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Abstract: The B Abstract Machine Notation (AMN) and the notation of Commu-
nicating Sequential Processes (CSP) have previously been applied to formalise the
UML class and state diagrams, respectively. This paper discusses their integrated use
in checking the consistency between the two kinds of UML diagrams based on some
recent results of research in integrated formal methods. Through a small information
system example, the paper illustrates a clear-cut separation of concerns in employing
the two formal methods. Of particular interest is the treatment of recursive calls within
a single class of objects.
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1 Introduction

The Unified Modeling Language (UML) [OMG 2001] has emerged as an indus-
trial standard for documenting requirements, specifications, designs, and imple-
mentations of information systems. UML supports not only the fundamental
object-oriented concepts including objects, classes, methods, and inheritance,
but also several contemporary approaches to information systems development:
use case and interaction diagrams have their origins in the scenario-based ap-
proach [Jacobson et al. 1992]; state diagrams are closely related to Harel’s state-
charts [Harel 1987] for reactive systems; class diagrams are based on the entity-
relationship approach. While the integration of different approaches is still very
much a subject of on-going research, the syntax and semantics of UML have
also attracted a great deal of attention and debate. The meta-model of UML
specifies rules on the composition of each kind of diagram as well as correspon-
dences among diagrams of different kinds. Engels et al. [2001] refer to these as
well-formedness rules. Given a set of well-formed UML diagrams about the same
software, there are various ways to validate their meanings individually as well
as collectively. For instance, state and interaction diagrams can be validated by
animation [Koskimies et al. 1998].

An important way of validation involves checking logical consistency: given
two UML diagrams of different kinds, any logical statements asserted in one
diagram must not be contradicted by the other diagram, and vice versa. For
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instance, if a class diagram says a book cannot be on loan and reserved by the
same person at the same time, the behaviour of a person must not be said to
the contrary in a state diagram. While such kind of analysis is facilitated by
the intuitiveness of UML diagrams to a certain extent, it can be much more
rigorously carried out with the help of formal logic provided that we can put the
meanings of these diagrams in a formal theoretical setting. This would involve
formalising the semantics of UML.

Various ways of formalising different parts (subsets) of UML have been pro-
posed. In most cases, a single formalism is employed for capturing the semantics
of UML. However, different kinds of UML diagram involve disparate sets of
concepts and meanings that can be more naturally and conveniently expressed
in different formalisms. For example, a process algebra such as Communicating
Sequential Processes (CSP) [Hoare 1985] or LOTOS [Bolognesi and Brinksma
1988], is arguably more suitable than a state-based formalism, such as the B
Abstract Machine Notation (AMN) [Abrial 1996] or the Z Notation [Spivey
1992], for formalising the meaning of a UML behavioural diagram (e.g. a state
diagram). On the other hand, B and Z are more convenient for capturing the
meaning of a UML class diagram.

Integrated formal methods are currently an active research area. In partic-
ular, there has been much interest in integrating state-based and event-based
(behavioural) formal methods [Bowman and Derrick 1999]. This paper discusses
the application of some recent results of research in integrated formal methods
by Treharne and Schneider [1999, 2002] for checking the logical consistency be-
tween class and state diagrams. While CSP and B have separately been applied
for similar purposes, their integrated application to UML discussed in this paper
is novel and constitutes the main contribution of this paper. Furthermore, pre-
vious attempts (e.g. [Meyer and Souquières 1999; Ledang and Souquières 2001])
to capture the UML behavioural semantics in B did not handle recursive calls
within a class. Tenzer and Stevens [2003] proposed the modelling of objects that
receive recursive calls as recursive state machines but did not address the con-
sistency between the class and state models. The integrated use of CSP and B
here allows us to tackle recursive calls within a class in a natural manner.

