
Function-Complete Lookahead in Support of Efficient SAT

Search Heuristics

John Franco
(University of Cincinnati, Cincinnati, Ohio, U.S.A.

franco@gauss.ececs.uc.edu)
Michal Kouril

(University of Cincinnati, Cincinnati, Ohio, U.S.A.
mkouril@ececs.uc.edu)

John Schlipf
(University of Cincinnati, Cincinnati, Ohio, U.S.A.

schlipf@ececs.uc.edu)
Sean Weaver

(University of Cincinnati, Cincinnati, Ohio, U.S.A.
fett@gauss.ececs.uc.edu)
Michael Dransfield

(National Security Agency, U.S.A.
mdransfi@restarea.ncsc.mil)

W. Mark Vanfleet
(National Security Agency, U.S.A.

wvanflee@restarea.ncsc.mil)

Abstract: Recent work has shown the value of using propositional SAT solvers, as
opposed to pure BDD solvers, for solving many real-world Boolean Satisfiability prob-
lems including Bounded Model Checking problems (BMC). We propose a SAT solver
paradigm which combines the use of BDDs and search methods to support efficient
implementation of complex search heuristics and effective use of early (preprocessor)
learning. We implement many of these ideas in software called SBSAT. We show that
SBSAT solves many of the benchmarks tested competitively or substantially faster
than state-of-the-art SAT solvers.

SBSAT differs from standard propositional SAT solvers by working directly with non-
CNF propositional input; its input format is BDDs. This allows some BDD-style pro-
cessing to be used as a preprocessing tool. After preprocessing, the BDDs are trans-
formed into state machines (different state machines than the ones used in the original
model checking problem) and a good deal of lookahead information is precomputed
and memoized. This provides for fast implementation of a new form of lookahead,
called local-function-complete lookahead (contrasting with the depth-first lookahead of
zChaff [Moskewicz et al. 01] and the breadth-first lookahead of Prover [St̊almarck 94]).
SBSAT provides a choice of search heuristics, allowing users to exploit domain-specific
experience. We describe SBSAT in this paper.

We use SBSAT in conjunction with the tool bmc from Carnegie Mellon to translate a
bounded model checking problem to classical propositional logic and then use SBSAT to
solve the bmc output. We show this approach is faster than the now traditional approach
of translating the bmc output to CNF clauses and using a CNF-based SAT solver, such

Journal of Universal Computer Science, vol. 10, no. 12 (2004), 1655-1692
submitted: 15/10/03, accepted: 14/8/04, appeared: 28/12/04 © J.UCS

as zChaff. The work continues that of [Franco et al. 01] and [Franco et al. 04].

Key Words: Binary Decision Diagrams, Bounded Model Checking, DAG, Satisfiabil-
ity, State Machines, Satisfibility Decision Heuristics

Category: SD B.6.1, SD F.4.1

1 Introduction

Model checking [Clarke et al. 99] is becoming one of the most widely used formal
tools for verifying hardware circuits and software protocol design. The design to
be verified is modeled as a finite state machine and the specification is formalized
by temporal logic formulas. The reachable states of the design are traversed to
verify those formulas or to find a counter example. The check is performed as an
exhaustive state space search, which is guaranteed to terminate since the model
is finite. But both computer time and space requirements can be exponential in
the size of the problem, making the computations all too often infeasible.

A partial solution, called Bounded Model Checking (BMC) [Biere et al. 99,
Clarke et al. 01], is to bound the state space and admit queries with some limit
on the number of time steps. Now the verification problem can be expressed
with formulas of (classical, non-temporal) propositional logic. These can now
be translated to BDDs and solved using traditional BDD methods [Bryant 86].
BDD methods depend on using operators which are highly efficient as a function
of the sizes of the BDDs, but in all too many cases the BDDs grow exponentially
large, making BDD methods often infeasible.

So in Bounded Model Checking, the propositional formulas are typically
translated to Conjunctive Normal Form (CNF) and solved using off-the-shelf
SAT solvers. For example, GRASP [Marques-Silva and Sakallah 96], SATO
[Zhang 97], BerkMin [Goldberg and Novikov 02], Siege [Ryan 03], and variants
of zChaff [Moskewicz et al. 01] have been applied with great success.

However, in this translation to CNF, some of the domain-specific information
is hidden or garbled. A simple example is the following: if one simply translates a
formula to CNF, the size of the formula may grow exponentially. By adding new
variables, called system variables, one may achieve only linear growth in formula
size [Tseitin 68, Schöning 89]. Often, during the search for a solution, it is not
efficient to branch on system variables, more commonly known as dependent
variables. But the dependent variables can be more difficult for a standard CNF-
based solver to find; to do so amounts to recovering domain-specific information
from the CNF translation. We do not say this cannot be done but it does require
work and may be only partially successful. By staying in the original domain
one can branch on independent or dependent variables first, as needed by the
input problem. We have found orders of magnitude difference in search time by
choosing independent variables first or dependents first. Therefore, separating
these two groups appears to be very important. Our thesis is that speed can

1656 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

generally be gained by not obscuring such information in the first place.
We present a search-based solver, based on a new state-based architecture,

for solving many propositional problems and study its efficiency on several prob-
lems including some well-known BMC benchmarks. To avoid confusion, we em-
phasize that the state machines of the proposed architecture, technically Mealy
machines, are separate from state machines that are normally given when speci-
fying an original BMC problem. The solver, which we call SBSAT, adapts tools
of state-of-the-art SAT solvers without requiring translation to CNF. It has an
adaptable form of memoization of domain-specific and lookahead information
that may be used to implement search heuristics that would otherwise be too
expensive in computation time to be practical. The architecture trades space
for speed: this is now reasonable due to significant and steady advancements in
RAM technology, both in size and in speed.

SBSAT generalizes CNF-based SAT solvers. It takes as input a set of con-
straints: not a set of clauses, but a set of BDDs. (Some other inputs, such as
CNF, are accepted, but they are converted initially to BDDs.) Like CNF-based
SAT solvers, SBSAT searches for a variable assignment that simultaneously sat-
isfies all its constraints. SBSAT examines the constraints for domain-specific and
lookahead information, some of it highly complex, which it memoizes during pre-
processing, in a data structure that affords table-lookup during search.

As is standard with complete SAT solvers, SBSAT implements a Davis-
Putnam-Loveland-Logemann (DPLL) [Davis et al. 62] backtracking procedure
to search for a satisfying truth assignment, starting with no assignments to any
variable and assigning values to variables one-by-one until a solution is found or
it is determined that no satisfying truth assignment exists. The standard DPLL
algorithm is shown in Figure 1. In this algorithm DPLL is called with the empty
set as argument.

In Figure 1 and elsewhere in the text we use the following terms. A literal
is a variable or its complement. The complement of variable x is written ¬x.
A partial interpretation I is a subset of literals with the meaning that every
variable x such that x ∈ I has value True, every variable x such that ¬x ∈ I

has value False, and all other variables are unassigned. A contradiction means
some variable is either assigned or implied to have both True and False values.

The meaning of “easy inferences” in Figure 1 varies from solver to solver.
Minimally, it means unit clause propagation. Under a partial interpretation I, a
unit clause is such that the complements of all but one of its literals is in I and
neither the only other literal nor its complement is in I (that is, its associated
variable is unassigned). The single non-falsified literal of a unit clause will be
refered to as a unit literal below. In unit clause propagation, while there exists a
unit clause c under I, add the unit literal of c to I, thereby assigning it the value
that makes c True. As variables are added to I, one or more non-satisfied clauses

1657Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

Given: a set B of boolean formulas.

boolean DPLL(partial interpretation I) {
Add to I all "easy" inferences from B ∪ I

If I contains a contradiction, return False
If I is total (every literal or its negation is in I),

output I and return True
Pick a literal x to branch on (via some heuristic)

If DPLL(I ∪ {x})
return True

Else

return DPLL(I ∪ {¬x})
}

if (not DPLL(∅)) output "unsatisfiable."

Figure 1: Sketch of the Davis-Putnam-Loveland-Logemann algorithm.

may become unit clauses. This effect may propagate for several iterations. Some
solvers do much more ambitious (and more expensive!) “unit lookaheads.” For
example, for each unassigned variable, x check whether unit propagation gives a
contradiction from I∪x (resp., I∪¬x); if so, add ¬x (resp., x) to I. SBSAT uses
a different form of lookahead, called local-function-complete-lookahead, which is
described in Section 3.
The following steps are an overview of the operation of SBSAT:

1. Simplify the input BDDs, using both standard and tailored BDD operations.
These are described in Section 2.

2. Compute and memoize information about the resultant BDDs in state ma-
chines, called Smurfs. Smurfs are described in Section 3.

3. Do a DPLL search for a satisfying truth assignment. The search uses the
Smurfs to keep track of its current state information, to speed up inference
during branching, and (normally) to guide the search heuristic. Information
about failed computation paths is memoized in constraint clauses, also called
lemmas, in the style of many modern SAT-solvers. The search heuristic is
described in Section 4 and lemmas are described in Section 5.

A solver’s search heuristic picks the variable to branch on next depending

1658 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

on the current partial interpretation I. One possibility is to pick an open vari-
able, that is a variable not assigned a value in I, such that the variable appears
more often than any other open variable in non-satisfied constraints (constraints
are clauses in CNF formulas). Many modern CNF solvers use a variant (e.g.,
the Chaff family [Zhang 01]): these solvers “learn” extra clauses, called conflict
clauses (lemmas), as the search progresses; an oversimplification is that Chaff
picks the literal occurring in most clauses, both among non-satisfied clauses and
the conflict clauses. Some solvers using unit lookaheads branch on the open
literal which, when looked ahead on, gives the most inferences (for example,
van Maaren’s Marchl solvers [Heule 04]). BerkMin [Goldberg and Novikov 02]
picks an open variable out of the most recently inferred conflict clause, pre-
sumably increasing relevance, and among such variables, picks one similarly to
Chaff.

One design goal of SBSAT is to use the best features of modern backtrack
CNF-based SAT solvers: conflict-clauses, or lemmas, are used to turn a tree
search into a DAG search (see Section 5); non-chronological backtracking, in-
cluding backjumping, is employed (see Section 5); and advanced data structures
(c.f., the watched literals of [Lynce and Marques-Silva 02, Moskewicz et al. 01])
are implemented (specifically type WL in [Lynce and Marques-Silva 02]) to al-
low fast access to the lemmas. Heuristics have been developed to choose, keep,
and discard the lemmas appropriately. Such features have been used in CNF-
based SAT solvers in recent years, with the result that many CNF problems
considered very difficult just two or three years ago are now considered trivial.
A new feature of SBSAT (discussed below) is to precompute and memoize local-
function-complete lookahead information to support efficient implementation of
complex search heuristics.
The important features of SBSAT are the following:

1. It does as much BDD-type preprocessing as is feasible. The goals of pre-
processing are to 1) simplify the collection of BDDs; 2) uncover inferences;
and 3) collect and memoize information useful for a search heuristic. Each
search heuristic will have its own memoization requirements. Preprocessing
results in smaller search spaces which are traversed faster. We created a new
BDD operation, called strengthening, for revealing inferences and simplifying
a collection of BDDs while avoiding size explosion (see Section 2).

SBSAT does not attempt to reorder the variables. Rather, using the input
variable ordering, it does as much preprocessing as it deems useful, and then
depends upon DPLL search to finish the satisfiability check.

2. Preprocessing results are recorded in special automata called Smurfs which
consume a lot of space but which allow replacement of computations during
search with table lookups (see Section 3).

1659Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

3. We propose a new search heuristic which is made feasible due to information
memoized during preprocessing. Since BDDs encode more complex interre-
lationships than do CNF formulas, we can precompute complete lookahead
information on individual BDDs, considering all partial truth assignments
for a single input BDD. We can then combine precomputed lookahead infor-
mation from all BDDs during the search. We call this local-function-complete
lookahead (see Section 3). This is critical because, since we do not break in-
puts into CNF, there is more information in a single BDD than in a single
clause.

Several previous approaches (for example, [Puri and Gu 96], [Kalla et al. 00],
[Gupta et al. 03], [Giunchiglia and Sebastiani 99], [Paruthi and Kuehlmann 00],
[Damiano and Kukula 03], [Cimatti et al. 01], [Gupta and Ashar 98]) have used
hybrid algorithms, combining BDD tools and DPLL style search, but their meth-
ods and/or goals are quite different from ours. We distinguish between a few
here.

The work of [Damiano and Kukula 03] proposes a solver resembling GRASP
but with BDDs instead of clauses as input. During branching they choose a
direction on a variable, look at all the BDDs involving that variable and if any
BDD leads to 0, then they build a normal conflict clause and backtrack. They
mark edges in a BDD to help speed up the branching process: this is done more
efficiently with Smurfs (see Section 3).

