
A Message-optimal Distributed Graph Algorithm:
Partial Precedence Constrained Scheduling1

Pranay Chaudhuri
(University of the West Indies, Cave Hill Campus, Barbados

 pchaudhuri@uwichill.edu.bb)

Hussein Thompson
(University of the West Indies, Cave Hill Campus, Barbados

 hthompson@uwichill.edu.bb)

Abstract: This paper presents a distributed algorithm for the partial precedence constrained
scheduling problem. In the classical precedence constrained scheduling problem all the
dependent tasks must be scheduled before the task itself can be scheduled. The partial
precedence constrained scheduling problem is a generalized version of the original precedence
constrained problem in the sense that the number of dependent tasks to be scheduled before the
task itself can be scheduled is considered a variable. Using a directed graph to model the partial
precedence constrained scheduling problem in which n nodes represent the tasks and e edges
represent the precedence constraints, it is shown that the distributed algorithm requires O(e)
messages and O(n) units of time and is optimal in communication complexity to within a
constant factor.

Keywords: Distributed algorithm, directed graph, scheduling, task, precedence constraints
Categories: GT: Algorithms, SD:G.1.0, G.2.2, F.2.2

1 Introduction

Consider a directed graph, G = (V, E), with V a nonempty set of nodes and E ⊆ V × V
the set of edges. Let ||V|| = n and ||E|| = e. Without loss of generality, we assume V to
be {1, 2, . . ., n}. The precedence constrained scheduling (PCS) problem is defined as
follows: Given a set of n tasks denoted by {T(1), T(2), . . . , T(n)} and a set of
precedence constraints, we are required to schedule each task to get the minimum
total time for completion of all the tasks satisfying the given constraints, let us call
this time the job completion time. This problem can be modelled by a directed graph
G as follows. Each task T(i), i ∈ V, requires a duration d(i) time units for its
completion. The set of precedence relations is given in the form of directed edges (i, j)
∈ E and costs C(i, j) which indicate that the task T(i) can start only C(i, j) units of
time after the completion of task T(j). T(l) is considered as the root task signifying
that once task T(l) is completed the job is completed. Clearly G cannot have any
cycle, since a cycle implies that a task can be started only after the completion of
itself. This problem has widespread applications and can be solved in O(n + e)
sequential time [Chakrabarti, 99; Coffman, 76]. Note that the well known Critical
Path Scheduling (CPS) problem may be easily modelled by the PCS problem
described above [Smith, 89].

[1] A preliminary version of this paper was presented in the 2003 Design, Analysis and
Simulation of Distributed Systems Conference, Orlando, FL [Chaudhuri, 03]

Journal of Universal Computer Science, vol. 10, no. 2 (2004), 106-119
submitted: 11/6/03, accepted: 29/12/03, appeared: 28/2/04 © J.UCS

The partial precedence constrained scheduling (PPCS) problem considers that in
order to schedule a task it is not always necessary that all the dependent tasks have
been scheduled before it can be scheduled. Instead, it is assumed that a task can be
scheduled only after the completion of a given number, NUM(i), of its dependent
tasks (c.f., figure 1). This is a more general problem, since when NUM(i) includes all
the dependent tasks of T(i) the problem degenerates to that of the standard precedence
constrained scheduling problem. This more general problem was first introduced in
1999 and a sequential O(e log n) time algorithm was also proposed [Chakrabarti, 99].
To the best of our knowledge no distributed algorithm has been reported in the
literature for this problem.

Figure 1 : An arbitrary precedence graph G1. Each node represents a task with a
certain duration and each directed edge together with the associated cost represents
a precedence constraint. The minimum number of dependent tasks that must be
completed before the task itself can be scheduled is provided with each task.

In this paper, a distributed algorithm for the more general PPCS problem is
proposed that requires O(e) messages and O(n) time. The rest of the paper is
organized as follows. Section 2 introduces the model of computation and the
distributed algorithm for the PPCS problem is presented in Section 3. The proof of
correctness and the complexity related issues are provided in Section 4 and Section 5
illustrates the algorithm with the help of an example. Section 6 examines some
variations in the PPCS problem. Finally, Section 7 concludes the paper.

107Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

2 Model of Computation

The computational model used in this paper is an asynchronous network of processors
with their own local memory, such that each processor of the network corresponds to
a particular node of the digraph (that models the precedence constrained scheduling
problem) under consideration. Moreover, corresponding to each edge of the digraph,
one bidirectional, non-interfering communication link is assumed. A communication
link between a pair of node processors i and j consists of two channels: one for
transmitting messages from i to j and one for transmitting messages from j to i. No
common or global memory is shared by the node processors for interprocessor
communication. Instead, this is done by exchanging messages. It is assumed that the
network is sufficiently reliable so that there is no node or channel failure during
transmission. We consider a very simple protocol for message communication,
similar to that used in [Dijkstra, 80; Misra, 82]. If node X sends a message to a
neighbor node Y, then the message gets appended at the end of the input buffer of Y
and this process takes a finite arbitrary time (due to the transmission delay). Two or
more messages arriving simultaneously at an input buffer are ordered arbitrarily and
appended to the buffer. A node receives a message by removing it from the
corresponding buffer.

A simple message format is assumed for inter-node communication. A message
is defined as a triple and is expressed as:

<type; sender id; parameter>.

The parameter field of a message depends on its type field. The exact content of the
parameter field for different types of messages will be discussed in Section 3.

In such a computational model, two types of complexity measures are important.
One is the time complexity and the other is the message or communication
complexity. We assume that the insertion of an element in a given sorted list, so that
the resulting list after the insertion also remains sorted is a primitive operation.
Precisely, this insertion can be implemented by using a binary search like operation in
O(log k) time if the given sorted list consists of k elements. However, later we shall
see that the number of elements in the given sorted list prior to the insertion operation
is always less than the maximum degree of any node in the digraph G. Although
theoretically the maximum degree of a node in G can be n - 1, for all practical
purposes it can be considered as no more than a small constant k and, as a
consequence the assumption that is, the time required for the insertion operation can
be considered as constant. However, the most important assumption in this model is
that each processor processes messages from its neighbors, performs local
computations and sends messages to its neighbors such that no time is required for all
these actions. In order to obtain the time complexity in this model, we assume that the
delay between the time any message is transmitted along any edge and the time it is
processed at its destination is at most one time unit. It may be noted that this
assumption is for obtaining complexity only and it has no effect on the correctness of
the algorithm. That is, the algorithm will work correctly even without the assumptions
regarding the transmission delay and local computations, etc. The communication or
message complexity is the total number of messages (independent of types) sent
during algorithm execution. This type of a computational model, or similar concepts

108 Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

have been extensively used for solving various graph theory and related problems
(see, e.g. [Awerbuch, 85; Chaudhuri, 94; Chaudhuri, 97; Chaudhuri, 98; Dijkstra, 80;
Korach, 84; Misra, 82; Sharma, 89; Tel, 00]).

3 The Algorithm

The distributed algorithm following for the PPCS problem presented in this section
uses the following terminology.

PRED(i): The set of predecessors of node i, i.e., PRED(i) = {j | j ∈ V ∧ (j, i) ∈ E}.

SUCC(i): The set of successors of node i, i.e., SUCC(i) = {j | j ∈ V ∧ (i, j) ∈ E}.

NUM(i): The minimum number of dependent tasks, represented by the successor

 nodes, which must be completed before task represented by node i can be
 initiated. Note that if |SUCC(i)| ≥ 1, then NUM(i) ≥ 1.

C(i, j): The time i must wait after j’s completion before i itself can start.

LIST(i): The list of the sum of the completion time of task j and cost C(i, j), ∀ j ∈

 SUCC(i), sorted in increasing order.

ST(i): Earliest possible starting time of task represented by node i.

CT(i): Earliest possible completion time of task i.

d(i): The duration of task i.