The next section defines the consistency problem addressed in this paper
with a motivating example. Section 3 briefly describes the application of the B
AMN to formalising the class model. Section 4 illustrates the use of a single
CSP control-loop process to describe the state-machine behaviour of a system
of interacting objects. Section 5 explains the role of abstract machine operations
in relating state-machine behaviour to class structure. Section 6 outlines the
application of Treharne and Schneider’s formal technique for checking the con-
sistency between state-machine behaviour and class structure. Section 7 gives
the conclusion and identifies some further work.
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Figure 1: A class diagram

2 A Motivating Example

As a motivating example, let us consider a small information system that handles
travel bookings. There are two classes of objects, namely, Flight and Car Hire.
Figure 1 shows a UML class diagram for the system. A passenger’s itinerary
may consist of several connecting flights and the system maintains one booking
for each flight in such an itinerary; hence, there is the “connect” association
among flight bookings. The system also maintains car hire bookings for flight
passengers hiring cars at their destination airports. Since a passenger may “fly”
and then “drive” away from the destination airport in the same itinerary, there
is a “flydrive” association between the two classes. Note that a flight booking
can be associated with either another flight (in a connect association) or a car
hire (in a flydrive association) but not both at the same time.

We can determine the functionality of a system by considering how the system
is to be used, i.e. use cases of the system. Each use case may be elaborated by one
or more scenarios of interaction between the actor(s) and the system’s objects
as well as interaction among the objects. Figure 2 shows a UML interaction
diagram describing a particular scenario of the “Cancel a flight” use case. It
shows the actor and objects involved in the scenario and the order in which they
send call messages to each other. The actual receipt of a (operation) call message
by an object is termed a “call event” and the desired sequences of call events
happening to an object can be modelled by a state machine and represented by
a state diagram in UML. Figure 3 shows a state diagram for individual Flight
objects.

If the state machine of an object involves any actions that affect the object’s
associations with other objects, it needs to be checked against the class structure;
if it also involves transitions that are conditional upon the machine-states of
other objects of the same class, then the combined state-machine behaviour of
the whole class of objects should be checked against the class structure. More
generally, since objects of different classes may interact by sending call messages
to each other, the combined behaviour of the classes of objects involved need to
be checked against the class structure.
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Figure 2: An interaction diagram for the “Cancel a flight” use case

Booked

Connected

•

Flydriven

connect(ff)

[ff is valid]/next:=ff/return “ok”

[else]/return “no” cancel()/next.cancel()

cancel()

flydrive(cc)

[cc is valid]/car:=cc/return “ok”

[else]/return “no” cancel()/car.cancel()

Figure 3: A state diagram for Flight Booking objects

3 Class Structuring in B

The B-Method is a formal method for developing software based on a single
uniform notation known as Abstract Machine Notation (AMN) [Abrial 1996;
Schneider 2001]. Using the B-Method, a system is modelled as an abstract ma-
chine consisting of some state variables and some operations on the state vari-
ables. Following Lano [Lano 1996], a class of objects can be modelled as a single
abstract machine that carries a set with elements identifying the (currently) ex-
isting objects and a number of functions corresponding to the class attributes.
For instance, a class C with attributes a, b, and c can be modelled by a B
machine of the form:
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MACHINE CAM
SETS CSET
VARIABLES cset , afun, bfun, cfun
INVARIANT

cset ⊆ CSET ∧
afun ∈ cset → aTYPE ∧
bfun ∈ cset → bTYPE ∧
cfun ∈ cset → cTYPE ∧

. . .

END

where CSET is the given set identifying all possible objects of class C and
aTYPE , bTYPE , and cTYPE are the types of attributes a, b, and c, respectively.

Associations between classes are in general translated into INVARIANT
relationships between variables and given sets of the classes involved. This nor-
mally requires the use of SEES and USES clauses in the corresponding B
machines. For instance, if class C mentioned above has a strictly one-to-one as-
sociation relationship with class D, we can capture the relationship with a total
injective function in the abstract machine for class D as follows:

MACHINE DAM
USES CAM
SETS DSET
VARIABLES dset , assoc, . . .

INVARIANT
dset ⊆ DSET ∧
assoc ∈ dset � cset ∧
. . . . . .