Learning is moved to BDDs in the proposal of [Gupta et al. 03] which targets
Bounded Model Checking applications. Learned and original CNF clauses are
clustered into (small) BDDs around certain “seed” nodes, identified during or
before search, of a circuit graph. That is, learned clauses are not necessarily
entered into a “lemma” database at the point they are or would be “discovered”
during search. Clauses falsifying learned BDDs are passed to a normal SAT solver
as lemmas. Success of this approach depends on the heuristics used to choose the
“seed” nodes. The similarities to our work are that significant learning is done
in pre-processing as well as during search. However, our approach additionally
attempts to minimize the time needed per step for a search heuristic to compute
weights with Smurf structures that are insensitive to BDD variable orderings.
Incidentally we considered combining all lemmas into large BDDs but found that
impractical as did the authors of [Gupta et al. 03].

The work of [Novikov 03] proposes improved preprocessing techniques for
CNF SAT solvers. The basic idea is to analyze lookahead information on small
groups of variables (about 5). This somewhat resembles our notion of function-
complete lookahead (see Section 3) except that we rely on domain-specific, se-
mantic connections between variables to decide where the lookaheads are to oc-
cur, we look for inference information as well as additional information that will
help support an efficient implementation of complex search heuristics, and we

1660 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

retain the results of preprocessing in Smurfs for faster use by those heuristics.
In [Gopalakrishnan et al. 03] it is proposed to integrate SAT and BDD tech-

niques to help mitigate the problem of BDD explosion. Search is begun using
CNF techniques, then switched to BDD techniques when it appears that the
residual expression is small enough to be solved by BDDs. If not, CNF search
is continued and so on. This is quite different from what is proposed in this
manuscript.

It has been observed in [Kuehlmann et al. 01] that many CAD tasks operate
on circuits containing a significant number of redundancies. The approach taken
in that paper is to interleave structural transformations, CNF search, and BDD
sweeping on a common graph representing a given circuit. In our approach, all
BDD operations end with preprocessing to keep backtracking costs down. In
other words, BDD operations are performed on the input set of BDDs, then
search commences and BDD operations are no longer performed.

In [Hong et al. 97] BBD minimization operations that are guaranteed not to
increase BBD size are described. Such operations are similar to those we present
in this paper. Our motivation for developing those operations is the same: to
prevent BDD explosion while revealing inferences during preprocessing. We point
out that the reduction illustrated in Fig. 7 of [Hong et al. 97] is not pertinent
to our solver since we look for equivalences and single variable inferences and
would have found all those inferences just by looking at the first BDD (a), never
needing to restrict or prune it with anything.

The work of [Reda et al. 02] is specific to the problem of checking the equiv-
alence of functions. For such problems, the authors prove a relationship between
the search space of a simple variant of DPLL and the size of a BDD representing
the function the variant is applied to. This relationship is then exploited by a
proposed search heuristic for the variant. Although this is a step in the right
direction, the result depends strongly on the nature of the equivalence problem
and the DPLL variant studied is lacking the features that have caused search
techniques to become competitive in recent years, so the applicability of the
ideas expressed in this paper is uncertain.

In [Cabodi et al. 03], as in our work, BDDs are used in a preprocessing
“learning” phase to help prune a following backtrack search. The method of
approximate reachability is used to construct a smaller, and simpler, although
inaccurate BDD representation. The resulting information is dumped to CNF
form in one of several ways, differing mainly in how the BDD is to be cut through
the introduction of extra variables. The dumped CNF expression is larger than
the original by varying amounts (4–220% increase in clauses from reported re-
sults).

The HypBinRes algorithm[Bacchus and Winter 03], and the algorithm NiVER

and LiVER[Subbarayan and Pradhan 04], are preprocessors for CNF search en-

1661Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

gines, sharing an emphasis upon preprocessing with SBSAT. They simplify CNF
input by doing different forms of limited resolution. HypBinRes also aggressively
determines variable equivalences, partly by doing unit lookaheads on all open
variables during preprocessing. By contrast SBSAT also searches for equivalent
variables in preprocessing, but only with its function-complete lookaheads. SB-
SAT’s technique of looking for equivalences function by function generally gets
fewer inferences than unit lookahead does, although it may pick up some extra
ones because of the full classical analysis on each individual function. SBSAT’s
function-by-function lookahead is also cheaper.

The CirCUs solver[Jin and Somenzi 04] allows both CNF and BDD input,
and during preprocessing it combines clauses input into BDDs. It then does
BDD-type preprocessing to simplify the BDDs ([Jin and Somenzi 04] does not
list enough details for us to compare it carefully to SBSAT’s preprocessing).
CirCUs converts those BDDs to CNF for its search.

Recently, the March family of CNF solvers has shown a good deal of success
on BMC problems[Heule and van Maaren 04]. They differ from Chaff, Berkmin,
and other solvers most notably in that (i) they do not store lemmas, (ii) they
aggressively try to show literals to be equivalent to each other and use the
equivalences to guide their searches, and (iii) at decision points they do global
lookaheads on each open variable, keeping track of inferences and which vari-
ables lead to contradictions. In comparison, SBSAT does function-by-function
lookaheads, which are generally noticeably less powerful but far less expensive.
(SBSAT’s strengthening operation (see Section 2) captures some of these infer-
ences without the cost of global lookaheads.) Rather like SBSAT, March uses
the lookaheads to guide branching: roughly, branch on literals forcing many in-
ferences. We expect to compare March to SBSAT in future work.

In what follows, Sections 2 to 5 explain the operation of SBSAT including
two preprocessing phases, Smurfs, the search heuristic, and lemmas. Section 6
explains the use of the bmc tool in producing benchmarks suitable for testing with
SBSAT: the two forms of output presented by bmc help to test whether SBSAT
takes advantage of domain-specific information. Section 7 presents experimental
results. Section 8 presents conclusions and Section 9 presents thoughts on where
the research is going.

2 Preprocessing, Phase 1: Simplifying BDDs

SBSAT takes as input a Boolean formula that is a conjunction of functions, which
are represented in the preprocessing phase as BDDs. In case the input is a CNF
formula, a clustering algorithm is applied to construct a reduced set of BDDs,
each representing more than one and usually several clauses. At the moment,
clustering is restricted to matching commonly occurring clause patterns such as

1662 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

those representing an equation of the form

x = and(x1, x2, ..., xk).

To economize on space, such BDDs represent functions of no more than 17
variables (this was a decision based on current practical considerations and may
be increased if more RAM is available, using more variables should give better
performance). BDD operations are applied to the collection to simplify and reveal
inferences.

Because our state machine (described in Section 3) for an n-variable boolean
function may contain (at worst) close to 3n states (there is potentially a state
for every partial interpretation up to n variables and there are 3n partial inter-
pretations on n variables), we currently apply only BDD simplifications that do
not increase the number of variables per BDD. The BDD-type operations that
SBSAT applies include:

Primitive Inference: An individual BDD may force a literal to be True or
two literals to be equivalent this is unlike the case of an individual (non-
unit) clause. The set of BDDs is simplified for all such inferences found
(e.g., if x17⊕x297 is inferred, x297 is replaced with ¬x17 throughout). When-
ever other simplifications are made in preprocessing, primitive inferences are
again found and applied. This step is fairly trivial but yet sometimes results
in significant reductions of the number and size of input BDDs. Observe that
the inference x17⊕x297 would be hidden if the input were converted to CNF.

Existential Quantification: This is also a standard tool in BDD software
packages. Suppose variable xi appears in only one BDD, say b1. Then it
may be “eliminated”:

∃xi(b1 ∧ · · · ∧ bm) is logically equivalent to ∃xi(b1) ∧ b2 ∧ · · · ∧ bm.

SBSAT searches for a satisfying assignment for the second formula; since it
has fewer variables than the original set of BDDs, search is usually faster. If
the simplification is unsatisfiable, so is the original problem. If the simpli-
fication is satisfiable, the assignment t returned can be expanded to satisfy
the original BDD set by choosing any value of xi satisfying b1.

Strengthening: Function f strengthened by g is defined as

f ∧ ∃v1, v2, ..., vk(g)

where v1, v2, ..., vk are the variables appearing in g but not f . So, every vari-
able occuring in f strengthened by g also occurs in f . When strengthening
is applied to BDDs bi, bj, form b′j by existentially quantifying out of bj all
variables not occurring in bi, and then replacing bi with bi ∧ b′j . Similarly

1663Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

replace bj but using the new bi. The principal value of strengthening in SB-
SAT is that it may reveal additional inferences via primitive inference. An
example is shown in Fig. 2.

Strengthening is quite similar to the NPAnd (non-polluting and) of the
CUDD package [CUDD 04]. Like strengthen, NPAnd quantifies out variables
not occurring in the second BDD, but it similarly quantifies out variables as
it recurses down the BDD. Since the goal of strengthening is only to limit the
number of variables, strengthening does not quantify out additional variables
on subBDDs.

Restrict ([Coudert and Madre 90, Coudert and Madre 91]): This is also a stan-
dard BDD operation. restrict(f, c) removes from BDD f all branches contra-
dicting BDD c. Restrict is similar to an operation called generalized cofactor
(gcf) or constrain [Brace et al. 90, Coudert and Madre 91]; we do not use
gcf since it may increase the number of variables in a BDD. Both restrict
and gcf are highly dependent upon variable ordering. As noted, SBSAT
makes no attempt to reorder variables.

For SBSAT there are four benefits to restricting. (1) The BDDs produced
tend to be smaller. (2) Smaller BDDs result in smaller memoized struc-
tures (described in the next section). This is a great benefit since those
structures tend to grow exponentially with the number of variables. (3) The
local-function-complete lookahead heuristic (described in Section 4) seems to
make the right variable and value choices often. (4) Inferences are sometimes
revealed before search commences.

The preprocessing phase ends with a collection of BDDs but usually signif-
icantly reduced in number and in size, and in which some variables have been
eliminated. Since most BDD-type preprocessing is sometimes useful and some-
times not, SBSAT gives the experienced user the option of adjusting the amount
of preprocessing; for example, if complete domain-specific information is avail-
able, strengthening may not be worth the time. The following is an overview of
preprocessing, Phase 1.
Given a collection of BDD’s, SBSAT’s default is to:

1. Simplify using primitive inference until a fixed point is reached.

2. Simplify using both existential quantification and primitive inference until a
fixed point is reached.

3. Simplify using both strengthening and primitive inference until a fixed point
is reached.

4 Simplify using both restrict and primitive inference until a fixed point is
reached.

1664 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

1

0
1

0

1 0

x 1

0

0 1

x
2

x3
x
3

x

x

11 0 0

1

2

=> =>
0 1

0

1

1

0

0 1

0 1

V

x x

x

xx

2

3

2

3

3

1 0 1 0

1 0

Figure 2: Strengthening example: The operation of strengthening is applied
to the BDDs at the top of the figure and reveals an inference. The BDD at
the upper left corresponds to bj in the text and the BDD at the upper right
corresponds to bi in the text. To strengthen, first existentially quantify away
x1 from bj . This results in b′j which is shown at the bottom left of the figure.
The strengthen operation is completed by conjoining b′j and bi which are the
two leftmost BDDs on the bottom. The result is the BDD at bottom right. This
BDD reveals the inference x3 = 0.

Options are provided in SBSAT to allow an experienced user to demand a dif-
ferent order. Observe that since the above process continues until a fixed point
is reached, preprocessing times can vary greatly depending on the input.

3 Preprocessing, Phase 2: Memoization

After the BDDs are simplified as above, full classical-logic information about
possible partial interpretations is computed and memoized for each individual
BDD. As we shall note below, this structure (i) allows unit-time inference of
literals forced by any single BDD; (ii) holds information that is useful for search
heuristics; and (iii) holds lemma information. We describe here what is currently
implemented in SBSAT, but we note that it would be relatively easy to modify

1665Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

SBSAT to store additional information needed for a different search heuristic,
so long as that information pertains to only one BDD at a time.

The structure is a collection of state machines, one for each of the BDDs
remaining after the simplification described above. More precisely, each machine
is an acyclic Mealy machine: a transition outputs a (frequently empty) set of
literals. Each state machine is called a Smurf (for State Machine Used to Rep-
resent Functions). The Smurf represents all the BDDs for a function f , i.e., for
all orderings of the variables.

Here we define the Smurf for a BDD b as the end result of a series of
constructions. Our actual algorithm for constructing Smurfs is optimized in
two ways: 1) operations are not performed in exactly the sequence described
below, in particular the algorithm groups some of the passes together; 2) as in
constructing BDDs, we memoize extensively, in particular the Smurf state for a
specific residual function is created only once, even though that state may arise
in several input functions. We illustrate the Smurf for BDD ite(x1, x2 ∧ (x3 ⊕
x4), x4 ∧ (x2 ⊕ x3)) in Fig. 3.

1. Initialization: We use the term partial truth assignment to mean a function
mapping some (maybe none, maybe all) variables to {True, False}. Create
one state s for each partial truth assignment I to the variables of b. For each
I, form the residual function r of b for I by “plugging in” the values of I

into b and simplifying b. We refer to the state here as s = (I, r).