JCT: The minimum total time required for completion of the job satisfying all the
 constraints.

In addition, we use the following functions:

insert(x, y): Inserts element x in a sorted list y such that the resulting list also remains
 sorted.
view(L, k): Returns the kth largest element of list L. Duplicate entries are taken into
 account.

The algorithm uses the following types of messages:
SCHEDULE: A SCHEDULE message from node j to node i, where i ∈ PRED(j),

informs node i about the earliest possible completion time of the
task represented by node j.

TERMINATE: A TERMINATE message from node j to node i, where i ∈

SUCC(j), provides with node i the minimum total time required for
completion of the job satisfying all the constraints and also informs
node i that node j has terminated its algorithm.

109Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

The parameter field of a SCHEDULE message from node j to node i carries the
earliest possible completion time of task j, i.e., CT(j). On the other hand, the
parameter field of any TERMINATE message carries the earliest possible completion
time of the root and hence of the job. A detailed description of the algorithm is given
below. Although, we have written the algorithm for the root node (task) r ∈ V
separately, the nodes which have no successors (i.e. the terminal nodes) act as the
initiator nodes. However, all the nodes of G act as the terminator nodes. The
algorithm is terminated when all the nodes of G have terminated.

Algorithm D_SCHEDULE:

Input: The set of predecessors, PRED(i), the set of successors, SUCC(i), and the
minimum number of dependent tasks which must be completed before task
represented by node i can be initiated, i.e. NUM(i), are available at each i ∈ V.

Output: At the termination of the algorithm, each node i ∈ V knows the earliest
starting and completion times of task T(i) and also the minimum total time required
for completion of the job satisfying all the constraints.

Algorithm for root: r

Initialization
do
 count(r):= |SUCC(r)|;
 ST(r):= CT(r):= 0;
od

Upon receiving <SCHEDULE, i, CT(i)> message
do
 count(r) := count(r) - 1;
 insert(CT(i) + C(r, i), LIST(r));

 if count(r) = 0 then
 ST(r):= view(LIST(r), (NUM(r));
 CT(r):= ST(r) + d(r);
 JCT:= CT(r);

 for each j ∈ SUCC(i) do
 send <TERMINATE, r, CT(r)> to j;
 od
terminate

 fi
od

Algorithm for node i (i ≠ r):

Initialization
do
 count(i) := |SUCC(i)|;

110 Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

 termc(i) := |PRED(i)|;

ST(i):= CT(i) := 0;

if count(i) = 0 then
 ST(i) := 0;
 CT(i):= d(i);

 for each j ∈ PRED(i) do
 send <SCHEDULE, i, CT(i)> to j;
 od

 fi
od

Upon receiving <SCHEDULE, j, CT(j)> message
do
 count(i) := count(i)-1;
 insert(CT(j) + C(i, j), LIST(i));

 if count(i) = 0 then
 ST(i) := view(LIST(i), (NUM(i));
 CT(i) := ST(i) + d(i);

 for each j ∈ PRED(i) do
 send <SCHEDULE, i, CT(i)> to j;
 od

 fi

od

Upon receiving <TERMINATE, j, CT(r)> message

do

 if termc(i) = |PRED(i)| then
 JCT:= CT(r);
 fi

 termc(i) := termc(i) - 1 ;

 if termc(i) = 0 then
 for each j ∈ SUCC(i) do
 send <TERMINATE, i,CT(r)> to j;
 od
terminate

 fi
od

Note that in PPCS the final optimal solution may not require to schedule all the

tasks. However, in the classical precedence constrained scheduling, every task must
be scheduled before the root task can be scheduled.

111Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

4 Correctness and complexity

In this section, we first establish the correctness of the algorithm and then provide an
analysis of the complexity of the algorithm. In this section it is also shown that the
algorithm is optimal in communication complexity to within a constant factor.

Lemma 4.1: Every node i ∈ V – {k | SUCC(k) = ∅} receives a SCHEDULE message
from a node j ∈ SUCC(i) within a finite time.