END

One important advantage of modelling classes as abstract machines is that
we can describe associations more precisely in AMN than we can do with a UML
class diagram. For instance, the following abstract machines model the Flight
and Car Hire classes as shown in Figure 1:
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MACHINE FlightAM
USES CarHireAM
SETS FLIGHTSET
VARIABLES flight ,next , car
INVARIANT flight ∈ F(FLIGHTSET ) ∧ next ∈ flight �� flight ∧
next+ ∩ id(flight)=∅ ∧ car ∈ flight ��carhire ∧ dom(next) ∩ dom(car)=∅
INITIALISATION flight := ∅ ‖ next := ∅ ‖ car := ∅
OPERATIONS
· · ·
END

MACHINE CarHireAM
SETS CARHIRESET
VARIABLES carhire
INVARIANT carhire ∈ F(CARHIRESET )
INITIALISATION carhire := ∅
OPERATIONS
· · ·
END

The “connect” association is represented by a partial injective function next
from the flight set to itself, i.e. a flight can be a connecting flight of at most one
other flight and not every flight has a connecting flight. We have further stipu-
lated that a flight cannot be a connecting flight of itself directly or indirectly via
some intermediate connecting flight(s), i.e. next+ ∩ id(flight) = ∅, which cannot
be expressed in the UML class diagram. Note that next+ is the non-reflexive
transitive closure of next . The “flydrive” association is represented by another
partial injective function car . The operations of the above abstract machines
will be considered in Section 5.

4 Behavioural Modelling in CSP

A UML state diagram describes the state-machine behaviour of an object in
terms of states, events, and transitions, as well as any actions that accompany
the transitions. We may extract from a state diagram the desired sequences of
call events happening to an object and describe them by a CSP process. For the
discussion in this paper, we ignore other kinds of events such as change events
and we use the following simplified syntax of CSP (for the time being):

P ::= a → P | c?x 〈E (x )〉 → P | d !v{E (v)} → P | P1 � P2 |
P1 � P2 | �x |E(x)

P |if b then P1 else P2 end | S (p)
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where a is a synchronisation event and can be in compound forms such as a.i ,
c and d are communication channels for inputs and outputs, respectively, x
represents input variables, v represents output values, E (x ) is a predicate on x ,
b is a boolean expression, and S (p) refers to a process expression parameterised
by expression p. The process a → P first engages in event a and then behaves
as P . The process c?x 〈E (x )〉 → P is prepared to input a value along channel c
into variable x provided that E (x ) is true and then behaves as P . The process
d !v{E (v)} → P is prepared to output any value v for E (v) is true along channel
d and then behaves as P . P1 � P2 is a process that is prepared to engage in one
of the initial events of either P1 or P2; once an initial event of Pi (i =1 or 2)
chosen by the environment has happened, it behaves as Pi afterwards. P1 � P2

is a process that may choose to behave as either P1 or P2 but the choice is
nondeterministic. �

x |E(x)
P is the indexed nondeterministic choice in which P

may take any value x such that E (x ) is true. The if expression makes the choice
between P1 and P2 depending on the boolean expression b in the usual way.
Finally, S (p) is a process name with a parameter expression p; we can define
a process with the name S (p) recursively by mentioning its own name S (p′)
(where p′ is an expression for the parameter p) in its definition.

The following CSP process describes the desired sequences of events happen-
ing to a Flight object according to the state diagram in Figure 3 :

Flight =̂ new → Booked

Booked =̂ (cancel → Stop)

� (connect → (Booked � Connected))

� (flydrive → (Booked � Flydriven))

Connected =̂ cancel → Stop

Flydriven =̂ cancel → Stop

A Flight object is initially prepared to engage in the new event and then
behaves as process Booked . Booked accepts either cancel , connect , or flydrive
initially. If a cancel event takes place, the process will cease to engage in any
further events (as described by the special process Stop). If a connect event
occurs instead, the process may then choose to behave as Booked again from
the beginning, or as another process Connected ; the (nondeterministic) choice
depends on the validity of the input parameter of the connect event, which we
shall elaborate below. Similarly, if a flydrive event occurs initially, the Booked
process may choose to return to its initial state, or behave as process Flydriven.
Both the Connected and Flydriven processes are prepared for a cancel event
initially and then stops.