The start state of the Smurf is s0 = (∅, b). Any state s = (I, True) is final.

For each state s = (I, r), for each variable xi appearing in r, there are (i) a
transition labeled xi out of s to the state with partial truth assignment I ∪
{xi}, and (ii) a transition out of s labeled ¬xi to the state with partial truth
assignment I ∪{¬xi}. Additionally, all transitions are labeled with inference
lists that are initially empty. When construction is complete, literals in a
transition’s inference list are those that must be forced to value True when
extending a partial assignment corresponding to the transition’s outgoing
state by the literal labeling the transition during search. The machine is
acyclic since partial assignments associated with states get larger as paths
through the machine get longer.

2. State Elimination: Recall that, in the earlier BDD simplification phase,
SBSAT identifies any literals implied by any single BDDs (primitive infer-
ence), infers them, and simplifies the remaining BDDs. So b, the residual
function of s0, does not imply any literals.

For any state s = (I, r) where r implies literals λ1, . . . , λh, (i) change the
target of the transition to the state s′ with partial truth assignment I ∪
{λ1, . . . , λh}, and (ii) add λ1, . . . , λh to the transition’s inference list. Con-
tinue this way until no states’ residual functions imply any literals.

1666 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

Observe that any state s′ = (I ′, False), representing a partial truth as-
signment which falsifies b, is inaccessible from s0: if there was originally a
transition into it from some state sλ = (I ′, b′) on literal λ, then b′ implies
¬λ, so each transition into sλ is moved to some other state with partial
assignment (some superset of) I ′ ∪ {¬λ}.
Finally, remove all states inaccessible from s0.

3. State Merging: Across all Smurfs, states with the same residual function
are merged (as with reducing BDDs). Each state is now identified just by a
residual function r and no longer by a partial truth assignment.

Observe that any state represents a “vantage point” from which the entire
future of any search is visible, with respect to b alone, with a partial assignment
implied by the path to a state. Therefore, at any point during search, complete
information about possible outcomes with respect to b is available to a search
heuristic. This is what we mean by “local-function-complete-lookahead.” The
lookahead information is memoized in the states and transitions of the Smurfs.
Exactly what information is memoized depends on the search heuristic. In the
next section an example is given.

Complete future information for single functions is more than what is pro-
vided by CNF solvers but not enough to guarantee the smallest search space.
Memoized future information from all Smurfs must be combined by a search
heuristic to make the best possible guess at the next unassigned variable that
should be assigned a value.

For a BDD b with k variables, the Smurf can have, in the worst case, nearly
3k states (corresponding to the 3k partial truth assignments on k variables).
However several optimizations are possible. The most useful and important are
due to some frequently occurring special functions in circuit design: those involv-
ing conjunctions or disjunctions of many variables or functions. For example:

x = and(x1, x2, . . . , xk)

which evaluates to 1 if and only if x is assigned a value that is identical to the
value of and(x1, x2, . . . , xk). In such cases counters are used to simulate states
(the count being the number of unassigned variables in an equation that is not
yet satisfied) but some flexibility in memoizing search future information is lost.
To support the heuristic described in the next section, it is sufficient, however,
to memoize a function of the counter value. This will be described in the next
section.

4 Search: The LSGB Heuristic

The search phase begins after preprocessing is completed. Search consists of
extending partial assignments until either all Smurfs reach their final state, in

1667Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

1

ite(x1, x2 ∧ (x3 ⊕ x4), x4 ∧ (x2 ⊕ x3))
¬x2;¬x1, x3, x4

¬x1;x4 x2 x4 ¬x3;x2, x4

¬x4;x1, x2, x3

ite(x1, x3 ⊕ x4, x4 ∧ ¬x3) x3

ite(x1, x2 ∧ ¬x3, x2 ⊕ x3)

¬x1;¬x3, x4 x1;x2,¬x3

x3;x1,¬x4 x2;¬x3

¬x3;x4 ¬x2;¬x1, x3

x4;¬x3 x3;¬x1,¬x2

¬x4;x1, x3 ¬x3;x2

ite(x1, x2 ∧ ¬x4,¬x2 ∧ x4)

x1;x2¬x4

¬x1;¬x2, x4

x2;x1,¬x4

x1;x2 x1 ¬x1 ¬x2;¬x1, x4

x4;¬x1,¬x2

¬x4;x1, x2x3 ⊕ x4 x2 ⊕ x3

x3;¬x4 x2;¬x3

¬x3;x4 ¬x2;x3

x4;¬x3 x3;¬x2

¬x4;x3 ¬x3;x2

Figure 3: The Smurf representing ite(x1, x2∧(x3⊕x4), x4∧(x2⊕x3)). Rectangles
are states, labeled with their residual functions. The start state is at the top;
the final state, at the bottom, is labeled 1. Transition labels consist of a literal
followed by a semi-colon followed by a comma-separated list of literals with the
meaning that setting the leftmost literal to True forces each of the rightmost
literals to have value True. For example, Label ¬x2;¬x1, x3, x4 on a transition
out of the start state means that setting x2 to False forces x1 to False and
x3 and x4 to True. Multiple transitions from a state are shown as one line with
multiple labels. Not shown are lemmas.

1668 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

which case the original input expression is satisfied (see Page 12 for the meaning
of final state), or until some contradiction arises among the inferences generated
by Smurf transitions. In the former case, a solution is returned. In the latter
case, a backtrack occurs: that is, some of the variables in the partial assignment
become unassigned, at least one is reassigned, and some previously unassigned
variables are assigned values and the search proceeds by trying to extend the
new (current) partial assignment. To minimize the number of backtracks, it is
important to use a well-tailored search heuristic for choosing variables and values
when extending partial assignments and to use information learned during the
course of the search process. In this section an implemented search heuristic,
called LSGB for locally skewed, globally balanced, is described.

The LSGB search heuristic is developed by combining the effects of two valu-
able notions. First, search effort can likely be reduced significantly if variables
are chosen and given values so as to force the value of many literals (that is, make
inferences). The Smurf structure allows variables to be chosen and assigned val-
ues by efficiently taking into account inferences that will be made immediately
from the assignment, as well as after a second variable is assigned a value, as
well as after a third variable and so on.

A summary of all this looking ahead can be precomputed and memoized
in the Smurf structure as a number for instant access by the search heuris-
tic. It is our intuition that the impact of immediate inferences on search size is
usually greater than the impact of inferences that can be made after another
variable is assigned a value, and the impact of those is greater than the im-
pact of inferences that can be made after two variables are assigned values and
so on. Therefore, to account for the effect of inferences activated at varying
depths from the current state, we assign a weight to each Smurf transition.
The weight counts the number of literals forced by taking that transition, plus
the expected weight of literals forced below that state, where the weight of a
forced literal after t additional variable selections is 1/Kt. We note that K is
a parameter that has been discovered to significantly affect the performance of
the heuristic but which depends on the type of input. We have found a value
of 3 to generally give the best results. The ratio 1/Kt reflects the notion that
inferences become geometrically less valuable with increasing free variable assign-
ments needed to generate them. This is seen clearly for the case that Smurfs
correspond to disjunctions, or CNF clauses, where the value of an inference de-
creases by a factor of 2 for each free variable assignment needed to generate it
under the assumption that clauses are randomly generated (this is the Johnson
or Jeroslow-Wang heuristic [Johnson 74, Jeroslow and Wang 90]). For random
CNF expressions the Johnson heuristic proves powerful: instead of choosing
variables to greedily force the maximum number of inferences, the geometric
weighting causes variables to be chosen to maximize the expected number of

1669Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

satisfying assignments to unassigned variables, thereby improving the chance of
finding a satisfying assignment, if one exists. We merely generalized this idea for
more complex functions.

Formally, the weight w(s) of a state s is computed as follows. Let Ni denote
the number of inferences on the transition from state s to state si. If state s has
p successors {s1, · · · , sp} then

w(s) =
∑p

i=1 (w(si) + Ni)
K · p

and the weight on a transition out of state s to state si is the number of inferences
on that transition plus w(si). The weight of the final state is 0.

Thus, in Fig. 3, the transition out of the start state on ¬x1 has weight

1 +
1
K

.

The 1 on the left is due to the single inference on the transition, the 1/K term
equals 4/4K. The 4 in the numerator of this term is the number of inferences on
transitions out of the state x2 ⊕ x3, and 4 in the denominator is the number of
branches out of the transition. Since all transitions go to the final state, which
has weight 0, there is no contribution from state weights in the numerator. The
transition out of the start state on x4 has weight

0 +
8 + 1

K

K · 6 .

This weight is obtained as follows. Since the final state has weight 0 and since
the number of successors to the state labeled x2 ⊕ x3 is 4, the weight of the
state labeled x2 ⊕ x3 is the number of inferences, namely 4, to the final state
divided by 4K which is 1/K. The number of transitions out of the state labeled
ite(x1, x2 ∨ ¬x3, x2 ⊕ x3) is six, but five of the transitions go to the final state;
hence only inferences along those transitions contribute to the weight of the
state. The total number of inferences on those transitions is 8. The weight of the
state ite(x1, x2∨¬x3, x2⊕x3) is this weight plus the weight of state x2⊕x3, the
quantity divided by 6K since the number of successors is 6. Thus, the weight of
the ite state is (8 + 1/K)/(6K). The weight of the transition to that state from
the root is that weight plus the number of inferences on the transition, i.e., 0.

The second valuable notion that is part of LSGB is that balancing the size
of two subordinate search spaces generated from the two values the selected
variable may take tends to reduce search size, at least on random problems
(see [Freeman 95] for a discussion). To account for the desired balancing of sub-
ordinate search spaces, LSGB computes the sum S+

i of the weights of transitions
on xi out of all current Smurf states and the sum S−

i of the weights of tran-
sitions on ¬xi. LSGB selects xi such that S+

i · S−
i is maximum (this idea is

1670 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

borrowed from [Freeman 95]). The first value to assign xi is determined by the
larger of S+

i and S−
i .

This is a highly complex heuristic that requires a lot of information to com-
pute. We show how the Smurf structures can store information which makes the
use of LSGB little more expensive than some table lookups. All the weights are
memoized during preprocessing. During search, the inference weight of choosing
a variable and its value is obtained by looking up those numbers on the Smurf

transitions. This is easily done since there is always a pointer set to the current
state of each Smurf and the numbers of interest are on transitions out of the
current states. Exactly how these numbers are used is described below.

For the special counter-based Smurfs mentioned in the previous section, the
above calculation is simulated. Consider a Smurf state s representing a clause
x1 ∨ · · · ∨ xk with 2 ≤ k′ ≤ k still unassigned variables. We show by induction
that, for xi an unassigned variable, (i) the weight of transition xi is 0, (ii) the
weight of transition ¬xi is 1/(2K)k′−2, and (iii) w(s) = 1/(2K)k′−1:
Part (i) is trivial: setting xi to True satisfies the clause, so there are no inferences
and the transition goes to the final state, which which has weight 0.
[Base case: k′ = 2:] (ii) Let xg, xh be the unassigned variables. Transition ¬xg

forces xh and goes to the final state (which has weight 0), for a total weight of
1 = 1/(2K)2−2. (iii) w(s) = (0 + 1 + 0 + 1)/(4K) = 1/(2K).
[Inductive case: k′ > 2:] (ii) Transition ¬xi forces no literals and goes to a state
with k′ − 1 unassigned variables, which has weight 1/(2K)k′−2 by inductive
hypothesis. So the weight of the transition is also 1/(2K)k′−2. (iii) Out of s

there are 2k′ transitions. Half have weight 0 and half 1/(2K)k′−2, so

w(s) = (k′ · 0 + k′/(2K)k′−2)/(K · 2k′) = 1/(2K)k′−1.

These values are stored in the simulated “counted Smurf.” Weights for functions
x1⊕· · ·⊕xk are be computed similarly. To handle functions x = x1∨· · ·∨xk, we
coded the recurrence relation to solve for the weights; SBSAT computes however
many values it will need and stores them in a look up table during preprocessing.

LSGB is similar to the well-known “Johnson heuristic” (a.k.a. the Jeroslow-
Wang heuristic) [Johnson 74, Jeroslow and Wang 90], which has been applied to
CNF formulas, if K is set to 2 and input functions are clauses.

There are circumstances where other search heuristics are known to work
well. LSGB was intended for applications where not much is known about, or
easily determined about, a given problem. We show it performs well in that case.
If a problem is known to have a lot of exploitable structure, it may be better
to specify a different heuristic. We allow the experienced user some choice. The
Smurf structure supports a multitude of heuristics: on a simple heuristic, it may
not be needed, but (except for preprocessing time) it is not a hindrance either.
Additional work is needed on hybrid heuristics.

