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1 Introduction

Lua was born in an academic laboratory as a tool for in-house software develop-
ment but somehow was adopted by several industrial projects around the world
and is now widely used in the game industry.1

How do we account for this widespread use of Lua? We believe that the
answer lies in our design and implementation goals: to provide an embeddable
scripting language that is simple, efficient, portable, and lightweight. These have
been our main goals since the birth of Lua in 1993 and they have been respected
during its evolution. (For a history of the development of Lua up to just before
the release of Lua 5.0, see [12].) These features, plus the fact that Lua has been
designed from the start to be embedded into larger applications, account for its
early adoption by the industry.2

Widespread use generates demand for language features. Several features
of Lua have been motivated by industrial needs and user feedback. Important
examples are the introduction of coroutines in Lua 5.0 and the implementation
1 An informal poll conducted in September 2003 by gamedev.net, an important site

for game programmers, showed Lua as the most popular scripting language for game
development. For details, see http://www.gamedev.net/gdpolls/viewpoll.asp?ID=
163.

2 The adoption of a liberal MIT-like license also helped.
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of incremental garbage collection in the upcoming Lua 5.1. Both features are
specially important for games.

In this paper, we discuss the main novelties of the implementation of Lua 5.0,
compared to Lua 4.0:

Register-based virtual machine: Traditionally, most virtual machines intended
for actual execution are stack based, a trend that started with Pascal’s P-
machine [15] and continues today with Java’s JVM and Microsoft’s .Net en-
vironment. Currently, however, there has been a growing interest in register-
based virtual machines (for instance, the planned new virtual machine for
Perl 6 (Parrot) will be register based [17]). As far as we know, the virtual
machine of Lua 5.0 is the first register-based virtual machine to have a wide
use. This virtual machine is presented in Section 7.

New algorithm for optimizing tables used as arrays : Unlike other scripting lan-
guages, Lua does not offer an array type. Instead, Lua programmers use
regular tables with integer indices to implement arrays. Lua 5.0 uses a new
algorithm that detects whether tables are being used as arrays and auto-
matically stores the values associated to numeric indices in an actual array,
instead of adding them to the hash table. This algorithm is discussed in
Section 4.

The implementation of closures : Lua 5.0 supports first-class functions with lex-
ical scoping. This mechanism poses a well-known difficulty for languages
that use an array-based stack to store activation records. Lua uses a novel
approach to function closures that keeps local variables in the (array-based)
stack and only moves them to the heap if they go out of scope while being
referred by nested functions. The implementation of closures is discussed in
Section 5.

The addition of coroutines: Lua 5.0 introduced coroutines in the language.
Although the implementation of coroutines is more or less traditional, we
present a short overview in Section 6 for completeness.

The other sections complement or give background to this discussion. In Sec-
tion 2 we present an overview of Lua’s design goals and how those goals have
driven its implementation. In Section 3 we describe how Lua represents its val-
ues. Although the representation itself has no novelties, we need this material
for the other sections. Finally, in Section 8 we present a small benchmark and
draw some conclusions.
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2 An Overview of Lua’s Design and Implementation

As mentioned in the introduction, the goals in our implementation of Lua are:

Simplicity: We seek the simplest language we can afford and the simplest C code
that implements this language. This implies a simple syntax with a small
number of language constructs, not far from the tradition.

Efficiency: We seek fast compilation and fast execution of Lua programs. This
implies a fast, smart, one-pass compiler and a fast virtual machine.

Portability: We want Lua to run on as many platforms as possible. We want to
be able to compile the Lua core unmodified everywhere and to run Lua pro-
grams unmodified on every platform that has a suitable Lua interpreter. This
implies a clean ANSI C implementation with special attention to portability
issues, such as avoiding dark corners of C and its libraries, and ensuring that
it also compiles cleanly as C++. We seek warning-free compilations.

Embeddability: Lua is an extension language; it is designed to provide scripting
facilities to larger programs. This and the other goals imply the existence
of a C API that is simple and powerful, but which relies mostly on built-in
C types.

Low embedding cost : We want it to be easy to add Lua to an application without
bloating it. This implies tight C code and a small Lua core, with extensions
being added as user libraries.