Proof: According to algorithm D_SCHEDULE, a node x ∈ {k | k ∈ V ∧ SUCC(k) =
∅} in G initiates a SCHEDULE message after initializing some local variables. Node
x sends this SCHEDULE message with parameter field CT(x) to each of its
predecessor nodes y ∈ PRED(x). Each internal node i ∈ V – {r} ∪ {k | SUCC(k) =
∅} upon receiving a SCHEDULE message from each of its successor nodes finds the
earliest time when task T(i) can be started. This is basically the NUM(i)-th smallest
earliest start time obtained from the sequence of the earliest starting times of all the
successor tasks of task T(i). This information is then transmitted in terms of a
SCHEDULE message to all the predecessor nodes of node i. Since every node which
has no successors initiates the algorithm by sending a SCHEDULE message to each
of its predecessor nodes and the network is assumed to be sufficiently reliable with
finite transmission delay, each predecessor node receives SCHEDULE messages from
all of its successor nodes within a finite time. With this as the basis, we now complete
the proof by induction.

Assume that an internal node i ∈ V - {r} ∪ {k | SUCC(k) = ∅} has received
SCHEDULE messages from all of its successor nodes SUCC(i). Then according to
algorithm D_SCHEDULE, node i sends a SCHEDULE message to each of its
predecessor nodes PRED(i) after some local computations. All these local
computations take no time according to the assumption made in the computational
model. Therefore, each node j ∈ PRED(i) must receive a SCHEDULE message from
each node i ∈ SUCC(j) within a finite time.

We have seen that the lemma holds for every node x ∈ {k | k ∈ V ∧ SUCC(k) =
∅} (since each of these nodes has no successors, there is no question of any
SCHEDULE message arriving at these nodes) and every node which is a predecessor
of node x. Also we have shown that if the lemma holds for any internal node i ∈ V -
{r} ∪ {k | SUCC(k) = ∅} then it also holds for all of its predecessors j ∈ PRED(i).
Therefore, the lemma follows.�

Lemma 4.2: Every node i ∈ V – {r} receives a TERMINATE message from a node j
∈ PRED(i) within a finite time.

Proof: From lemma 4.1 it follows that within a finite amount of time the root node r
∈ V receives SCHEDULE messages from all of its successors SUCC(r). Once the
root node r receives SCHEDULE messages from all of its successors it performs
some local computations and then terminates its algorithm after sending a
TERMINATE message to all of its successors with the earliest completion time of the
root task (which is also the same as that of the job). With this as the induction basis,
we can prove the lemma by using a same line of reasoning as in Lemma 4.1, the only

112 Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

difference being that the propagation of TERMINATE messages would be in the
opposite direction to that of SCHEDULE messages. �

Lemma 4.3: At the termination of algorithm D_SCHEDULE, every node i ∈ V
knows ST(i), CT(i), and JCT.

Proof: It can be verified from algorithm D_SCHEDULE that during the propagation
of SCHEDULE messages, starting from those nodes which have no successors until
the root node is reached, each node i ∈ V computes ST(i) and CT(i). While
computing the earliest starting time ST(i) of task i, represented by node i ∈ V,
NUM(i) is used. Recall that NUM(i) indicates the minimum number of dependent
tasks (i.e., tasks dependent on task i) which must be completed before task i can be
scheduled. In order to find ST(i), a list LIST(i) containing CT(j) + C(i, j), ∀ j ∈
SUCC(i), is created. The NUM(i)-th smallest entry in LIST(i) corresponds to the
earliest starting time of task i, i.e. ST(i). Note that the task represented by node i
cannot be scheduled until at least NUM(i) of its dependent tasks represented by the
successors of node i have been completed. Once ST(i) is available CT(i) is simply
obtained by adding with ST(i) the duration d(i) of task i. In the final phase of the
computation when TERMINATE messages are received by a node i from all of its
predecessors PRED(i), it simply copies the CT(r) from the parameter field of the
TERMINATE message which gives the job completion time denoted by JCT. Thus,
when algorithm D_SCHEDULE terminates each node i ∈ V knows ST(i), CT(i) and
JCT(i.e. CT(r)). Hence the lemma follows. �

Lemma 4.4: Algorithm D_SCHEDULE eventually terminates.