1671Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

5 Learning: Lemmas

SBSAT makes extensive use of backjumping, recent advanced data structures,
and lemmas. SBSAT creates clause lemmas, not BDD lemmas. A clause lemma,
or lemma, is an assignment of values to a subset of variables which is known to
be sufficient to cause the input formula to evaluate to False no matter what
values are given to the other variables. These could be managed as a BDD or a
collection of BDDs but we chose not to do this for reasons of efficiency. Lemmas
are used to prune the search space: when a partial assignment is such that some
cached lemma contains a single unassigned literal x and no True literals then x

is inferred True and the opposite branch (x = False) is skipped.
SBSAT creates lemmas lazily: during branching rather than precomputation.

SBSAT is not able to memoize lemmas in each state because lemmas are con-
sequences of the path taken to a certain state, not a consequence of the state
itself. However, lemmas could be memoized in each state if SBSAT did not share
states between Smurfs. A lemma is created for an inference given by a Smurf by
traversing the path from the start state of the Smurf to the current state and
inserting into the lemma the negation of all transition literals and the literal of
the inference for which the lemma is being built.

The rules for lemma creation (that is, conflict analysis) are as follows. A
lemma is created as the result of a conflict that arises when a variable is as-
signed a value. A conflict arises when the value of some variable is inferred both
True and False, due to the traversal of Smurf transitions or analysis of lemmas
currently stored in the lemma cache. The two lemmas associated with the con-
flicting inferences are resolved to create a new, temporary, backtracking lemma.
At this point, a backtrack to a previous node in the search space occurs. What
happens at this node depends on its type. Nodes can represent choicepoints (that
is, points at which a voluntary assignment of a value to a variable occurs), or
inferencepoints (that is, points at which a variable’s value is inferred). If the
node is an inferencepoint, there are two cases: (i) if the corresponding inference
exists as a literal in the backtracking lemma, the lemma associated with that
inference is resolved with the backtracking lemma; the result is a new backtrack-
ing lemma; (ii) if the variable is not in the backtracking lemma, it is ignored and
backtracking continues to another search space node a level higher. If the node is
a choicepoint there are two cases: (i) if it occurs in the backtracking lemma, back-
tracking stops and branching commences by switching the value of the branch
variable and turning the resulting assignment into an inference inferred by the
current backtracking lemma (this will prevent another value switch at this point
in case of a backtrack up to it); (ii) if it does not occur in the backtracking
lemma a backjump over the node occurs with the result that a branch on its
opposite value never occurs at this node. Backtracking lemmas that are UIP
(Unique Implication Point) lemmas are added to the lemma cache. All lemmas

1672 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

representing choicepoints are UIP lemmas. Backtracking lemmas that are not
UIP lemmas are deleted before forward search resumes.

Lemmas are treated like CNF clauses. During search, if a partial assignment
negates all but one literal of a lemma, that last literal is inferred True. Discovery
of such a situation is achieved using a modified zChaff-type data structure, based
on watched literals of type WL in [Lynce and Marques-Silva 02].

Our approach to backtracking is different than the approach taken by zChaff
in the following way. When zChaff is done collecting UIP lemmas (meaning
zChaff has backtracked to a choicepoint), it backjumps to one of the watched
literals contained in one of the new UIP lemmas which is highest in the search
tree. At this point, at least one of the new UIP lemmas will infer at least one
literal. SBSAT collects lemmas the same way zChaff does. But, where zChaff
backjumps to the highest watched literal in all new UIP lemmas, SBSAT back-
jumps to the lowest watched literal in all new UIP lemmas, where most often
the lowest watched literal is in fact the current choicepoint. SBSAT stores these
UIP lemmas in a special structure allowing their inferences to be applied and
reapplied at each necessary level of the backtrack tree. A UIP lemma is removed
from this structure and added into the lemma cache when both of it’s watched
literals become unassigned.

The special lemma structure is described as follows. Associated with each
choicepoint in a line to the root of the search tree is a linked list, possibly empty,
of UIP lemmas. UIP lemmas are added to the lemma list of a choicepoint when
searching below it. When backtracking through the choicepoint, all the inferences
of all UIP lemmas in the list are applied. Some lemmas will then be removed
from the list, because both watched literals are unset. When backtracking to this
choicepoint the second time, its UIP lemma list is pushed up to the next highest
choicepoint. This action allows the possibility that more than one variable is
reassigned on a backtrack: namely, those inferences that are due to lemmas in
the list.

All UIP lemmas are cached (see the section below on caching policy for
details). SBSAT currently does not restart and its lemma deletion policy is
rather simple: essentially delete the lemma least recently used. More work is
needed here to determine an optimum lemma caching heuristic.

Every solver using lemmas uses a lemma cache capable of storing a lim-
ited number of them. Too many lemmas stored increases overhead prohibitively.
Thus, some lemmas must occasionally be thrown out of the cache. The question
is how to decide which. For illustration, a lemma heuristic might be based on
the following idea: small lemmas and lemmas that made an impact in the past
should be kept and long lemmas and lemmas that had never been used should
be thrown out. The three level cache attempts to support this idea. In the first
level we give a lemma a chance to be useful. All lemmas start at this level. In the

1673Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

second level we have lemmas that either were useful in the past or are small. In
the third level there are lemmas that were used but not recently and we opted
to keep them around for a little bit longer rather then throw them away, just
in case they may prove useful in the not too distant future. Each of these levels
has a preset size in terms of the number of lemmas. Lemmas can be turned off
from the command line: this is useful for some problem sets, particularly some
hand-made problems, which do not seem to benefit from lemmas.

The specific lemma caching policy used currently by SBSAT is the following:

1. There are level 1, 2, and 3 lemma caches. About 1/10 of the entire lemma
cache is occupied by the level 1 cache. The level 2 cache is about 1/2 of the
lemma cache and the remainder of the lemma cache is used for the level 3
cache.

2. There is an order, from front to back, of the lemmas in each cache.

3. All lemmas are created and initially cached to the front of the level 1 cache.

4. If a lemma is used during backtracking (that is, caused an inference), the
lemma is moved to the front of the level 2 cache, regardless of which cache
the lemma had been in.

5. If a newly created lemma finds the level 1 cache full, it is still placed in
the level 1 cache. However, a lemma already existing in the cache will be
moved or eliminated to make room for it. This is decided as follows: if the
last lemma of the level 1 cache has less than 7 literals, then the last lemma
of the lemma 1 cache is moved to the front of the level 2 cache; otherwise
the last lemma of the lemma 1 cache is dropped.

6. If any lemma is moved to the front of the level 2 cache and the level 2 cache
is full, the last lemma of the level 2 cache is moved to the front of the level
3 cache but only if it has less than 7 literals, otherwise it is dropped.

7. If the level 3 cache is full the last lemma of the level 3 cache is dropped.

8. The lemma cache is currently set to 10000.

6 Translating bmc output to BDDs

Among the experiments we have run, those inputs relating specifically to bounded
model checking benchmarks have been obtained from the output of the bmc pro-
gram of [Biere et al. 99]. That program inputs a model checking problem and
a number of time steps and outputs a propositional logic formula representing
the BMC problem in three formats: a large propositional logic formula, three-
address code representing the parse tree for that formula, and a CNF translation
of the formula. Program bmc internally represents all formulas recursively as

1674 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

<function> = <variable>;
<function> = ¬<variable>;

<function> = <function> op <function>;

where op is one of ∨, ∧, →, ≡. The binary tree associated with such a recursion
is stored as a tree of pointers. Each node of the tree is represented as a triple of
pointers: to the left descendent, the right descendent, and the parent. A pointer
to the root of such a tree represents the output formula in three-address code.
Further processing inside bmc converts this to a CNF expression which is also
available as output. As an example, we use bmc to generate the three-address
code problems for queue benchmarks (see next section) as follows:

genqueue # > queue#

bmc -k # queue# -prove

where genqueue is part of the bmc suite and # is replaced by a number repre-
senting problem complexity. The CNF versions are created by replacing the last
line above with this:

bmc -k # queue# -dimacs

We use bmc to generate three-address and CNF benchmarks directly, instead of
taking already generated CNF formulas “off the shelf” so we have equivalent
three-address and CNF data. Thus, times we report for zChaff, BerkMin, and
Siege may differ from published times. But these times do not include time used
by bmc to construct the CNF formulas.

The largest propositional logic formula output by bmc is a conjunction of
smaller formulas, so the obvious course for SBSAT is to read in each of those
smaller formulas as a BDD. Nevertheless, for some of the bmc outputs, those
propositional logic formulas were much too large even to store as BDDs. Of
course, we also did not want to use the three-address code or the CNF repre-
sentation directly, since that would negate the benefits of Smurfs which are
to retain potentially exploitable domain-specific relationships. Our current ap-
proach is successful in spite of being amazingly simplistic:

1. We read in the three-address code and recreate the large propositional for-
mula so as not to lose domain-specific information. Starting at the bottom
of this formula we start building a BDD. We use a greedy algorithm: when
the BDD gets too large (10-18 variables) we insert a new variable to repre-
sent the BDD so far, include a BDD asserting that is what the new variable
represents, replace the part we have translated with the new variable, and
continue the process. This particular translation goes against our intention
of staying in the original domain, however, this simple process still proves
useful. In future research we hope to find a better algorithm.

2. To break each resultant BDD f down to a 10-variable maximum (so that
the Smurfs remain suitably small), we do the following:

1675Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

(a) Compute all projections fi of the BDD onto 10-variable subsets of its
variable set.

(b) Simplify the fi’s against each other as in Section 2 and delete resultant
fi’s which become True. Below we call the final simplified fi’s f1, . . . , fk.

Note that f logically implies each fi; we can think of them as “approxima-
tions” to f , in the sense that each is False on some, but probably not all,
of the truth assignments on which f is False.

(c) Recall that the goal is to replace f with a set of smaller BDD’s (which will
be treated, by the solver, as the conjunction of those smaller BDD’s). Note
(e.g., by truth table) that if f logically implies g, f is logically equivalent to
g ∧ (g → f). Let

f� = (f1 ∧ f2 ∧ · · · ∧ fk) → f.

Then f is logically equivalent to (the conjunction of) {f1, f2, . . . , fk, f�}.
If f� has ≤ 10 variables, we replace f with. {f1, f2, . . . , fk, f�}. Otherwise,
we replace f with {f1, f2, . . . , fk} plus the translation of f� into CNF. (Typ-
ically, f� is satisfied in most truth assignments, so the CNF translation is
fairly short.)

Again, this procedure is simplistic. We hope in the future to find a better
algorithm.

7 Experimental Results

We tested our ideas, using our implementation called SBSAT, on several popular
benchmark suites. We also ran current versions of SATZoo (v. 1) [SatZoo 03],
zChaff (v. 2003.10.9) [zChaff 2003], BerkMin (v. 561) [Berkmin 561], and Siege
(v. 4) [Ryan 03] on these benchmarks for comparison. In addition, we concocted
a class of random problems, called sliders, which resemble BMC problems in that
copies of the same function, each differing only in the input variables it depends
on, are conjoined. Making those functions random, in some sense, makes sliders
hard. Specifically, sliders are defined as follows:

Choose m to be an even number. This will be the number of variables and
the number of functions minus 2. Let the variable set be {x1, x2, ..., xm}.
Choose integers k > 2 and l > 2 to be small relative to m and choose inte-
gers 1 < i1 < i2 < ... < ik−2 < m/2 and 1 < j1 < j2 < ... < jl−2 < m/2.
Parameters k and l will be the number of inputs each function takes and
i1 . . . and j1 . . . are the base of indices of input variables that signify which
input variables are inputs to the functions. Choose f , a Boolean function
of k variables and g, a Boolean function of l variables. Finally, let O be a
m/2 dimensional 1-0 vector and call its ith component oi. Corresponding
to the choices above, a slider is the expression

1676 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

(∧
0≤h≤m/2 f(x1+h, xi1+h, ..., xik−2+h, x(m/2)+h)

)

∧
(∧

0≤h≤qm/2(g(x1+h, xj1+h, ..., xjl−2+h, x(m/2)+h) = oh)
)
.

In what follows, each oh is independently and uniformly chosen from {0, 1}.
We find sliders appealing because they resemble some real-world problem do-
mains and because f and g can be designed to force inferences to occur only
when nearly all inputs of f and g are assigned values. This fact makes conflict
analysis useless, and is challenging to a search heuristic which is looking for
information contained in groups of variables.

At this stage of our SBSAT implementation, lemmas are handled in a rather
primitive manner so we observe an unusually low number of backtracks per
second. All experiments were run on a single processor Pentium 4, 2 GHz, with
2 GB RAM.

7.1 Time consumption

Our first set of results, shown in Tab. 1, is for the problem of verifying a long
multiplier. The circuit definition is available from CMU at [Biere 99]. All bench-
marks of this set are unsatisfiable. The left column of the table shows the number
of time steps involved in the verification of each benchmark (see Section 6). Ex-
periments were run from 4 time steps to 70 time steps. The next three columns
present the observed performance of SBSAT on three-address inputs in total
number of choice points, total time, and search time. The next three columns
present the same information except when translated CNF formulas are input
(see Section 6). The next two columns present the performance of zChaff in
choice points and total time. We use the terms branching time and search time
interchangeably and total time is always the preprocessing time plus the search
time. The last three columns present the results of Siege, BerkMin, and SATZoo
on the CNF versions we generated.