These goals are somewhat conflicting. For instance, Lua is frequently used as a
data-description language, for storing and loading configuration files and some-
times quite large databases (Lua programs with a few megabytes are not uncom-
mon). This implies that we need a fast Lua compiler. On the other hand, we want
Lua programs to execute fast. This implies a smart compiler, one that generates
good code for the virtual machine. So, the implementation of the Lua compiler
has to balance between these two requirements. However, the compiler cannot
be too large; otherwise it would bloat the whole package. Currently the compiler
accounts for approximately 30% of the size of the Lua core. For memory-limited
applications, such as embedded systems, it is possible to embed Lua without the
compiler. Lua programs are then precompiled off-line and loaded at run time by
a tiny module (which is also fast because it loads binary files).

Lua uses a hand-written scanner and a hand-written recursive descent parser.
Until version 3.0, Lua used a parser produced by yacc [13], which proved a valu-
able tool when the language’s syntax was less stable. However, the hand-written
parser is smaller, more efficient, more portable, and fully reentrant. It also pro-
vides better error messages.
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The Lua compiler uses no intermediate representation. It emits instructions
for the virtual machine “on the fly” as it parses a program. Nevertheless, it does
perform some optimizations. For instance, it delays the generation of code for
base expressions like variables and constants. When it parses such expressions, it
generates no code; instead, it uses a simple structure to represent them. There-
fore, it is very easy to check whether an operand for a given instruction is a
constant or a local variable and use those values directly in the instruction, thus
avoiding unnecessary and costly moves (see Section 3).

To be portable across many different C compilers and platforms, Lua can-
not use several tricks commonly used by interpreters, such as direct threaded
code [8, 16]. Instead, it uses a standard while–switch dispatch loop. Also, at
places the C code seems unduly complicated, but the complication is there to en-
sure portability. The portability of Lua’s implementation has increased steadily
throughout the years, as Lua got compiled under many different C compilers
in many different platforms (including several 64-bit platforms and some 16-bit
platforms).

We consider that we have achieved our design and implementation goals. Lua
is a very portable language: it runs on any machine with an ANSI C compiler,
from embedded systems to mainframes. Lua is really lightweight: for instance, on
Linux its stand-alone interpreter, complete with all standard libraries, takes less
than 150 Kbytes; the core is less than 100 Kbytes. Lua is efficient: independent
benchmarks [2, 4] show Lua as one of the fastest language implementations in the
realm of scripting languages (i.e., interpreted and dynamically-typed languages).
We also consider Lua a simple language, being syntactically similar to Pascal
and semantically similar to Scheme, but this is subjective.

3 The Representation of Values

Lua is a dynamically-typed language: types are attached to values rather than to
variables. Lua has eight basic types: nil, boolean, number, string, table, function,
userdata, and thread. Nil is a marker type having only one value, also called
nil. Boolean values are the usual true and false. Numbers are double-precision
floating-point numbers, corresponding to the type double in C, but it is easy to
compile Lua using float or long instead. (Several games consoles and smaller
machines lack hardware support for double.) Strings are arrays of bytes with
an explicit size, and so can contain arbitrary binary data, including embedded
zeros. Tables are associative arrays, which can be indexed by any value (except
nil) and can hold any value. Functions are either Lua functions or C functions
written according to a protocol for interfacing with the Lua virtual machine.
Userdata are essentially pointers to user memory blocks, and come in two flavors:
heavy, whose blocks are allocated by Lua and are subject to garbage collection,
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typedef struct { typedef union {

int t; GCObject *gc;

Value v; void *p;

} TObject; lua_Number n;

int b;

} Value;

Figure 1: Lua values are represented as tagged unions

and light, whose blocks are allocated and freed by the user. Finally, threads
represent coroutines. Values of all types are first-class values: we can store them
in global variables, local variables and table fields, pass them as arguments to
functions, return them from functions, etc.

Lua represents values as tagged unions, that is, as pairs (t, v), where t is
an integer tag identifying the type of the value v, which is a union of C types
implementing Lua types. Nil has a single value. Booleans and numbers are im-
plemented as ‘unboxed’ values: v represents values of those types directly in the
union. This implies that the union must have enough space for a double. Strings,
tables, functions, threads, and userdata values are implemented by reference:
v contains pointers to structures that implement those values. Those structures
share a common head, which keeps information needed for garbage collection.
The rest of the structure is specific to each type.