Proof: Follows directly from Lemma 4.2. �

Theorem 4.1: Algorithm D_SCHEDULE is correct.

Proof: Follows from Lemmas 4.3 and 4.4. �

The message and time complexities of algorithm D_SCHEDULE are considered

in the following theorem.

Theorem 4.2: Algorithm D_SCHEDULE requires O(e) messages and O(n) time.

Proof: It can be verified from algorithm D_SCHEDULE that SCHEDULE messages
are initiated by the nodes of G which have no successors and propagated up to the
root node. Once the root node receives SCHEDULE messages from all of its
successors it terminates its algorithm and prior to that it initiates TERMINATE
messages which are propagated up to the terminal nodes (i.e., the nodes with no
successors). So every edge of G carries exactly one SCHEDULE message and exactly
one TERMINATE message during the execution of the algorithm. Therefore, the
message complexity of algorithm D_SCHEDULE is 2e = O(e).

Assuming that a message takes at most one time unit to travel from a node to its
neighbor, the total time required by algorithm D_SCHEDULE is equal to the

113Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

maximum distance between the root r and any node of G. Since this distance cannot
exceed n-1, the time complexity if algorithm D_SCHEDULE is O(n). �

Theorem 4.3: Algorithm D_SCHEDULE is optimal in communication complexity.

Proof: Any algorithm that solves the PPCS problem must examine each precedence
constraint at least once. In a distributed or network environment, where the nodes
represent tasks and directed edges represent the precedence constraints at least one
message is required to examine each edge (i.e., precedence constraint) of G. Clearly,
there cannot exist a distributed algorithm to solve the PPCS problem that requires less
than e messages. Therefore, Ω(e) is the lower bound to the communication
complexity for this problem. The communication complexity of algorithm
D_SCHEDULE is shown to be O(e) in Theorem 4.2. Hence, algorithm
D_SCHEDULE is optimal in communication complexity to within a constant factor.
�

5 Illustrative example

The algorithm is illustrated with the help of an example. Initially, the duration of the
task d(i), the minimum number NUM(i) of dependent tasks to be completed before
the task i can be scheduled and the cost C(i, j) for each edge (i, j) ∈ V (representing a
precedence constraint) are available as the input (c.f., figure 1). Also each node knows
its neighbor information, i.e., its predecessor and successor sets. During the first phase
of the algorithm, SCHEDULE messages are propagating from the terminal nodes (i.e.,
nodes having no successors) towards the root. The starting time and the completion
time for each of the tasks are computed during this phase. Once this phase is
complete, the final phase starts by the root by sending TERMINATE messages to
each of its successors informing about the job completion time and also that it has
terminated its algorithm. When TERMINATE messages are received by all the
terminal nodes from their predecessors the entire algorithm terminates. In Figure 2,
for each task i, its starting time ST(i) and completion time CT(i) are shown.

6 Some Variations

We now discuss two variations to the standard PPCS problem. The first is simple and
we provide a sample implementation. The second variation seems just as easy, but
upon further inspection (see section 6.2.1) we show that this is not the case.

6.1 Classical PCS

It may be noted that algorithm D_SCHEDULE can also be adapted to work for
finding a solution to the classical PCS problem with the same time and message
complexity. In this case, the only modification required to algorithm D_SCHEDULE
will be to replace NUM(i) by |SUCC(i)| for every node i ∈ V. However, to solve the
classical PCS problem, the algorithm can be further simplified, since it is not
necessary to maintain the list LIST(i) by each node i ∈ V. Instead, each time node i
receives a SCHEDULE message from node j, j ∈ SUCC(i), node i requires to update

114 Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

Figure 2: The output of the algorithm on G1 is shown alongside each node (task).
Although not shown above, the job completion time JCT = 19 is available in a
distributed manner to each node at the termination of the algorithm.