Observe that SBSAT working in the user domain on three-address code shows
a slight advantage to working with the CNF translation. For example, the bench-
mark for which the bottom row of Tab. 1 is dedicated is solved in 455.52 seconds
using three-address inputs versus 532.48 seconds using the CNF translation of
the benchmark. It is interesting that in the case of CNF inputs, more prepro-
cessing seems to result in less searching. Continuing the example, the number
of choice points taken is 24942 for the three-address input versus 10878 for the
CNF translation. The fact that preprocessing varies so much from benchmark to
benchmark may reflect the imprecision of guesses made when trying to recreate
domain-specific information from given CNF formulas. Such preprocessing fluc-
tuations are not as pronounced when three-address codes are input to SBSAT.

1677Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

SBSAT on Three-Address SBSAT on CNF zChaff on CNF Siege BerkMin SATZoo

#time number branch total number branch total number total total total total

steps choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec) (sec)

4 791 0.17 1.80 614 0.71 1.38 1041 0.45 0.2 0.27 6.34

8 10844 7.50 11.97 11742 32.06 33.84 33272 50.37 12.73 18.9 73.86

12 22151 32.48 40.15 32639 157.10 160.72 122522 357.1 71.61 96.9 288.0

16 18315 46.56 57.77 34098 233.31 239.70 125026 366.7 177.4 200.6 408.0

20 12515 48.55 63.70 35206 316.93 327.35 164373 585.9 165.2 178.8 391.1

24 15355 88.06 107.65 24225 260.63 276.17 214263 790.3 542.8 312.2 640.5

28 16738 108.12 132.27 24142 309.66 331.36 220045 888.2 805.4 255.0 1028

32 15571 114.67 144.18 24902 368.68 397.73 216916 882.8 1035 334.6 1719

36 16250 128.18 161.42 22282 372.07 409.54 269856 1055 576.8 420.4 1622

40 18692 166.96 206.44 12155 238.04 285.64 289687 1103 845.3 442.6 1597

50 13751 138.80 194.84 11337 286.32 361.48 472053 2032 1552 466.9 3609

60 20920 255.97 332.17 11072 319.98 431.70 461867 2183 3340 709.2 3779

70 24942 356.42 455.52 10878 379.46 532.48 850942 5875 2860 844.7 7015

Table 1: SBSAT, zChaff, Siege, BerkMin, SATZoo times on the Long Multiplier
benchmarks

Observe that zChaff, Siege, and SATZoo cannot compete with SBSAT on
long multiplier benchmarks. The problem seems to be due to encountering many
more choicepoints during search. BerkMin visits only about an order of magni-
tude more choicepoints than SBSAT on CNF benchmarks but the slower imple-
mentation of lemmas in SBSAT enables BerkMin to be only a fraction slower
than SBSAT, in general. The difference in choicepoints suggests the success in
this case is due to the complex search heuristic used natively in SBSAT.

Table Tab. 2 shows timings for the well-known set of barrel benchmarks,
a part of the bmc suite. The three-address code equivalents were generated by
applying the bmc tool to the output of the genbarrel utility in the bmc suite. All
benchmarks are unsatisfiable. Runs were cut off prematurely if not completed
before 3600 seconds. This is reflected as a line (—) through a table entry. In this
and following tables no run of SBSAT failed to complete due to preprocessing:
that is, for SBSAT, a line — in a table entry means SBSAT ran out of time
while searching.

Observe that in all cases, SBSAT solved the problems constructed from the
three-address code without any search. This is probably because barrel problems
have many variables related by equivalences which are caught by SBSAT in
preprocessing. This raises the question of whether a BDD tool might also do
as well. This appears not to be the case, since we build a collection of BDDs
of about 10 variables each and then strengthen them against each other. The
inferences resulting from this process are enough to generate a contradiction
before search is applied. We suppose a BDD tool would either have attempted to
build a single BDD from the three-address code, in which case it would have been
forced to give up due to unmanageable sizes, or it would have used the conjoin
operation instead of the strengthening operation to combine the BDDs, probably
again taking too much space. We note that the work of [Jin and Somenzi 04] was

1678 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

SBSAT on Three-Address SBSAT on CNF zChaff on CNF Siege BerkMin SATZoo

benchmark numb branch total numb branch total numb total total total total

choice (sec) (sec) choice (sec) (sec) choice (sec) (sec) (sec) (sec)

barrel2 0 0.00 0.02 3 0.00 0.05 3 0.00 0.01 0.0 0.0

barrel3 0 0.00 0.08 13 0.00 0.08 48 0.00 0.01 0.0 0.02

barrel4 0 0.00 0.13 33 0.01 0.15 201 0.02 0.01 0.01 0.17

barrel5 0 0.00 0.47 354 0.21 0.66 8856 0.58 0.67 0.65 1.07

barrel6 0 0.00 0.82 1205 1.96 2.89 28110 2.81 5.97 5.56 4.19

barrel7 0 0.00 1.33 2848 8.51 11.10 66959 11.37 21.19 29.96 19.8

barrel8 0 0.00 2.02 4304 18.71 25.15 116858 31.98 136.7 298.3 58.4

barrel9 0 0.00 18.90 — — — 649532 254.6 41.24 89.27 216.0

barrel10 0 0.00 26.84 — — — 1801476 1191 86.34 184.0 304.8

barrel11 0 0.00 36.92 — — — — — 134.7 238.3 639.0

barrel12 0 0.00 48.54 — — — — — 927.1 999.3 1298

barrel13 0 0.00 62.79 — — — — — 629.9 1049 1817

barrel14 0 0.00 82.22 — — — — — 2122 3389 2970

barrel15 0 0.00 107.94 — — — — — — — —

barrel16 0 0.00 135.66 — — — — — — — —

Table 2: SBSAT, zChaff, Siege, BerkMin, SATZoo times on the Barrel bench-
marks

SBSAT on Three-Address SBSAT on CNF zChaff on CNF Siege BerkMin SATZoo

benchmark number branch total number branch total number total total total total

choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec) (sec)

queue4 41 0.0 0.1 19 0.00 0.11 32 0.00 0.01 0.0 0.02

queue8 651 0.07 3.04 291 0.10 0.49 561 0.05 0.04 0.05 1.86

queue12 4351 1.02 5.53 3875 4.38 5.52 11752 3.09 1.04 0.96 6.36

queue16 30835 14.7 22.3 41029 104 107 73407 62.22 30.27 32.38 16.86

queue20 311127 227 265 565559 2412 2420 698914 1874 400.4 401.0 1926

queue22 1052750 798 843 2016859 9356 9367 — — 1886 1050 —

queue24 3262464 2613 2666 — — — — — — 2724 —

Table 3: SBSAT, zChaff, Siege, BerkMin, SATZoo times on the Queue bench-
marks

pointed out as a possible way to achieve this for BDDs alone but we have not
experimented with this approach at this time.

Although the time taken by SBSAT in preprocessing is considerable, it is
shown to be well-spent as SBSAT, zChaff, Siege, BerkMin, and SATZoo all
have difficulty with the larger CNF versions of the barrel benchmarks. Thus, it
appears staying closer to the user-domain and preprocessing to reveal inferences
early has paid off on these benchmarks.

Tables Tab. 3 and Tab. 4 show timings for a set of queue benchmarks and
permute benchmarks generated by genqueue and genpermute, respectively, from
the bmc suite. Cutoff of runs was set at 3600 seconds for the queue benchmarks
and 60000 seconds for the permute benchmarks. All benchmarks are unsatisfi-
able. The pattern observed is similar to the previous sets of runs. When SBSAT
works with three-address code timings are much better than when equivalent
CNF inputs are used. Working in three-address code gets results faster than
other solvers on equivalent CNF inputs.

The story changes on the queue invariant benchmarks of Tab. 5. In this case,

1679Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

SBSAT on Three-Address SBSAT on CNF zChaff on CNF Siege BerkMin SATZoo

benchmark number branch total number branch total number total total total total

choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec) (sec)

permute2 0 0.00 0.01 1 0.00 0.05 1 0.00 0.01 0.00 0.00

permute3 5 0.00 0.04 14 0.00 0.07 11 0.00 0.01 0.00 0.00

permute4 68 0.00 0.65 47 0.00 0.11 52 0.00 0.01 0.01 0.02

permute5 174 0.01 10.1 304 0.10 0.27 199 0.02 0.02 0.03 0.54

permute6 893 0.09 11.46 1655 1.15 1.44 2021 0.28 0.17 0.16 1.41

permute7 5537 0.81 23.24 8551 8.77 9.21 16485 9.51 2.88 1.12 2.67

permute8 64607 70.21 71.16 58051 243.2 244.1 110492 172.93 21.6 15.7 27.73

permute9 454726 685.0 686.6 471422 2573 2575 361422 1018 315 228 234

permute10 1311291 2062 2064 — — — 2118409 12101 3003 3891 4497

permute11 20462503 39257 39260 — — — — — — — —

Table 4: SBSAT, zChaff, Siege, BerkMin, SATZoo times on the Permute bench-
marks

SBSAT on CNF zChaff on CNF Siege BerkMin SATZoo

benchmark number branch total number total total total total

choices (sec) (sec) choices (sec) (sec) (sec) (sec)

queueinv4 74 0.01 0.06 136 0.00 0.01 0.01 0.09

queueinv8 332 0.07 0.22 1122 0.04 0.06 0.06 1.01

queueinv12 1115 0.56 1.20 4368 0.22 0.31 0.12 2.35

queueinv16 1846 0.77 1.13 7721 0.27 0.53 0.24 3.52

queueinv20 4964 5.86 9.27 16258 1.63 0.73 0.81 9.76

queueinv24 8197 13.10 19.85 26995 2.96 1.89 1.90 13.97

queueinv28 14205 29.80 42.23 38145 5.69 3.88 3.40 23.31

queueinv32 11601 12.94 15.12 68641 3.20 3.74 4.20 13.59

queueinv36 26663 104.06 179.52 103281 23.58 9.59 10.33 56.42

queueinv40 35963 179.44 305.07 145691 38.08 17.62 16.46 74.84

queueinv44 48158 314.02 523.46 166634 46.42 57.38 25.16 105.1

queueinv48 56113 460.72 786.65 217615 79.95 62.00 43.61 152.6

queueinv52 62753 719.28 1183.19 297830 179.2 155.50 55.93 191.8

queueinv56 67894 943.76 1590.32 397142 239.1 514.90 82.13 239.8

Table 5: SBSAT, zChaff, Siege, BerkMin, SATZoo times on the Queue Invariant
benchmarks

SBSAT experienced memory problems. In order to fit the resulting Smurfs into
memory, the BDDs upon which they were based were required to be so small we
were forced to choose a rather small maximum size for BDDs. The result was
dismal. We did not feel it was worthwhile reporting them. Although SBSAT did
solve the CNF versions of these problems, the other solvers performed better
than in previous benchmark sets.

For completeness, we include results on the dlx suite available from [Velev 00]
in Tab. 6. Some benchmarks are satisfiable and some are unsatisfiable. We ap-
plied SBSAT to two variations: namely Trace and CNF formats (both available).
All problems in this suite are easy for all the solvers and that is about all that
can be said about them. We did not include results of dlx9 benchmarks because
SBSAT had some memory problems.