We can model a state machine more precisely in CSP by taking into account
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any input parameters and (some) actions associated with individual events. For
a Flight object, we have:

Flight(i) =̂ new .i → Booked(i)

Booked(i) =̂ cancel .i → Stop

� connect c©.i?x : FLIGHTSET →
(connect�.i !“no” → Booked(i)

� connect�.i !“ok” → Connected(i))

� flydrive c©.i?y : CARHIRESET →
(flydrive�.i !“no” → Booked(i)

� flydrive�.i !“ok” → Flydriven(i))

Connected(i) =̂ cancel .i → Stop

Flydriven(i) =̂ cancel .i → Stop

We have parameterised process names and indexed events and actions with
the identify of an object i . The “connect c©.i?x : FLIGHTSET” notation stands
for inputting a value of the set FLIGHTSET along the connect c©.i channel and
storing it in x ; it models the receipt of the call event connect by object i with an
input parameter x . On the other hand, the “connect�.i !m” notation stands for
outputting the value of the expression m along the connect�.i channel; it models
the “return” of the call event connect by object i with an output parameter value
m. The suffixing of connect with c© and � is necessary because channels are for
one-way message passing in CSP.

Note that we have ignored the sending of call messages to other objects in the
above CSP processes. Such actions could be modelled in CSP as synchronised
input and output operations between objects if we model objects as concurrent
processes. Instead, we can use a single “control-loop” process to describe the
state-machine behaviour of a whole class of objects, provided that we give up any
concurrency among them. The following process models the desired sequences of
events and actions for the whole class of Flight objects:

FlightSM =̂ F (∅, ∅, ∅, ∅)
F (b, c, f , φ) =̂ FLIGHTSET = b ∪ c ∪ f ∪ φ &

�i|i∈δ
new !i{i ∈ δ} → F (b ∪ {i}, c, f , φ)

(where δ = FLIGHTSET − (b ∪ c ∪ f ∪ φ))

� connect c©?(i , x )〈i ∈ b ∧ x ∈ FLIGHTSET 〉 →
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(connect�!“no” → F (b, c, f , φ)

� connect�!“ok” → F (b − {i}, c ∪ {i}, f , φ))

� flydrive c©?(i , y)〈i ∈ b ∧ y ∈ CARHIRESET 〉 →
(flydrive�!“no” → F (b, c, f , φ)

� flydrive�!“ok” → F (b − {i}, c, f ∪ {i}, φ))

� cancel?i〈i ∈ b ∪ c ∪ f 〉 →
if i ∈ c then

F ′(b, c − {i}, f , φ ∪ {i})
else if i ∈ f then

F (b, c, f − {i}, φ ∪ {i})
else

F (b − {i}, c, f , φ ∪ {i})

F ′(b, c, f , φ) =̂ �
j |j∈b∪c∪f

cancel .j →

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

if j ∈ c then
F ′(b, c − {j}, f , φ ∪ {j})

else if j ∈ f then
F (b, c, f − {j}, φ ∪ {j})

else
F (b − {j}, c, φ ∪ {j})

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In order to keep track of the machine-state of each individual object, the
FlightSM process carries four sets of object identities, b, c, f , and φ correspond-
ing to the Booked, Connected, Flydriven, and Final (

⊙
) states, respectively.

Every event except new now takes an object identity as an input parameter and
is guarded according to the applicable state(s) of the event. For instance, the
connect event is only applicable to objects in the Booked state. The new event
does not take an input parameter but nondeterministically outputs a “free” ob-
ject identity. The choice following the connect event is nondeterministic because
they depend on the “connect” associations among objects and the process does
not maintain such information.

Cancelling a connected flight is supposed to cancel also its chain of connecting
flights; each Flight object in the chain receives a cancel call message and sends
the same message to the next object in the chain, if there is one. The recursive
definition of FlightSM lends itself to the description of such “recursive” calls
among Flight objects. Each recursive call of F ′(b, c, f , φ) in the above process
definition begins with a cancel event for a connecting Flight object, whose iden-
tity is nondeterministic again because the process does not maintain information
about connections (associations) among Flight objects.

Note that the sending of cancel call messages to Car Hire objects is still
ignored in FlightSM above. Cancelling a “flydriven” flight is supposed to cancel
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Hired •
cancel()

Figure 4: A state diagram for Car Hire objects

also its associated car hire; the Flight object should send a cancel call message
to the associated Car Hire object. We shall take care of that after considering
the control-loop process for Car Hire objects.