Figure 1 shows a glimpse of the actual implementation of Lua values. TObject
is the main structure in this implementation: it represents the tagged unions (t, v)
described above. Value is the union that implements the values. Values of type nil
are not explicitly represented in the union because the tag is enough to identify
them. The field n is used for numbers (by default, lua_Number is double). The
field b is used for booleans. The field p is used for light userdata. The field gc is
used for the other values (strings, tables, functions, heavy userdata, and threads),
which are those subject to garbage collection.

One consequence of using tagged unions to represent Lua values is that
copying values is a little expensive: on a 32-bit machine with 64-bit doubles,
the size of a TObject is 12 bytes (or 16 bytes, if doubles are aligned on 8-
byte boundaries) and so copying a value requires copying 3 (or 4) machine
words. However, it is difficult to implement a better representation for values
in ANSI C. Several dynamically-typed languages (e.g., the original implementa-
tion of Smalltalk80 [9]) use spare bits in each pointer to store the value’s type
tag. This trick works in most machines because, due to alignment, the last two or
three bits of a pointer are always zero, and therefore can be used for other pur-
poses. However, this technique is neither portable nor implementable in ANSI C.
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The C standard does not even ensures that a pointer fits in any integral type
and so there is no standard way to perform bit manipulation over pointers.

Another option to reduce the size of a value would be to keep the explicit
tag, but to avoid putting a double in the union. For instance, all numbers could
be represented as heap-allocated objects, just like strings. (Python uses this
technique, except that it preallocates some small integer values.) However, that
representation would make the language quite slow. Alternatively, integer values
could be represented as unboxed values, directly inside the union, while floating-
point values would go to the heap. That solution would greatly increase the
complexity of the implementation of all arithmetic operations.

Like earlier interpreted languages, such as Snobol [11] and Icon [10], Lua in-
ternalizes strings using a hash table: it keeps a single copy of each string with no
duplications. Moreover, strings are immutable: once internalized, a string cannot
be changed. Hash values for strings are computed by a simple expression that
mixes bitwise and arithmetic operations, thus shuffling all bits involved. Hash
values are saved when the string is internalized to allow fast string comparison
and table indexing. The hash function does not look at all bytes of the string
if the string is too long. This allows fast hashing of long strings. Avoiding loss
of performance when handling long strings is important because they are com-
mon in Lua. For instance, it is usual to process files in Lua by reading them
completely into memory into a single long string.

4 Tables

Tables are the main — in fact, the only — data-structuring mechanism in Lua.
Tables play a key role not only in the language but also in its implementation.
Effort spent on a good implementation of tables is rewarded in the language
because tables are used for several internal tasks, with no qualms about perfor-
mance. This helps to keep the implementation small. Conversely, the absence of
any other data-structuring mechanism places a pressure on an efficient imple-
mentation of tables.

Tables in Lua are associative arrays, that is, they can be indexed by any
value (except nil) and can hold values of any type. Moreover, they are dynamic
in the sense that they may grow when data is added to them (by assigning a
value to a hitherto non-existent field) and shrink when data is removed from
them (by assigning nil to a field).

Unlike many other scripting languages, Lua does not have an array type.
Arrays are represented as tables with integer keys. The use of tables for ar-
rays bring benefits to the language. The main one is simplicity: Lua does not
need two different sets of operators to manipulate tables and arrays. Moreover,
programmers do not have to choose between the two representations. The im-
plementation of sparse arrays is trivial in Lua. In Perl, for instance, you can run
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Figure 2: A Lua table.

out of memory if you try to run the program $a[1000000000]=1;, as it triggers
the creation of an array with one billion elements. The equivalent Lua program,
a={[1000000000]=1}, creates a table with a single entry.

Until Lua 4.0, tables were implemented strictly as hash tables: all pairs were
explicitly stored. Lua 5.0 brought a new algorithm to optimize the use of tables
as arrays: it optimizes pairs with integer keys by not storing the keys and storing
the values in an actual array. More precisely, in Lua 5.0, tables are implemented
as hybrid data structures: they contain a hash part and an array part. Figure 2
shows a possible configuration for a table with the pairs "x" → 9.3, 1 → 100,
2 → 200, 3 → 300. Note the array part on the right: it does not store the integer
keys. This division is made only at a low implementation level; access to table
fields is transparent, even to the virtual machine. Tables automatically and dy-
namically adapt their two parts according to their contents: the array part tries
to store the values corresponding to integer keys from 1 to some limit n. Values
corresponding to non-integer keys or to integer keys outside the array range are
stored in the hash part.