Finally, Tab. 7 shows the result of applying all the solvers to a family of slider
problems, some satisfiable and some unsatisiable, based on the following:

1680 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

SBSAT on Trace SBSAT on CNF zChaff on CNF Siege BerkMin SATZoo

Name number branch total number branch total number total total total total

choices (sec) (sec) choices (sec) (sec) choices (sec) (sec) (sec) (sec)

dlx1 c 525 0.02 0.12 592 0.03 0.12 1082 0.02 0.01 0.01 0.21

dlx2 aa 1755 0.06 0.22 2062 0.08 0.26 5224 0.10 0.06 0.02 1.83

dlx2 ca 7247 1.00 1.49 6861 0.91 1.60 9800 0.30 0.17 0.12 7.02

dlx2 cc 9655 2.03 2.60 9631 1.97 2.83 17825 0.95 0.36 0.26 8.58

dlx2 cl 9375 1.56 2.14 8872 0.57 2.33 25390 1.50 0.71 0.29 7.29

dlx2 cs 8489 1.31 1.84 7916 1.37 2.15 16310 0.77 0.20 0.23 7.90

dlx2 la 6233 0.64 1.06 6814 0.84 1.41 9246 0.26 0.11 0.10 5.32

dlx2 sa 2938 0.16 0.35 2168 0.15 0.38 5563 0.14 0.08 0.03 0.83

dlx2 cc bug01 6603 1.20 1.77 6448 1.25 2.11 14471 0.84 0.18 0.28 0.71

dlx2 cc bug02 6584 1.22 1.80 6432 1.25 2.09 13717 0.79 0.48 0.26 0.70

dlx2 cc bug03 6861 1.23 1.81 6628 1.23 2.09 22776 1.05 0.01 0.10 1.04

dlx2 cc bug04 6932 1.33 1.92 6699 1.28 1.12 12860 0.52 0.08 0.08 0.70

dlx2 cc bug05 3743 0.65 1.24 3413 0.62 1.47 376 0.01 0.22 0.13 0.83

dlx2 cc bug06 3630 0.60 1.19 3581 0.67 1.52 374 0.01 0.01 0.10 0.82

dlx2 cc bug07 4601 0.77 1.36 3567 0.65 1.50 316 0.01 0.03 0.05 0.78

dlx2 cc bug08 5964 1.06 1.65 5353 0.92 1.75 747 0.02 0.01 0.04 0.78

dlx2 cc bug09 2549 0.42 0.92 2693 0.33 1.18 321 0.01 0.01 0.02 0.66

dlx2 cc bug10 3423 0.55 1.15 3564 0.56 1.41 259 0.00 0.02 0.02 0.68

dlx2 cc bug11 6037 1.03 1.60 6886 1.35 2.20 10528 0.43 0.02 0.06 0.76

dlx2 cc bug12 7099 1.43 2.00 5702 1.05 1.91 11099 0.44 0.07 0.10 0.75

dlx2 cc bug13 5998 1.12 1.69 6133 1.08 1.91 12049 0.50 0.03 0.02 0.62

dlx2 cc bug14 253 0.01 0.59 298 0.01 0.87 234 0.01 0.12 0.02 0.63

dlx2 cc bug15 4405 1.27 1.93 3756 0.99 1.99 296 0.01 0.01 0.06 0.94

dlx2 cc bug16 252 0.01 0.58 297 0.01 0.86 233 0.01 0.13 0.01 0.63

dlx2 cc bug17 504 0.06 1.16 4453 1.01 2.97 5806 0.40 0.01 0.01 2.23

dlx2 cc bug18 1066 0.10 1.06 3236 0.78 2.51 337 0.01 0.01 0.02 2.28

dlx2 cc bug19 269 0.02 0.63 302 0.02 0.89 4452 0.15 0.01 0.00 0.64

dlx2 cc bug20 703 0.03 0.60 777 0.50 0.89 521 0.01 0.01 0.02 1.89

dlx2 cc bug21 331 0.02 0.59 360 0.02 0.85 458 0.01 0.01 0.01 0.62

dlx2 cc bug22 744 0.40 0.62 865 0.05 0.91 4456 0.19 0.01 0.04 0.70

dlx2 cc bug23 620 0.03 0.60 323 0.02 0.86 4726 0.14 0.01 0.10 0.76

dlx2 cc bug24 270 0.02 0.59 313 0.02 0.86 4034 0.14 0.01 0.04 0.63

dlx2 cc bug25 3931 0.75 1.32 3233 0.59 1.44 4406 0.14 0.01 0.02 0.67

dlx2 cc bug26 4200 0.83 1.42 3687 0.48 1.58 543 0.02 0.02 0.02 0.66

dlx2 cc bug27 591 0.02 0.52 2979 0.46 1.16 293 0.01 0.03 0.00 1.49

dlx2 cc bug28 2205 0.22 0.88 5275 1.09 2.05 339 0.01 0.08 0.01 0.96

dlx2 cc bug29 324 0.01 0.58 334 0.02 0.87 243 0.01 0.19 0.03 0.64

dlx2 cc bug30 311 0.02 0.60 267 0.02 0.89 323 0.01 0.30 0.02 1.83

dlx2 cc bug31 294 0.02 0.58 325 0.02 0.88 247 0.00 0.24 0.02 0.65

dlx2 cc bug32 278 0.02 0.59 317 0.02 0.86 242 0.00 0.02 0.01 0.67

dlx2 cc bug33 299 0.02 0.58 305 0.02 0.88 272 0.01 0.19 0.06 0.67

dlx2 cc bug34 329 0.02 0.60 506 0.03 0.86 298 0.01 0.30 0.02 1.81

dlx2 cc bug35 282 0.02 0.59 328 0.02 0.89 318 0.01 0.32 0.03 0.59

dlx2 cc bug36 279 0.02 0.61 325 0.02 0.86 316 0.01 0.08 0.07 0.66

dlx2 cc bug37 3643 0.71 1.28 3214 0.60 1.45 329 0.01 0.05 0.01 0.63

dlx2 cc bug38 6249 0.43 1.70 5854 1.09 1.93 9500 0.36 0.44 0.07 1.31

dlx2 cc bug39 3307 0.54 1.07 6058 1.04 1.88 12314 0.50 0.04 0.40 1.83

dlx2 cc bug40 8046 1.64 2.21 6748 1.40 2.26 9972 0.41 0.12 0.02 0.63

Table 6: SBSAT, zChaff, Siege, BerkMin, SATZoo times on the DLX bench-
marks. Benchmarks above the line are satisfiable the rest are unsatisfiable.

sliderm sat:

f = (x1 ⊕ (¬xi3 ∧ xi1) ⊕ ¬(xm/2 ∧ xi4)) ≡ ite(xi2 , xi1 ∨ ¬xm/2,¬xi1)

g = ¬x1 ⊕ (xj2 ⊕ (¬xj3 ∧ xj4) ⊕ xj3) ⊕ (xm/2 ≡ xj1)

where the input indices for f and g are different for each slider and are given by
the following tables:

1681Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

SBSAT zChaff Siege BerkMin SATZoo

Name number branch total number total number total total number total

choices (sec) (sec) choices (sec) choices (sec) (sec) choices (sec)

slider60 sat 1152 0.04 0.14 534 0.02 2900 0.16 0.09 60746 2.2

slider70 sat 1265 0.05 0.22 1511 0.07 329 0.01 0.01 58962 1.85

slider80 sat 111575 5.12 5.22 149153 52.8 38044 6.20 73.5 25 0.27

slider90 sat 3576 0.18 0.30 66152 14.3 47180 9.56 8.63 119680 5.54

slider100 sat 51994 2.69 2.83 104054 85.5 70693 35.8 48.2 710943 40.5

slider110 sat 282213 15.8 16.0 280126 173.3 576670 437.4 801.4 237571 12.41

slider120 sat 1539977 86.1 86.3 — — — — — 214258 11.42

slider60 unsat 10004 0.37 0.46 27414 3.4 19505 2.63 4.37 86216 4.28

slider70 unsat 9373 0.39 0.50 18157 1.93 17735 2.21 2.17 85962 3.4

slider80 unsat 190177 8.57 8.67 245112 116.6 215436 104.4 — 584733 35

slider90 unsat 626812 29.7 29.8 685026 513.4 501539 302.5 — 1428857 87.3

slider100 unsat 2403878 124.1 124.2 1495633 3094 2482913 6540 — 3995389 284

slider110 unsat 10256075 564.5 564.7 — — — — — 16966800 1285

Table 7: SBSAT, zChaff, Siege, BerkMin, SATZoo times on the Slider bench-
marks

f :

m i1 i2 i3 i4
60 13 15 17 24
70 12 15 17 24
80 15 17 33 24
90 15 17 24 33
100 15 17 24 43
110 15 17 24 43
120 15 24 43 57

g:

m j1 j2 j3 j4
60 12 16 18 27
70 12 15 19 27
80 12 16 18 27
90 12 16 18 27
100 18 26 27 42
110 20 26 27 42
120 6 18 27 42

and sliderm unsat:

f = (x1 ⊕ (¬xi3 ∧ xi1) ⊕ ¬(xm/2 ∧ xi4)) ≡ ite(xi2 , xi1 ∨ ¬xm/2,¬xi1)

g = (xm/2 ≡ (¬x1 ⊕ (xj2 ⊕ (¬xj3 ∧ xj4) ⊕ xj3) ⊕ (xj5 ≡ xj1)))

If “unsat” is in the name of the benchmark, then it is unsatisfiable, otherwise it

is satisfiable. The number in the name of each benchmark refers to the value of
m. The value of k for all benchmarks is fixed at 6 and the value of l is 6 or 7 (see
the beginning of this section for an explanation of this family of benchmarks and
the meaning of m, k and l). The two functions were chosen to yield somewhat
balanced BDDs, requiring nearly all inputs to have a value before an inference
could be established.

These are designed to be hard problems and no solver does well for even
“small” problems involving just a couple of hundred variables. The usefulness
of lemmas is rather limited on these benchmarks so we turned the lemmas off
on sbsat in Tab. 7. Preprocessing also did not accomplish much and the default
preprocessing took little time. We did not know how to turn lemmas off on the
other solvers. Both SBSAT and SATZoo did much better than the rest. This is
interesting because both are designed to take a “more general view” of what SAT

1682 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

SBSAT with Lemmas SBSAT without Lemmas

Name number branch total number branch total

choices (sec) (sec) choices (sec) (sec)

slider60 sat 1051 0.10 0.25 1152 0.04 0.14

slider70 sat 622 0.06 0.27 1265 0.05 0.22

slider80 sat 79884 39.2 39.4 111575 5.12 5.22

slider90 sat 2765 0.44 0.64 3576 0.18 0.30

slider100 sat 36761 15.4 15.9 51994 2.69 2.83

slider110 sat 171163 113.2 113.4 282213 15.8 16.0

slider120 sat — — — 1539977 86.1 86.3

slider60 unsat 9227 1.27 1.49 10004 0.37 0.46

slider70 unsat 7957 1.29 1.46 9373 0.39 0.50

slider80 unsat 148242 78.6 78.8 190177 8.57 8.67

slider90 unsat 429468 263.0 263.4 626812 29.7 29.8

slider100 unsat 1600514 1065 1066 2403878 124.1 124.2

slider110 unsat — — — 10256075 564.5 564.7

Table 8: SBSAT times and choice points on the Slider benchmarks, with and
without Lemmas.

by exploiting domain-specific information where possible and available. The gap
between these solvers and the rest is enormous.

Tab. 8 compares the running times of SBSAT on sliders with lemmas turned
off and on. The number of choice points generated did not change very much,
showing that learning from conflict analysis does not make much of a difference in
this case and, therefore, suggesting that these are hard problems. Observe that
SBSAT running time changes by an order of magnitude with lemmas turned
on. This clearly points to adjustments that must be made to lemma handling.
Despite this, SBSAT does better than all the solvers except SATZoo with lemmas
turned on.

Sample BDD statistics are shown in Tab. 9 and Tab. 10 for the queueinv

and longmult benchmarks. The meaning of each column is as follows: orig.
benchmark, number vars is the number of variables in the original benchmark;
orig. benchmark, number BDDs is the number of BDDs in the original bench-
mark; after preprocessing, number vars is the number of variables in BDDs
after SBSAT preprocessing; after preprocessing, number BDDs is the num-
ber of BDDs internal to SBSAT after preprocessing; SBSAT Times, preproc

is the number of seconds spent by SBSAT in preprocessing; SBSAT Times,

w/preproc is the time spent during search if the preprocessor is not run; SBSAT
Times, w/o preproc is the time spent during search if the preprocessor is run.

These results, plus those shown in Tab. 2, illustrate that the effect of pre-
processing varies considerably from problem to problem. Preprocessing did little
in the case of queueinv problems, helped considerably in the case of longmult
benchmarks, and was enough to solve the problem in the case of barrel bench-
marks.

1683Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

orig. benchmark after preprocessing SBSAT times (seconds)

benchmark number number number number search search

vars BDDs vars BDDs preproc w/ preproc w/o preproc

queueinv4 258 955 226 244 0.1 0.01 0.02

queueinv8 514 2273 464 522 0.2 0.07 0.19

queueinv12 1114 7335 1049 2489 0.6 0.61 1.56

queueinv16 1170 6496 1090 1286 0.3 0.80 1.88

queueinv20 2437 20671 2343 7142 3.5 6.06 11.80

queueinv24 3241 28214 3135 9948 6.6 13.51 21.73

queueinv28 4173 37006 4055 13250 11.4 30.75 38.39

queueinv32 3202 22468 3068 3751 2.1 13.13 23.49

queueinv36 6584 69972 6437 24438 72.6 105.36 178.63

queueinv40 7900 84615 7741 29832 125.9 182.08 284.83

queueinv44 9344 100699 9173 35786 207.8 332.60 433.52

queueinv48 10916 118222 10733 42300 327.3 462.11 794.42

queueinv52 12616 137187 12421 49374 466.2 736.97 958.61

queueinv56 14444 157590 14237 57008 655.0 943.40 1310.02

Table 9: Sample preprocessing statistics: the queueinv benchmark set.

orig. benchmark after preprocessing SBSAT times (seconds)

time number number number number search search

steps vars BDDs vars BDDs preproc w/ preproc w/o preproc

4 1343 1531 140 288 0.50 0.17 0.32

8 2474 2738 344 722 1.24 7.59 19.35

12 3605 3945 548 1161 2.50 32.70 64.69

16 4735 5151 752 1592 3.34 46.55 50.10

20 5866 6358 956 2026 4.89 64.13 128.75

24 6997 7565 1160 2465 6.74 87.76 185.40

28 8127 8771 1364 2896 8.89 108.18 229.03

32 9258 9978 1568 3330 11.54 115.13 137.96

36 10389 11185 1772 3769 14.49 126.77 278.14

40 11519 12391 1976 4200 18.22 167.46 440.67

50 14346 15408 2486 5286 27.72 138.57 520.70

60 17173 18425 2996 6377 39.49 256.16 611.12

70 19999 21441 3506 7460 52.91 355.51 729.46

Table 10: Sample preprocessing statistics: the longmult benchmark set.