Figure 4 shows a state diagram for Car Hire objects. The state machine
of a Car Hire object has only two states, namely Hired and Final, with Hired
being the initial state. The only possible event at the Hired state is cancel().
The following control-loop process models the behaviour of the class of Car Hire
objects:

CarHireSM =̂ C (∅, ∅)
C (h, φ) =̂ CARHIRESET = h ∪ φ &

�i|i∈ε
hire!i{i ∈ ε} → F (h ∪ {i}, φ)

(where ε = CARHIRESET − (h ∪ φ))

� cancel?i〈i ∈ h〉 → C (h − {i}, φ ∪ {i})

We have described the state-machine behaviour of two classes of objects
separately by two CSP control-loop processes. We can take a further step to use
a single control-loop process to describe the state-machine behaviour of both
classes, ie. the entire system. Such a process can be obtained by “merging” the
two that we have already defined as follows:

SystemSM =̂ S (∅, ∅, ∅, ∅, ∅, ∅)
S (b, c, f , φf , h, φc) =̂ FLIGHTSET = b ∪ c ∪ f ∪ φf &

�i|i∈δ
newf !i{i ∈ δ} → S (b ∪ {i}, c, f , φf , h, φc)

(where δ = FLIGHTSET − (b ∪ c ∪ f ∪ φf ))

� connect c©?(i , x )〈i ∈ b ∧ x ∈ FLIGHTSET 〉 →
(connect�!“no” → S (b, c, f , φf , h, φc)

� connect�!“ok” → S (b − {i}, c ∪ {i}, f , φf , h, φc))

� flydrive c©?(i , y)〈i ∈ b ∧ y ∈ CARHIRESET 〉 →
(flydrive�!“no” → S (b, c, f , φf , h, φc)

� flydrive�!“ok” → S (b − {i}, c, f ∪ {i}, φf , h, φc))

1549Yeung W.L.: Checking Consistency between UML Class ...



� cancelf ?i〈i ∈ b ∪ c ∪ f 〉 →
if i ∈ c then

S ′(b, c − {i}, f , φf ∪ {i}, h, φc)

else if i ∈ f then

�
j |j∈h

cancelc .j →
S (b, c, f − {i}, φf ∪ {i}, h − {j}, φc ∪ {j})

else

S (b − {i}, c, f , φf ∪ {i}, h, φc)

� CARHIRESET = h ∪ φc &

�i|i∈ε
newc!i{i ∈ ε} → S (b, c, f , φf , h ∪ {i}, φc)

(where ε = CARHIRESET − (h ∪ φc))

S ′(b, c, f , φf , h, φc) =̂ �j |j∈b∪c∪f
cancelf .j →

if j ∈ c then

S ′(b, c − {j}, f , φf ∪ {j}, h, φc)

else if j ∈ f then

�j |j∈h
cancelc .j →

S (b, c, f − {j}, φf ∪ {j}, h − {j}, φc ∪ {j})
else

S (b − {j}, c, φf ∪ {j}, h, φc)

The sets of object identities carried by FlightSM and CarHireSM have been
brought together as parameters of SystemSM . The bodies of the two former
processes have been merged to give the main body of SystemSM , which offers
a choice of all call events for the system except the internal cancelc event for
Car Hire objects. Note that we have used subscripts f and c (for Flight and Car
Hire, respectively) to resolve the name clashes among parameters and events
as in cancelf and cancelc . Recursive cancelf calls for connected Flight objects
are handled by S ′(b, c, f , φf , h, φc) in the same way as F ′(b, c, f , φ) did. On the
other hand, cancelling a “flydriven” flight results in a cancelc which models the
sending of a call from the flydriven Flight object to the associated Car Hire
object, whose identity is nondeterministic because the control-loop process does
not maintain information about associations between the two classes of objects.

5 Abstract Machine Operations

The information for resolving the nondeterministic choices in SystemSM is ac-
tually available from the abstract machines defined earlier in Section 3. For
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instance, the nondeterministic choice following the connect event depends on
the validity of the input parameter—x is valid if it identifies an object which is
in either the Booked, Connected, or Flydriven states and connecting flight i and
flight x will not lead to circular flight connections. While the machine-state of
Flight object x can be determined within the control-loop process itself, infor-
mation about flight connections can only be obtained from FlightAM through
its abstract machine operations such as the following one:

reply ← connected(x , i) =̂
PRE x ∈ FLIGHTSET ∧ i ∈ FLIGHTSET ∧ x = i THEN

IF (x �→ i) ∈ next+ THEN reply := yes
ELSE reply := no END

END

On the other hand, whenever a Flight object successfully changes its state
from Booked to Connected, the following operation should be executed to update
the FlightAM abstract machine:

connect(ff , gg) =̂
PRE ff ∈ flight ∧ gg ∈ flight ∧ ff = gg

∧ ff ∈ dom(next) ∪ dom(car) ∧ (gg �→ ff ) ∈ next+ THEN
next(ff ) := gg

END

While the above abstract machine operations can be used to maintain and
provide class-structure information for the control-loop process, their precondi-
tions constrain the ways in which they are called. In other words, the control-loop
process is consistent with the abstract machines if and only if the former only
calls the operations of the later within their preconditions.

On the other hand, instead of checking the consistency of the control-loop
process against each abstract machine individually, we can make use of the struc-
turing mechanisms in B AMN to combine the two abstract machines (FlightAM
and CarHireAM ) into one as follows:

MACHINE SystemAM
EXTENDS FlightAM ,CarHireAM
OPERATIONS
cancels(ff ) =̂

PRE ff ∈ dom(car) THEN
cancelf (ff ) ‖ carhire := carhire − {car(ff )}

END
END

END
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The operation cancels deletes a “flydriven” Flight object and the associated
Car Hire object at the same time. It has to be defined at the system level
because it updates the state variables of both included machines. The operation
also preserves the invariants of both included machines.

6 Checking Consistency

To check the consistency between a CSP control-loop process and its corre-
sponding B abstract machine, we can make use of Treharne and Schneider’s
coupling between CSP and B [Treharne and Schneider 1999; Schneider and Tre-
harne 2002]. Here we only illustrate the application of their coupling with our
example. For a detailed account of the coupling itself, the reader is referred to
[Treharne and Schneider 1999; Schneider and Treharne 2002].

We first need to incorporate the calling of appropriate abstract machine
operations into the control-loop process. This requires an extended version of
CSP as given in [Schneider and Treharne 2002] as follows:

P ::= a → P | . . . | S (p) | e?v → P | e!x{E (x )} → P | e?v!x{E (x )} → P

The three additional options at the end are used for “calling” abstract ma-
chine operations with either input (?) parameters, output (!) parameters, or
both, respectively, where e is a communication channel corresponding to an ab-
stract machine operation. Notice that the emphasised symbols “?” and “!” are
reserved for abstract machine operation calls. We can now elaborate the control-
loop process SystemSM with appropriate abstract machine operation calls as
shown partially below:

SystemSM =̂ S(∅, ∅, ∅, ∅, ∅, ∅)
S(b, c, f , φf , h, φc) =̂

. . .

� connect c©?(i , x)〈i ∈ b ∧ x ∈ FLIGHTSET 〉 →
if x = i ∨ x 	∈ b ∪ c ∪ f then connect�!“no” → S(b, c, f , φf , h, φc)

else connected?(x , i)!rr{rr ∈ {yes, no}} →
if rr = yes then connect�!“no” → S(b, c, f , φf , h, φc)

else connect?(i , x) → connect�!“ok” → S(b − {i}, c ∪ {i}, f , φf , h, φc)

· · ·

Based on Treharne and Schneider’s coupling between B and CSP [Treharne
and Schneider 1999], we can ascertain that SystemSM only calls those abstract
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machine operations within their preconditions if we can find a control loop in-
variant (CLI) which holds at each recursive call within the body of SystemSM ,
i.e.:

CLI ∧ I ⇒ [BBODYS(b,c,f ,φf ,h,φc)]CLI (1)

CLI ∧ I ⇒ [BBODYS ′(b,c,f ,φf ,h,φc,n)]CLI (2)

where I is the invariant of abstract machine SystemAM ; BBODYS(b,c,f ,φf ,h,φc),
and BBODYS ′(b,c,f ,φf ,h,φc,n) are the translation of the CSP expressions used in
defining the parameterised process S (b, c, f , φf , h, φc), and S ′(b, c, f , φf , h, φc ,n),
respectively, into B AMN operations. The notation [S ]P denotes the weakest pre-
condition for operation S to achieve P . Figure 5 shows the translation function
{S (p)} = BBODYS(p) which is defined inductively based on the extended syn-
tax of CSP as given in [Treharne and Schneider 1999; Schneider and Treharne
2002].