When a table needs to grow, Lua recomputes the sizes for its hash part and
its array part. Either part may be empty. The computed size of the array part
is the largest n such that at least half the slots between 1 and n are in use
(to avoid wasting space with sparse arrays) and there is at least one used slot
between n/2 + 1 and n (to avoid a size n when n/2 would do). After computing
the new sizes, Lua creates the new parts and re-inserts the elements from the
old parts into the new ones. As an example, suppose that a is an empty table;
both its array part and hash part have size zero. If we execute a[1]=v, the table
needs to grow to accommodate the new key. Lua will choose n = 1 for the size
of the new array part (with a single entry 1 → v). The hash part will remain
empty.
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This hybrid scheme has two advantages. First, access to values with integer
keys is faster because no hashing is needed. Second, and more important, the
array part takes roughly half the memory it would take if it were stored in the
hash part, because the keys are implicit in the array part but explicit in the hash
part. As a consequence, if a table is being used as an array, it performs as an
array, as long as its integer keys are dense. Moreover, no memory or time penalty
is paid for the hash part, because it does not even exist. The converse holds: if
the table is being used as an associative array, and not as an array, then the
array part is likely to be empty. These memory savings are important because
it is common for a Lua program to create many small tables, for instance when
tables are used to implement objects.

The hash part uses a mix of chained scatter table with Brent’s variation [3].
A main invariant of these tables is that if an element is not in its main position
(i.e., the original position given by its hash value), then the colliding element
is in its own main position. In other words, there are collisions only when two
elements have the same main position (i.e., the same hash values for that table
size). There are no secondary collisions. Because of that, the load factor of these
tables can be 100% without performance penalties.

5 Functions and Closures

When Lua compiles a function it generates a prototype containing the vir-
tual machine instructions for the function, its constant values (numbers, literal
strings, etc.), and some debug information. At run time, whenever Lua executes
a function...end expression, it creates a new closure. Each closure has a ref-
erence to its corresponding prototype, a reference to its environment (a table
wherein it looks for global variables), and an array of references to upvalues,
which are used to access outer local variables.

The combination of lexical scoping with first-class functions creates a well-
known difficulty for accessing outer local variables. Consider the example in
Figure 3. When add2 is called, its body accesses the outer local variable x (func-
tion parameters in Lua are local variables). However, by the time add2 is called,
the function add that created add2 has already returned. If x was created in the
stack, its stack slot would no longer exist.

Most procedural languages avoid this problem by restricting lexical scoping
(e.g., Python), not providing first-class functions (e.g., Pascal), or both (e.g., C).
Functional languages do not have those restrictions. Research in non-pure func-
tional languages like Scheme and ML has created a vast body of knowledge about
compilation techniques for closures (e.g., [19, 1, 21]).3 However, those works do
3 The techniques used in pure functional languages, such as Haskell, are usually not

applicable to procedural languages.
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not try to limit the complexity of the compiler. For instance, just the control-
flow analysis of Bigloo, an optimizer Scheme compiler [20], is more than ten
times larger than the whole Lua implementation: The source for module Cfa

of Bigloo 2.6f has 106,350 lines, versus 10,155 lines for the core of Lua 5.0. As
explained in Section 2, Lua needs something simpler.

Lua uses a structure called an upvalue to implement closures. Any outer local
variable is accessed indirectly through an upvalue. The upvalue originally points
to the stack slot wherein the variable lives (Figure 4, left). When the variable
goes out of scope, it migrates into a slot inside the upvalue itself (Figure 4,
right). Because access is indirect through a pointer in the upvalue, this migration
is transparent to any code that reads or writes the variable. Unlike its inner
functions, the function that declares the variable accesses it as it accesses its
own local variables: directly in the stack.

Mutable state is shared correctly among closures by creating at most one
upvalue per variable and reusing it as needed. To ensure this uniqueness, Lua
keeps a linked list with all open upvalues (that is, those that still point to the
stack) of a stack (the pending vars list in Figure 4). When Lua creates a new
closure, it goes through all its outer local variables. For each one, if it can find
an open upvalue in the list, it reuses that upvalue. Otherwise, Lua creates a new
upvalue and links it in the list. Notice that the list search typically probes only
a few nodes, because the list contains at most one entry for each local variable
that is used by a nested function. Once a closed upvalue is no longer referred by
any closure, it is eventually garbage collected.