7.2 Space consumption

As noted, SBSAT trades time for space. Our primary concern is with solver
time, but space is certainly an important issue. Accordingly, we have run a lim-
ited space comparison for CNF solvers and SBSAT. The results are shown in
Tables Tab. 11, Tab. 12, Tab. 13, and Tab. 14. The meaning of the columns of
these tables is as follows: BMC vars shows the number of variables in the classical
logic formula produced by bmc for the given benchmark; 3 addr vars shows the
number of variables in the 3-address code translation of the logic formula (it is
approximately the sum of the number of BMC vars and the number of tempo-
rary variables created to reflect sharing in the 3-address code); CNF number vars

shows the number of variables in the CNF output of bmc for the given benchmark;
CNF number clauses shows the number of clauses of that output; CNF number

literals shows the total number of literals of that output; SBSAT # vars bef

preproc shows the number of variables in BDDs of SBSAT before preprocess-

1684 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

BMC CNF SBSAT

#time BMC 3 addr number number number # vars # vars number

steps vars vars vars clauses literals bef preproc aft preproc states

4 435 4851 3694 11316 26896 1343 365 86747

8 783 9055 6858 21188 50452 2474 822 256481

12 1131 13259 10022 31060 74008 3605 1280 426230

16 1479 17463 13186 40932 97564 4735 1737 592727

20 1827 21667 16350 50804 121120 5866 2194 762461

24 2175 25871 19514 60676 144676 6997 2652 932210

28 2523 30075 22678 70548 168232 8127 3109 1098707

32 2871 34279 25842 80420 191788 9258 3566 1268441

36 3219 38483 29006 90292 215344 10389 4024 1438190

40 3567 42687 32170 100164 238900 11519 4481 1604687

50 4437 53197 40080 124844 297790 14346 5624 2027411

60 5307 63707 47990 149524 356680 17173 6768 2450150

70 6177 74217 55900 174204 415570 19999 7911 2869637

Table 11: Space requirements for the longmult problem set

BMC CNF SBSAT

benchmark BMC 3 addr number number number # vars # vars number

vars vars vars clauses literals bef preproc aft preproc states

queue4 89 1069 707 2655 6684 437 76 4104

queue8 260 3575 2246 9371 24008 1333 290 76155

queue12 519 7886 4713 21576 56071 2767 513 252389

queue16 815 12341 7461 34536 89703 4439 863 422474

queue20 1238 20633 11752 59282 155933 7118 1856 688994

queue22 1448 23995 13754 69656 183207 8352 2204 853701

queue24 1674 27596 15908 80822 212553 9682 2579 1023972

queue28 2174 35520 20672 105646 277809 12630 3411 1419415

queue32 2738 44307 26012 133382 350649 15898 4355 1885587

Table 12: Space requirements for the queue problem set

ing; SBSAT # vars aft preproc shows the number of variables in BDDs of
SBSAT after preprocessing; SBSAT number states shows the number of states
produced by SBSAT (many of these are shared by individual Smurfs). The
numbers in columns 3 addr vars and SBSAT vars bef preproc differ because
SBSAT might pick temporary variables at different points than the 3-address
code did. The 3-address code contains temporary variables for construction of
the 3-address code itself (breaking the big formula into 3-address code pieces).
SBSAT reconstructs a large formula by eliminating the 3-address code tempo-
rary variables but SBSAT has to introduce its own temporary variables because
large formulas may not be able to be handled.

Comparing the total number of variables in the CNF translation to the num-
ber of variables in the SBSAT translation, before and after preprocessing, gives
a simplistic comparison of search space sizes. Also relevant is the amount of
space needed for lemmas, since information processed into the Smurf states by
SBSAT must be gathered in lemmas in a CNF solver. This is difficult to mea-
sure meaningfully. Instead we measure the size of the memory heap used during
execution. The results are shown, measures in maximum bytes used, in Tab. 15,
for most of the bmc benchmarks.

1685Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

BMC CNF SBSAT

benchmark BMC 3 addr number number number number number number

vars vars vars clauses literals vars vars states

queueinv4 34 416 256 955 2421 140 69 16697

queueinv8 56 886 512 2273 5878 282 135 54284

queueinv12 78 2509 1112 7335 18671 1067 411 178222

queueinv16 94 2140 1168 6496 17172 822 369 227389

queueinv20 116 6128 2435 20671 53074 3041 1142 773577

queueinv24 132 7912 3239 28214 72245 3915 1513 826804

queueinv28 148 9952 4171 37006 94571 4894 1935 1524322

queueinv32 164 6114 3200 22468 60653 2726 1293 618146

queueinv36 186 17923 6582 69972 180696 12016 5444 2330404

queueinv40 202 20987 7898 84615 218183 14117 6523 3050507

queueinv44 218 24307 9342 100699 259337 16371 7695 3793711

Table 13: Space requirements for the queueinv problem set

BMC CNF SBSAT

benchmark BMC 3 addr number number number number number number

vars vars vars clauses literals vars vars states

permute2 21 170 93 285 679 39 0 –

permute3 40 371 220 717 1758 93 0 –

permute4 85 858 474 1782 4533 223 29 12540

permute5 126 1419 797 3160 8128 375 51 66189

permute6 168 2076 1182 4749 12320 549 79 135377

permute7 216 2901 1671 6770 17684 747 115 199472

permute8 351 4956 2752 11885 31520 1106 221 328843

permute9 440 6725 3758 16758 44551 1479 272 255349

permute10 528 8608 4849 21633 57713 1861 352 241232

permute11 624 10807 6130 27342 73167 2283 434 278564

permute12 728 13334 7616 33948 91090 2768 512 359966

permute13 840 16249 9322 41514 111659 3317 610 388994

permute14 960 19540 11263 50103 135051 3918 717 438321

permute15 1088 23243 13454 59778 161443 4595 847 796712

permute16 1513 33418 18782 86452 235177 7799 1047 280507

permute17 1710 39755 22371 105149 285905 9626 1189 129502

permute18 1900 46068 26008 121971 332070 11092 1322 148540

permute19 2100 53013 30017 140469 382883 12696 1481 163518

Table 14: Space requirements for the permute problem set

benchmark heap size benchmark heap size benchmark heap size benchmark heap size

barrel2 57347699 longmult4 177624072 queueinv4 75966624 queue4 71342822

barrel3 65738360 longmult8 238379638 queueinv8 164327032 queue8 172283234

barrel4 65898366 longmult12 375604642 queueinv12 212748644 queue12 234560404

barrel5 145132600 longmult16 508778176 queueinv16 225558180 queue16 297358828

barrel6 147410020 longmult20 569725386 queueinv20 611524038 queue20 551008538

barrel7 150566373 longmult24 705680618 queueinv24 718164568 queue24 751931588

barrel8 154689059 longmult28 765645384 queueinv28 1070479936 queue28 974986692

barrel9 374259779 longmult32 922572570 queueinv32 448472276 queue32 1226077516

barrel10 379225611 longmult36 1058907826 queueinv36 1469731282

barrel11 385121937 longmult40 1035171360 queueinv40 1917585056

barrel12 467617070 longmult50 1260972326 permute2 57358331

barrel13 476897812 longmult60 1564560974 permute3 58144832

barrel14 485636446 longmult70 1790079068 permute4 74235196

barrel15 572138081 permute5 169642700

barrel16 584031096 permute6 193695400

barrel17 1849457431 permute7 217373212

permute8 465487268

permute9 312690458

Table 15: Heap size for all bmc problem sets

1686 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

8 Conclusions

We showed there is merit in staying close to the user-domain, particularly on
BMC problems where we were able to explore performance for three-address
and translated CNF versions of the same inputs. When translating to CNF,
a general, lengthy expansion of the input formula is difficult to avoid. By not
translating we avoid dealing with large numbers of CNF clauses and instead work
with relatively few complex functions; those functions likely contain exploitable,
ungarbled domain-specific information. We have introduced and studied struc-
tures for maintaining and using that information efficiently in complex search
heuristics.

Our method of translating bmc output to BDDs (see Section 6) is still quite
primitive: since the bmc output tends to be too large to read in directly as BDDs,
we use a simple greedy algorithm to split the formula. Nevertheless, SBSAT’s
times in most of the experiments reported in this manuscript are significantly
better than zChaff’s. We anticipate that, as we refine our splitting strategy, as
well as search heuristics, SBSAT will be substantially improved.

We have four particular reasons to explain why SBSAT should outperform
CNF-based solvers on Bounded Model Checking problems:

1. SBSAT’s translation clusters a good deal of information about adjacent time
steps in the same BDDs. Accordingly, SBSAT will make some inferences that
initially go undetected in other solvers. A good example of this is illustrated
in Tab. 2. In that class of problems many variables are related by equiva-
lences and such related variables are usually in the same function describing
a particular time step. As long as these functions can be represented by rel-
atively small BDDs, SBSAT will catch these equivalances in preprocessing.

2. The zChaff search heuristic seems to us to be a combination of identify-
ing (learning) “key literals” (“back-door variables” [Kautz et al. 97]) and
branching on them eagerly. For a BMC problem with a very large num-
ber of time steps, there may be a great deal of similarity between one time
step and the next. We conjecture that, as a result, there will tend to be many
literals with very similar heuristic weights. SBSAT’s LSGB heuristic, with
its local lookaheads, might be better able to make effective choices in this
case.

3. Input is utilized before translation to CNF. Therefore, information relating
variables, available in the original problem, is not garbled by a translation
to CNF which can greatly increase the size of the input as well add variables
that do not exist in the original formulation. Because the domain-specific

1687Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

information remains intact, it is more likely to be exploited by specially de-
signed search heuristics.

4. SBSAT trades space for time. A lot more space is utilized by SBSAT than by
a typical SAT solver on a CNF translation of an input due to the construction
of Smurfs. However, this space is used to memoize data that can be used
over and over again by search heuristics. Therefore, the extra space used is
compensated for by the savings in time achieved through table lookups of
memoized data during search.

We do not have the data to confirm any of these conjectures, but our data shows
that the approach of SBSAT speeds up the solution of many bounded model
checking and other problems.

9 Future Work

There are numerous improvements that can be made and are some things that
must be studied due to the unconventional nature of the paradigm. Probably
the most significant is the effect of caching on performance. Since SBSAT at-
tempts to use very large blocks of memory, the question of how much time is
spent moving blocks dedicated to Smurfs between cache levels is important. A
similar problem arises in maintaining a large lemma base (the dlx problems, for
example, benefit greatly from a database of 100,000 lemmas). A related question
is to determine whether there is an easily implemented optimal way of storing
Smurfs which minimizes delays due to caching. Finally we mention the pos-
sibility of changing lemma cache size dynamically (more precisely, considering
varying portions of the lemma cache to be “alive”). Until now these questions
have not been considered: our main thrust has been to see whether the idea
of function-complete lookahead on non-translated conjunctions of Boolean func-
tions to support efficient implementations of complex search heuristics is feasible.

We have built SBSAT with only one search heuristic in mind. Clearly, heuris-
tics need to be tailored to the problem sets they are working on. Heuristics for
lemma generation and disposal should also be tailored to the problem domain.
In future work the possibility of tailoring heuristics will be studied. This includes
support for user-built modules responsible for collecting inferences and memo-
ization in preprocessing as well as support for user-built modules which define
search and lemma heuristics based on the memoized information. It also includes
attempts at attacking problems which, until now, have shown exponential com-
plexity for all search or BDD methods, for example the permute set from BMC.
We expect the study of sliders will help greatly in improving performance on
many BMC benchmarks due to the combination of the similarity they hold with
those benchmarks, their simplicity, and the ability to control their hardness.

1688 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

We have experimented with a three-level lemma cache (built into SBSAT)
and found it to be useful. We need to further explore its potential.

Splitting in BMC problems can be too fine-grained. We need to study how
to come up with a better splitter in such cases.

