Lemma 4.1, the only 
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difference being that the propagation of TERMINATE messages would be in the 
opposite direction to that of SCHEDULE messages. � 

 
Lemma 4.3: At the termination of algorithm D_SCHEDULE, every node i ∈ V 
knows ST(i), CT(i), and JCT. 

 
Proof: It can be verified from algorithm D_SCHEDULE that during the propagation 
of SCHEDULE messages, starting from those nodes which have no successors until 
the root node is reached, each node i ∈ V computes ST(i) and CT(i). While 
computing the earliest starting time ST(i) of task i, represented by node i ∈ V, 
NUM(i) is used. Recall that NUM(i) indicates the minimum number of dependent 
tasks (i.e., tasks dependent on task i) which must be completed before task i can be 
scheduled. In order to find ST(i), a list LIST(i) containing CT(j) + C(i, j), ∀ j ∈ 
SUCC(i), is created. The NUM(i)-th smallest entry in LIST(i) corresponds to the 
earliest starting time of task i, i.e. ST(i). Note that the task represented by node i 
cannot be scheduled until at least NUM(i) of its dependent tasks represented by the 
successors of node i have been completed. Once ST(i) is available CT(i) is simply 
obtained by adding with ST(i) the duration d(i) of task i. In the final phase of the 
computation when TERMINATE messages are received by a node i from all of its 
predecessors PRED(i), it simply copies the CT(r) from the parameter field of the 
TERMINATE message which gives the job completion time denoted by JCT. Thus, 
when algorithm D_SCHEDULE terminates each node i ∈ V knows ST(i), CT(i) and 
JCT(i.e. CT(r)). Hence the lemma follows. � 

 
Lemma 4.4: Algorithm D_SCHEDULE eventually terminates. 

 
Proof: Follows directly from Lemma 4.2. � 

 
Theorem 4.1: Algorithm D_SCHEDULE is correct.  

 
Proof: Follows from Lemmas 4.3 and 4.4. � 

 
The message and time complexities of algorithm D_SCHEDULE are considered 

in the following theorem.  
 

Theorem 4.2: Algorithm D_SCHEDULE requires O(e) messages and O(n) time.  
 

Proof: It can be verified from algorithm D_SCHEDULE that SCHEDULE messages 
are initiated by the nodes of G which have no successors and propagated up to the 
root node. Once the root node receives SCHEDULE messages from all of its 
successors it terminates its algorithm and prior to that it initiates TERMINATE 
messages which are propagated up to the terminal nodes (i.e., the nodes with no 
successors). So every edge of G carries exactly one SCHEDULE message and exactly 
one TERMINATE message during the execution of the algorithm. Therefore, the 
message complexity of algorithm D_SCHEDULE is 2e = O(e). 

Assuming that a message takes at most one time unit to travel from a node to its 
neighbor, the total time required by algorithm D_SCHEDULE is equal to the 
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maximum distance between the root r and any node of G. Since this distance cannot 
exceed n-1, the time complexity if algorithm D_SCHEDULE is O(n). � 

 
Theorem 4.3: Algorithm D_SCHEDULE is optimal in communication complexity. 

 
Proof: Any algorithm that solves the PPCS problem must examine each precedence 
constraint at least once. In a distributed or network environment, where the nodes 
represent tasks and directed edges represent the precedence constraints at least one 
message is required to examine each edge (i.e., precedence constraint) of G. Clearly, 
there cannot exist a distributed algorithm to solve the PPCS problem that requires less 
than e messages. Therefore, Ω(e) is the lower bound to the communication 
complexity for this problem. The communication complexity of algorithm 
D_SCHEDULE is shown to be O(e) in Theorem 4.2. Hence, algorithm 
D_SCHEDULE is optimal in communication complexity to within a constant factor. 
� 

5 Illustrative example 

The algorithm is illustrated with the help of an example. Initially, the duration of the 
task d(i), the minimum number NUM(i) of dependent tasks to be completed before 
the task i can be scheduled and the cost C(i, j) for each edge (i, j) ∈ V (representing a 
precedence constraint) are available as the input (c.f., figure 1). Also each node knows 
its neighbor information, i.e., its predecessor and successor sets. During the first phase 
of the algorithm, SCHEDULE messages are propagating from the terminal nodes (i.e., 
nodes having no successors) towards the root. The starting time and the completion 
time for each of the tasks are computed during this phase. Once this phase is 
complete, the final phase starts by the root by sending TERMINATE messages to 
each of its successors informing about the job completion time and also that it has 
terminated its algorithm. When TERMINATE messages are received by all the 
terminal nodes from their predecessors the entire algorithm terminates. In Figure 2, 
for each task i, its starting time ST(i) and completion time CT(i) are shown.  

6 Some Variations 

We now discuss two variations to the standard PPCS problem. The first is simple and 
we provide a sample implementation. The second variation seems just as easy, but 
upon further inspection (see section 6.2.1) we show that this is not the case. 

6.1  Classical PCS 

It may be noted that algorithm D_SCHEDULE can also be adapted to work for 
finding a solution to the classical PCS problem with the same time and message 
complexity. In this case, the only modification required to algorithm D_SCHEDULE 
will be to replace NUM(i) by |SUCC(i)| for every node i ∈ V. However, to solve the 
classical PCS problem, the algorithm can be further simplified, since it is not 
necessary to maintain the list LIST(i) by each node i ∈ V. Instead, each time node i 
receives a SCHEDULE message from node j, j ∈ SUCC(i), node i requires to update 
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Figure 2: The output of the algorithm on G1 is shown alongside each node (task). 
Although not shown above, the job completion time JCT = 19  is available in a 
distributed manner to each node at the termination of the algorithm. 