An appropriate CLI for SystemSM is:

flight = b ∪ c ∪ f ∧ flight ∩ φf = ∅ ∧ b ∪ c ∪ f ∪ φf ⊆ FLIGHTSET
∧ c = dom(next) ∧ f = dom(car) ∧ b ∩ c ∩ f = ∅ ∧ carhire = h
∧ carhire ∩ φc = ∅ ∧ h ∪ φc ⊆ CARHIRESET ∧ n ∈ flight ∪ φf

The proof of (1) and (2) can be found in [Yeung 2003].

7 Evaluation

The consistency-checking approach illustrated in this paper has been applied in
the following situations:

1. A typical class (e.g. Student) is modelled by a B machine with some invariant
properties (e.g. all student IDs must be unique) and operations for creating
and destroying its objects and modifying object attributes. Operations have
to be properly pre-conditioned to preserve the invariant of the machine. A
corresponding state diagram specifying the acceptable ordering of calls to
these operations with informal guards (e.g. object exists) can be formalised
in CSP and verified as always respecting the operations’ preconditions.

2. Similarly, a single class of objects with unary associations among themselves
(e.g. The Flight class) can be modelled by a B machine with operations prop-
erly pre-conditioned to preserve any invariant constraints upon the unary
associations (e.g. no loops of connecting flights). A corresponding state dia-
gram can be similarly formalised and verified.

3. A call event may trigger other call events within the same class. Modelling
this in B alone (e.g. [Ledang and Souquières 2001]) involves elaborate ma-
chine structuring. Modelling dynamic behaviour in CSP is more natural and

1553Yeung W.L.: Checking Consistency between UML Class ...



{P � Q}ρ =̂ SELECT true THEN {P}ρ

WHEN true THEN {Q}ρ

END

{P � Q}ρ =̂ CHOICE {P}ρ OR {Q}ρ END

{�x |E(x)
P} =̂ ANY xb WHERE ρ[E (xc)] THEN

{P}ρ⊕{xc �→xb}
END

{if xc then P else Q end}ρ =̂ IF ρ[xc]THEN{P}ρELSE {Q}ρ END

{a → P}ρ =̂ {P}ρ

{c?xc〈E (xc)〉 → P(xc)}ρ =̂ ANY xb WHERE ρ[E (xc)] THEN

{P}ρ⊕{xc �→xb}
END

{d !wc{E (wc)} → P}ρ =̂ PRE ρ[E (wc)] THEN {P}ρ END

{Ename?xc → P}ρ =̂ name(ρ[xc ]); {P}ρ

{Ename!wc{T (wc)} → P(wc)}ρ =̂ wb ← name; {P}ρ⊕{wc �→wb}
{Ename?xc!wc{T (wc)} → P(wc)}ρ =̂ wb ← name(ρ[xc ]); {P}ρ⊕{wc �→wb}

{S (p′)}ρ =̂ cb := ρ[p′]

Note: ρ is an environment binding for mapping variables and expressions into their
values. cb is a collection of AMN control variables corresponding to the parameters of
the CSP process.

Figure 5: Translation function for the body of a CSP process {S(p)}

keep the underlying B machine structure relatively simple. CSP also lends
itself conveniently to modelling recursive calls.

4. Two classes of objects, with one or more binary associations between the
two classes, can first be modelled by two separate B machines with their
own invariants and operations. They are then combined together to form a
composite machine with invariant constraints due to the binary associations.
On the other hand, the two corresponding state diagrams are separately for-
malised in CSP and then merged together to form a single process governing
the ordering of operation calls to and between the two classes of objects.

Since B machines and CSP processes are compositional, the approach can, in
principle, be generalised to three or more classes, although future work is needed
to see whether they are any practical limitations.
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The above situations are relevant to any system with non-trivial associa-
tions among classes and operations that update the associations. Such systems
include data-intensive enterprise information systems that often have elaborate
associations.