ST(i) as Max{ST(i), CT(j) + C(i, j)}. There is no need of function insert(x, y) and
whenever node i finds count(i) = 0 the current value of ST(i) gives the earliest start
time of task i.

6.2 Identifying critical paths in PPCS

In the traditional CPS problem each task has an associated earliest start (finish) time
EST (EFT) and latest start (finish) time LST (LFT). Here, the critical path is defined
to be the ordered set of tasks for which EST = LST, i.e. these are the tasks which
cannot be delayed without delaying the overall job completion time. With classical
PCS, the LST of a task i is found by taking the minimum possible value of
LST(j) – (C(j, i) + d(i)), (j, i) ∈ E. For PPCS however, identifying the LST’s and
hence the critical tasks is not as straightforward since for each task, not all of its
dependant tasks are scheduled. This gives rise to the cases described below.

We denote LST(i) as the actual LST of node i and LSTj(i) as the value of
LST(j) – (C(j, i) + d(i)) for some predecessor j, of i (i.e. where (j, i) ∈ E). Also, for
each identified case, an example edge (i, j) ∈ E is given relative to Figure 3.

115Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

Figure 3: A sample precedence graph G3 which illustrates the various cases described
in section 6.2. For all (i, j) ∈ E, C(i, j) = 0. Note that Task 2 has dependent tasks 6
and 7 which seem to be critical but if either one delays indefinitely, task 2 is not
delayed. See section 6.2.1 for more details on this special case.

1. Non-negative LSTj(i) value
(a)LSTj(i) > EST(i): This indicates that task i can delay by LSTj(i) - EST(i) time
 units without delaying task j beyond LST(j); see edge (2, 9).
(b)LSTj(i) = EST(i): Task i cannot delay without delaying task j beyond LST(j) and is
 therefore considered as a critical task; see edges (1,3) and (2, 6).
(c)LSTj(i) < EST(i): Task i did not play any role in the scheduling of task j and may
 delay indefinitely without delaying task j beyond LST(j); see (1, 4) and (3, 2).
(d) LSTj(i) = ∞ : Task i may delay indefinitely without delaying task j since LST(j) =
 ∞; see (4, 6).

116 Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

2. Negative LSTj(i) value
This implies that LSTj(i) < EST(i) and therefore degenerates to case 1(c) above; see
edges (6, 7) and (7, 9).

The LST(i) for each i ∈ V may be calculated as follows:

Let λ(i) = { LSTj(i) | LSTj(i) ≥ EST(i) }

⎩
⎨
⎧

=∞
≠∈

=
{})(,

{})()),(min(
)(

ifor

ifori
iLST

λ
λλl

6.2.1 Special Cases 1(a) and 1(b)

Let rk(i) denote the k distinct values in LIST(i) for any node i and m(rk(i)) denote the
corresponding multiplicity. For instance, in figure 4 let r1(i) = 2, r2(i) = 1 and r3(i) = 5
with multiplicities 2, 2 and 4 respectively. If m(rk(i)) > 1 for some rk(i), it may be
possible for that given node to tolerate a certain number of delays in its successive
nodes. In the case of critical nodes (special case 1(b)) this may mean that that node is
really “partially-critical” rather than critical. In other words, that node may delay
provided a predetermined number of its siblings do not. As an example, let LST(jx) =
EST(jx) and NUM(i) = 5 in Figure 4. Then by case 1(*), all the successors of i are
definitely-critical (cannot be delayed). However, if say nodes j1 – j4 and j6 all start on
time, then j5, j7, j8 may be delayed by some amount of time. Therefore we say that
j5 – j8 are partially-critical. Additionally we define nodes with infinite delay as non-
critical and all others as semi-critical (this includes special case 1(a)).

We have therefore shown that in PPCS, identification of a definite-critical path is
straight forward, but other critical paths may exist which appear to be dynamic in
nature as defined by the delay tolerance DT. This situation does not arise in classical
PCS and demonstrates a significant contrast in the two problems.