ST(i) as Max{ST(i), CT(j) + C(i, j)}. There is no need of function insert(x, y) and 
whenever node i finds count(i) = 0 the current value of ST(i) gives the earliest start 
time of task i. 
 

6.2 Identifying critical paths in PPCS 

In the traditional CPS problem each task has an associated earliest start (finish) time 
EST (EFT) and latest start (finish) time LST (LFT). Here, the critical path is defined 
to be the ordered set of tasks for which EST = LST, i.e. these are the tasks which 
cannot be delayed without delaying the overall job completion time. With classical 
PCS, the LST of a task i is found by taking the minimum possible value of         
LST(j) – (C(j, i) + d(i)),  (j, i) ∈ E. For PPCS however, identifying the LST’s and 
hence the critical tasks is not as straightforward since for each task, not all of its 
dependant tasks are scheduled. This gives rise to the cases described below. 

We denote LST(i) as the actual LST of node i and LSTj(i) as the value of     
LST(j) – (C(j, i) + d(i)) for some predecessor j, of i (i.e. where (j, i) ∈ E). Also, for 
each identified case, an example edge (i, j) ∈ E is given relative to Figure 3. 
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Figure 3: A sample precedence graph G3 which illustrates the various cases described 
in section 6.2. For all (i, j) ∈ E, C(i, j) = 0. Note that Task 2 has dependent tasks 6 
and 7 which seem to be critical but if either one delays indefinitely, task 2 is not 
delayed. See section 6.2.1 for more details on this special case.  

 
1. Non-negative LSTj(i) value 
(a)LSTj(i) > EST(i): This indicates that task i can delay by  LSTj(i) - EST(i) time    
     units without delaying task j beyond LST(j); see edge (2, 9). 
(b)LSTj(i) = EST(i): Task i cannot delay without delaying task j beyond LST(j) and is    
     therefore considered as a critical task; see edges (1,3) and (2, 6). 
(c)LSTj(i) < EST(i): Task i did not play any role in the scheduling of task j and may  
     delay indefinitely without delaying task j beyond LST(j); see (1, 4) and (3, 2). 
(d) LSTj(i) = ∞ : Task i may delay indefinitely without delaying task j since LST(j) =  
      ∞; see (4, 6). 
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2. Negative LSTj(i) value 
This implies that LSTj(i) < EST(i) and therefore degenerates to case 1(c) above; see 
edges (6, 7) and (7, 9). 

 
 

The LST(i) for each i ∈ V may be calculated as follows:  
 
Let λ(i) = { LSTj(i) | LSTj(i) ≥ EST(i) } 
 

⎩
⎨
⎧

=∞
≠∈

=
{})(,

{})()),(min(
)(

ifor

ifori
iLST

λ
λλl

 

6.2.1 Special Cases 1(a) and 1(b) 

Let rk(i) denote the k distinct values in LIST(i) for any node i and m(rk(i)) denote the 
corresponding multiplicity. For instance, in figure 4 let r1(i) = 2, r2(i) = 1 and r3(i) = 5 
with multiplicities 2, 2 and 4 respectively. If m(rk(i)) > 1 for some rk(i), it may be 
possible for that given node to tolerate a certain number of delays in its successive 
nodes. In the case of critical nodes (special case 1(b)) this may mean that that node is 
really “partially-critical” rather than critical. In other words, that node may delay 
provided a predetermined number of its siblings do not. As an example, let LST(jx) = 
EST(jx) and NUM(i) = 5 in Figure 4. Then by case 1(*),  all the successors of i are 
definitely-critical (cannot be delayed). However, if say nodes j1 – j4 and j6 all start on 
time, then j5, j7, j8 may be delayed by some amount of time. Therefore we say that   
j5 – j8 are partially-critical. Additionally we define nodes with infinite delay as non-
critical and all others as semi-critical (this includes special case 1(a)).  

We have therefore shown that in PPCS, identification of a definite-critical path is 
straight forward, but other critical paths may exist which appear to be dynamic in 
nature as defined by the delay tolerance DT. This situation does not arise in classical 
PCS and demonstrates a significant contrast in the two problems. 
 

 
 

Figure 4: An illustration of the special cases where some tasks may delay further than 
calculated. For each task jx, x ∈ {1, 2, 3, …,8}, the EST is shown and it is assumed 
that C(i, jx) = 0. Therefore LIST(i) = { 2, 2, 1, 1, 5, 5, 5, 5}. 
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NUM(i) 1 2 3 4 5 6 7 8 
DT(i) 1 0 1 0 3 2 1 0 

 
Table 1: The Delay tolerance DT(i) for node i (in Figure 4) is shown for each possible 
value of NUM(i). Note that DT(i) = Σ m(rk(i)) – NUM(i), where rk ≤ 
view(LIST(i),NUM(i)). 

   

7 Conclusions 

In this paper, we have presented a distributed algorithm for solving the PPCS 
problem. The algorithm requires O(e) messages and O(n) time. It has been proved that 
the algorithm is optimal in communication complexity to within a constant factor. 
Some variations to algorithm D_SCHEDULE which deal with the classical PCS 
problem and identifying critical paths in PPCS were discussed. 
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