Previous attempts to model classes as B machines combine the static class-
structure view and the dynamic state-machine view in a single formalism. The
present approach adopts a clear-cut separation of concerns: B machines are used
to model the static (invariant) properties in a class diagram whereas a CSP pro-
cess is used to formalise the dynamic behaviour in a state diagram. Advantages
of this approach include clarity and better traceability between UML and the
formal descriptions. Another advantage is that a recursive CSP process lends
itself to the modelling of recursive calls among a class of objects. The modelling
of recursive calls in B alone has not yet been achieved (see, e.g. [Lano 1996;
Meyer and Souquières 1999; Ledang and Souquières 2001]).

On the other hand, the use of a single CSP control-loop process to capture the
dynamic behaviour of a system of interacting objects rules out any concurrency
among the objects. While the lack of concurrency is reasonable for data-intensive
enterprise information systems, it becomes a major weakness when trying to ex-
tend the present approach to real-time systems. Another weakness is the lack
of support tools for directly formalising state diagrams in CSP (although some
prototype tools have been proposed [Ng and Butler 2002, 2003]) and for au-
tomating the translation from CSP into B as defined in Figure 5. Further work
is needed to develop these tools which would make the present approach more
scalable for large systems. On the other hand, proof assistance is available from
support tools for the B-method, including the B-Toolkit [B-Core 1996] and Ate-
lierB [STERIA 1998], which are useful for establishing the control loop invariant
as discussed in section 6. Finally, the use of the FDR model checking tool [FDR
2003] for CSP is rather limited since the control-loop process does not involve
any concurrency.

8 Related Work

Various formal approaches to formalising the UML class and state models have
been proposed. Kim and Carrington [2000] provided translation rules for map-
ping the UML class and state models into Object-Z but did not address the
consistency issue. DeLoach and Hartrum [2000] formalised the class and state
models in O-Slang, an algebraic specification language, but again they did not
address the consistency issue. Berry and Weber [1997] formalised state diagrams
in Z [Spivey 1992] with an emphasis on embedded control systems. They ad-
dressed the consistency between the functional aspect of the class model (i.e.
data structure and I/O parameters) and the state model by computational in-
duction. However, they did not address the consistency between the architectural
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aspect of the class model (i.e. constraints due to the associations and multiplic-
ities) and the state model.

Davies and Crichton [2002] formalised the various UML diagrams using the
notation in CSP but they did not address the consistency between the class and
state models. Ng and Butler [2002, 2003] formalised UML state diagrams in CSP
and developed support tools for translating the former into the latter.

Lano [1996] illustrated the translation of OMT diagrams for the class and
state models [Rumbaugh et al. 1991] into B [Abrial 1996]; Meyer and Souquières
[1999] presented a comprehensive scheme for the translation. In order to model
object interaction in B involving multi-layer (non-recursive) calls, Ledang and
Souquières [2001] proposed an approach involving layers of implementation ma-
chines corresponding to the static calling structures (hierarchies) of class oper-
ations. A class operation that calls some other class operation(s) is defined at
an appropriate layer below which the called operation(s) is/are defined. None of
these approaches, however, supports the modelling of recursive calls, i.e. a call
event leading to the sending of the same call to another object of the same class,
eg. the cancel() call event in Figure 2.

Tenzer and Stevens [2003] proposed the modelling of objects that receive
recursive calls as recursive state machines [Alur et al. 2001]. They did not address
the consistency between the class and state models.

A single formalism is used in each of the above approaches to formalise
the UML class and state models. McUmber and Cheng [2001] formalised the
state model in Promela/SPIN [Holzmann 1997] and they drew on the work
of Bourdean and Cheng [1995] on formalising the class model using algebraic
specification. However, they did not address the consistency between the two
models.

9 Conclusion and Further Work

This paper has presented an example of applying of a pair of integrated formal
methods, namely B and CSP, to the checking of consistency between the class
model and state model of UML. The integrated approach allows the two formal
methods to be applied separately and efficiently, with the help of support tools,
to the two UML models. Consistency between the two models can simply be
established by Treharne and Schneider’s coupling between CSP and B.

Further work is needed to generalise the integrated approach to handle more
complex state machines as well as more elaborate class structures involving gen-
eralisation and specialisation. These can be achieved by developing more realistic
case studies. Support tools for translating state diagrams into CSP and for trans-
lating CSP into B can be further developed to facilitate the integrated approach.
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