Figure 4: An illustration of the special cases where some tasks may delay further than
calculated. For each task jx, x ∈ {1, 2, 3, …,8}, the EST is shown and it is assumed
that C(i, jx) = 0. Therefore LIST(i) = { 2, 2, 1, 1, 5, 5, 5, 5}.

117Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

NUM(i) 1 2 3 4 5 6 7 8
DT(i) 1 0 1 0 3 2 1 0

Table 1: The Delay tolerance DT(i) for node i (in Figure 4) is shown for each possible
value of NUM(i). Note that DT(i) = Σ m(rk(i)) – NUM(i), where rk ≤
view(LIST(i),NUM(i)).

7 Conclusions

In this paper, we have presented a distributed algorithm for solving the PPCS
problem. The algorithm requires O(e) messages and O(n) time. It has been proved that
the algorithm is optimal in communication complexity to within a constant factor.
Some variations to algorithm D_SCHEDULE which deal with the classical PCS
problem and identifying critical paths in PPCS were discussed.

Acknowledgements

The authors wish to thank the anonymous referees for their suggestions and
constructive comments on an earlier version of the paper. Their suggestions have
greatly improved the readability of the paper. In particular, one of the referees’
suggestions have led us to include section 6 in the revised manuscript.

References
[Awerbuch, 85] Awerbuch, B.: “A New Distributed Depth-First Search Algorithm”;
Information Processing Letters 20, 3 (1985), 147 - 150.

[Chakrabarti, 99] Chakrabarti, P. P.: “Partial Precedence Constrained Scheduling”; IEEE
Transaction on Computers 48, 10 (1999), 1127 - 1130.

[Chaudhuri, 94] Chaudhuri, P.: “An Efficient Distributed Bridge Finding Algorithm”;
Information Sciences 81, 1&2 (1994) 73 - 85.

[Chaudhuri, 97] Chaudhuri, P.: “An Optimal Distributed Algorithm for Computing Bridge-
Connected Components”; Computer Journal 40, 4 (1997) 200 - 207.

[Chaudhuri, 98] Chaudhuri, P.: “An Optimal Distributed Algorithm for Finding Articulation
Points in a Network”; Computer Communications 21, 18 (1998) 1707-1715.

[Chaudhuri, 03] Chaudhuri, P., Thompson, H.: “An Optimal Distributed Algorithm for Partial
Precedence Constrained Scheduling”; Proc. DASD’03, SCS, USA (2003), 76 – 82.

[Coffman, 76] Coffman Jr., E. G.: “Computer and Job Shop Scheduling Theory”; John
Wiley & Sons, New York, New York (1976).

118 Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

[Dijkstra, 80] Dijkstra, E. W., Scholten, C. S.: “Termination Detection for Diffusing
Computation”; Information Processing Letters II, II (1980) 1 - 4.

[Korach, 84] Korach, E., Rotem, D., Sontoro, N.: “Distributed Algorithms for Finding
Centers and Medians in Networks”; ACM Transactions on Programming Languages and
Systems 6, 3 (1984) 380 - 401.

[Misra, 82] Misra, J., Chandy, K. M.: “A Distributed Graph Algorithm: Knot
Detection”; ACM Transactions on Programming Languages and Systems 4, 4 (1982) 678 - 686.

[Sharma, 89] Sharma, M. B., Iyenger, S. S., Mandyam, N. K.: “An Efficient Distributed
Depth-First Search Algorithm”; Information Processing Letters 32, 4 (1989) 183 - 186.

[Smith, 89] Smith, J. D.: “Design and Analysis of Algorithms”; PWS-Kent Publishing
Co., Boston (1989).

[Tel, 00] Tel, G.: “Introduction to Distributed Algorithms”; Cambridge University
Press 2nd Ed., United Kingdom (2000)

119Chaudhuri P., Thomson H.: A Message-Optimal Distributed Graph Algorithm ...