Currently, BDD preprocessing is limited to relatively small BDDs so that
reasonably sized Smurfs can be built. There is no reason we can’t build larger
BDDs during prepreprocessing in order to reveal more inferences and then fall
back on a set of smaller BDDs to build the Smurfs from. The extra effort in
building larger BDDs may not necessarily be wasted if no extra inferences are
revealed. Further research should tell us how best to proceed with the larger
BDDs.

SBSAT currently has problems solving some classes of benchmarks due to
memory limitations. These problems must be fixed. Some problems will disap-
pear with time due to advancements in computer hardware. But some problems
will have to be solved by finding clever ways to build useful Smurfs (that is, from
large enough input functions) that are small enough not to cause the memory
problems.

We are aware of the existence and use of more sophisticated clustering algo-
rithms. We anticipate such improvements in coming versions. These are currently
lacking only because our focus has been on proving the concept.

Work reported here represents the tip of the iceberg, so to speak. The reader
who is interested in knowing all the options implemented as well as explanations
of when they are effective is referred to the sbsat user manual which is available
from the corresponding author.

Acknowledgements

This work was supported in part by DoD contracts MDA-904-99-C-4547 and MDA-904-
02-C-1162.

References

[Bacchus and Winter 03] Bacchus, F., and Winter, J.: “Effective Preprocessing with
Hyper-Resolution and Equality Reduction”; Proc. 6th Internation Symposium on the
Theory and Applications of Satisfiability Testing, Portofino, Italy (2003). Available
from www.cs.toronto.edu/~fbacchus/Papers/BSAT2003.pdf.

[Berkmin 561] Berkmin homepage: http://eigold.tripod.com/BerkMin.html.
[Biere et al. 99] Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y.: “Symbolic Model

Checking without BDDs”; Proc. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), part of European Conferences on Theory and Prac-
tice of Software (ETAPS’99), Amsterdam, Lecture Notes in Computer Science 1579,
Springer, New York (1999), 193–207.

[Biere 99] Biere, A.: Bounded model checking page at CMU,
http://www-2.cs.cmu.edu/~modelcheck/bmc.html.

[Brace et al. 90] Brace, K. S., Rudell, R. L., Bryant, R. E.: “Efficient Implementation
of a BDD Package”; Proc. 27th ACM/IEEE Design Automation Conference, ACM,
New York (1990), 40–45.

1689Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

[Bryant 86] Bryant, R. E.: “Graph-Based Algorithms for Boolean Function Manipula-
tion”; IEEE Transactions on Computers, C-35 (1986), 677–691.

[Cabodi et al. 03] Cabodi, G., Nocco, S., Quer, S.: “Improving SAT-Based Bounded
Model Checking by Means of BDD-Based Approximate Traversals,”; Design, Au-
tomation, and Test in Europe (DATE ’03) (2003), 898–903.

[Clarke et al. 01] Clarke, E.M., Biere, A., Raimi, R. E., Zhu, Y.: “Bounded Model
Checking Using Satisfiability Solving”; Formal Methods in System Design, 19, (2001)
7–34.

[Clarke et al. 99] Clarke, E. M., Grumberg, O., Peled, D.: “Model Checking”; MIT
Press (1999).

[Cimatti et al. 01] Cimatti, A., Giunchiglia, E., Pistore, M., Roveri, M., Sebastiani, R.,
Tacchella, A.: “NuSMV Version 2: BDD-Based + SAT-Based Symbolic Model Check-
ing”; Available from http://sra.itc.it/people/roveri/papers/IJCAR01.ps.gz
(2001).

[Coudert and Madre 90] Coudert, O., Madre, J. C.: “A Unified Framework for the
Formal Verification of Sequential Circuits”; Proc. International Conference on
Computer-Aided Design, ACM, New York (1990), 126–129.

[Coudert and Madre 91] Coudert, O., Madre, J. C.: “Symbolic Computation of the
Valid States of a Sequential Machine: Algorithms and Discussion”; Proc. Interna-
tional Workshop on Formal Methods in VLSI Design, Miami Florida, USA, ACM-
SIGDA, New York (1991).

[CUDD 04] Colorado University Decision Diagram package. Available from
http://vlsi.colorado.edu/~fabio/CUDD/.

[Damiano and Kukula 03] Damiano, R., Kukula, J.: “Checking satisfiability of a con-
junction of BDDs”; Proc. 40th ACM/IEEE Design Automation Conference (DAC
’03), ACM, New York (2003), 818–823.

[Davis et al. 62] Davis, M., Logemann, G., Loveland, D.: “A Machine Program for
Theorem Proving”; Communications of the Association of Computing Machinery” 5
(1962), 394–397.

[Franco et al. 01] Franco, J., Dransfield, M., Vanfleet, W. M., Schlipf, J. S.; “State-
based Propositional Satisfiability Solver”; US Provisional Patent Application No.
60/296,380 (2001).

[Franco et al. 04] Franco, J., Kouril, M., Schlipf, J. S., Ward, J., Weaver, S., Drans-
field, M., Vanfleet, W. M.: “SBSAT: a state-based, BDD-based Satisfiability solver”;
Lecture Notes in Computer Science, #2919, Springer, New York (2004), 398–410.

[Freeman 95] Freeman, J.: “Improvements to Propositional Satisfiability Search Al-
gorithms”; Ph.D. Dissertation in Computer and Information Science, University of
Pennsylvania (1995).

[Giunchiglia and Sebastiani 99] Giunchiglia, E., and Sebastiani, R.: “Applying the
Davis-Putnam Procedure to Non-Clausal Formulas”; Proc. AI*IA ’99, Lecture Notes
in Artificial Intelligence, #1792, Springer, New York (1999).

[Goldberg and Novikov 02] Goldberg, E., Novikov, Y.: “BerkMin: A Fast and Robust
Sat-Solver Design”; Proc. Design, Automation, and Test in Europe (DATE ’02),
IEEE, New York (2002), 142–149.

[Gopalakrishnan et al. 03] Gopalakrishnan, S., Durairaj, V., Kalla, P.: “Integrating
CNF and BDD Based SAT Solvers”; Proc. IEEE International High-Level Design
Validation and Test Workshop (HLDVT ’03), IEEE, New York (2003), 51–56.

[Gupta and Ashar 98] Gupta, A., Ashar, P.: “Integrating a Boolean Satisfiability
Checker and BDDs for Combinational Equivalence Checking”; Proc. 11th IEEE In-
ternational Conference on VLSI Design: VLSI for Signal Processing, IEEE, New York
(1998), 222–225.

[Gupta et al. 03] Gupta, A., M. Ganai, C. Wang, Z. Yang, and P. Ashar.: Learning
from BDDs in SAT-based bounded model checking. Proc. of ACM/IEEE Design
Automation Conference, Anaheim CA, USA, 824–830, June 2003.

[Heule 04] Heule, M.J.H.: “March, towards a lookahead SAT solver for general pur-
poses”; Master’s thesis, TU Delft, The Netherlands, March 2004.

[Heule and van Maaren 04] Heule, M.J.H. and van Maaren, H.: “Aligning CNF- and
equivalence-reasoning”; Proc. 7th International Symposium on the Theory and Ap-

1690 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

plications of Satisfiability Testing, Vancouver, B.C., Canada (2004). Available from
http://www.satisfiability.org/SAT04/programme/72.pdf.

[Hoos 02] Hoos, H.: Satlib. Available from
www.satlib.org/Benchmarks/SAT/New/Competition-02/sat-2002-beta.tgz.

[Hong et al. 97] Hong, Y., Beerel, P., Burch, J., McMillan, K.: “Safe BDD Minimiza-
tion Using Don’t Cares”; Proc. 34th ACM/IEEE Design Automation Conference
(DAC ’97), ACM, New York (1997), 208–213.

[Jeroslow and Wang 90] Jeroslow, R. E., Wang, J.: “Solving propositional satisfiability
problems”; Annals of Mathematics and AI, 1 (1990), 167–187.

[Jin and Somenzi 04] Jin, H., Somenzi, F.: “CirCUs: A Hybrid Satisfiability Solver”;
Proc. 7th International Symposium on the Theory and Applications of Satisfiability
Testing, Vancouver, B.C., Canada (2004). Available from
http://www.satisfiability.org/SAT04/programme/24.pdf.

[Johnson 74] Johnson, D. S.: “Approximation Algorithms for Combinatorial Prob-
lems”; Journal of Computer and Systems Sciences, 9 (1974), 256–278.

[Kalla et al. 00] Kalla, P., Zeng, Z., Ciesielski, M. J., Huang, C.: “A BDD-based Sat-
isfiability Infrastructure Using the Unate Recursive Paradigm”; Proc. Design, Au-
tomation, and Test in Europe (DATE ’00), IEEE, New York (2000), 232–236.

[Kautz et al. 97] Kautz, H., McAllester, D., Selman, B.: “Exploiting Variable Depen-
dency in Local Search”; Available from
http://www.cs.washington.edu/homes/kautz/papers/dagsat.ps.

[Kuehlmann et al. 01] Kuehlmann, A., Ganai, M. K., Paruthi, V.: “Circuit-Based
Boolean Reasoning”; Proc. 38th ACM/IEEE Design Automation Conference (DAC
’01), ACM, New York (2001), 232–237.

[Lynce and Marques-Silva 02] Lynce, I., Marques-Silva, J.: “Efficient Data Structures
for Backtrack Search SAT Solvers”; Proc. 5th International Symposium on the The-
ory and Applications of Satisfiability Testing, Cincinnati, Ohio (2002), 308–315.
Available from
http://gauss.ececs.uc.edu/Conferences/SAT2002/Abstracts/lynce.ps.

[Marques-Silva and Sakallah 96] Marques-Silva, J., Sakallah, K.: “GRASP: a new
search algorithm for Satisfiability”; Proc. IEEE/ACM International Conference on
Computer Aided Design (ICCAD ’96), IEEE, New York (1996), 220–227.

[Moskewicz et al. 01] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Ma-
lik, S.: “Chaff: Engeneering an efficient SAT solver”; Proc. 38th Design Automation
Conference (DAC ’01), IEEE, New York (2001), 530–535.

[Novikov 03] Novikov, Y.: “Local Search for Boolean Relations on the Basis of Unit
Propagation”; Proc. Design, Automation, and Test in Europe (DATE ’03), IEEE,
New York (2003), 810-815.

[Paruthi and Kuehlmann 00] Paruthi, V., Kuehlmann, A.: “Equivalence Checking
Combining a Structural SAT-Solver, BDDs, and Simulation”; Proc. IEEE Interna-
tional Conference on Computer Design: VLSI in Computers and Processors, IEEE,
New York (2000), 459–464.

[Puri and Gu 96] Puri, R., Gu, J.: “A BDD SAT Solver for Satisfiability Testing: An
Industrial Case Study”; Annals of Mathematics and Artificial Intelligence, 17 (1996),
315–337.

[Reda et al. 02] Reda, S., Drechsler, R., Orailoglu, A.: “On the Relation Between SAT
and BDDs for Equivalence Checking,” International Symposium on Quality of Elec-
tronic Design (ISQED ’02) (2002), 394–399.

[Ryan 03] Ryan, L.: Siege (2003). Available from
http://www.cs.sfu.ca/~loryan/personal/.

[SatZoo 03] SatZoo homepage: http://www.cs.chalmers.se/ een/Satzoo/.
[Schöning 89] Schöning, U.: “Logic for Computer Scientists”, Springer, New York

(1980), Page 22.
[St̊almarck 94] St̊almarck, G.: “A System for Determining Propositional Logic Theo-

rems by Applying Values and Rules to Triplets that are Generated from a Formula”;
Swedish Patent No. 467,076 (approved 1992), U.S. Patent No. 5,276,897 (1994), Eu-
ropean Patent No. 0403,454 (1995).

1691Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

[Subbarayan and Pradhan 04] Subbarayan, S., and Pradhan, D.: “NiVER: Non in-
creasing variable elimination resolution for preprocessing SAT instances”; Available
from
http://www.itu.dk/people/sathi/niver-SAT2004.pdf.

[Tseitin 68] Tseitin, S.: “On the Complexity of Derivations in Propositional Calculus”;
In Structures in Constructive Mathematics and Mathematical Logic, Part II, A.O.
Slisenko, ed. (1968), 115–125.

[Velev 00] Velev, M. N.: Superscalar Suite 1.0. Available from
http://www.ece.cmu.edu/~mvelev.

[zChaff 2003] zChaff: http://www.ee.princeton.edu/ chaff/zchaff/index.html.
[Zhang 97] Zhang, H.: “SATO: an efficient propositional prover”; Proc. International

Conference on Automated Deduction (CADE ’97), Lecture Notes in Artificial Intel-
ligence 1249, Springer, New York (1997), 272–275.

[Zhang 01] Zhang, L., Madigan, C., Moskewicz, M. W., Malik, S.: “Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver”; Proc. International Conference
on Computer Aided Design (ICCAD ’01), (2001), 279–285.

1692 Franco J., Kouril M., Schlipf J., Weaver S., Dransfield M., Vanfleet W.M. ...