It is possible for a function to access an outer local variable that does not
belong to its immediately enclosing function, but to an outer function. In that
case, even by the time the closure is created, the variable may no longer exist
in the stack. Lua solves this case by using flat closures [5]. With flat closures,
whenever a function accesses an outer variable that is not local to its enclosing
function, the variable also goes to the closure of the enclosing function. Thus,
when a function is instantiated, all variables that go into its closure are either
in the enclosing function’s stack or in the enclosing function’s closure.

function add (x) add2 = add(2)

return function (y) print(add2(5))

return x+y

end

end

Figure 3: Access to outer local variables
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6 Threads and Coroutines

Since version 5.0, Lua implements asymmetric coroutines (also called semi-
symmetric coroutines or semi-coroutines) [7]. Those coroutines are supported
by three functions from the Lua standard library: create, resume, and yield.
(These functions live in the coroutine namespace.) The create function re-
ceives a “main” function and creates a new coroutine with that function. It
returns a value of type thread that represents that coroutine. (Like all values in
Lua, coroutines are first-class values.) The resume function (re)starts the execu-
tion of a given coroutine, calling its main function. The yield function suspends
the execution of the running coroutine and returns the control to the call that
resumed that coroutine.

Conceptually, each coroutine has its own stack. (Concretely, each coroutine
has two stacks, as we shall discuss in Section 7, but we can consider them as
a single abstract stack.) Coroutines in Lua are stackful, in the sense that we
can suspend a coroutine from inside any number of nested calls. The interpreter
simply puts aside the entire stack for later use and continues running on another
stack. A program can restart any suspended coroutine at will. The garbage
collector collects stacks whose coroutines are no longer accessible.

The combination of stackfulness and first-class status makes coroutines, as
implemented in Lua, is equivalent to one-shot continuations. As such, they allow
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programmers to implement several advanced control mechanisms, such as coop-
erative multithreading, generators, symmetric coroutines, backtracking, etc. [7].

A key point in the implementation of coroutines in Lua is that the interpreter
cannot use its internal C stack to implement calls in the interpreted code. (The
Python community calls an interpreter that follows that restriction a stackless
interpreter [23].) When the main interpreter loop executes a call operation, it
creates a new slot in the stack, adjusts several pointers, and continues the loop
with the instructions of the called function. Similarly, a return operation removes
the top stack slot, adjusts pointers, and continues the loop with the instructions
of the calling function. Not by coincidence, that is exactly what a real CPU does
to perform function calls.

When the interpreter executes a resume, however, it does a recursive call to
the main interpreter function. This new invocation is responsible for executing
the resumed coroutine, using the coroutine stack to perform calls and returns.
When this new loop executes an yield, it returns to the previous interpreter
invocation, leaving the coroutine stack with any pending calls. In other words,
Lua uses the C stack to keep track of the stack of active coroutines at any given
time. Each yield returns to the previous interpreter loop, which is the one that
called the corresponding resume.

A source of difficulties in the implementation of coroutines in some languages
is how to handle references to outer local variables. Because a function running
in a coroutine may have been created in another coroutine, it may refer to
variables in a different stack. This leads to what some authors call a cactus
structure [18]. The use of flat closures, as we discussed in Section 5, avoids this
problem altogether.

7 The Virtual Machine

Lua runs programs by first compiling them into instructions (“opcodes”) for a
virtual machine and then executing those instructions. For each function that
Lua compiles it creates a prototype, which contains an array with the opcodes
for the function and an array of Lua values (TObjects) with all constants (literal
strings and numerals) used by the function.

For ten years (since 1993, when Lua was first released), Lua used a stack-
based virtual machine, in various incarnations. Since 2003, with the release of
Lua 5.0, Lua uses a register-based virtual machine. This register-based machine
also uses a stack, for allocating activation records, wherein the registers live.
When Lua enters a function, it preallocates from the stack an activation record
large enough to hold all the function registers. All local variables are allocated
in registers. As a consequence, access to local variables is specially efficient.

Register-based code avoids several “push” and “pop” instructions that stack-
based code needs to move values around the stack. Those instructions are par-
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ticularly expensive in Lua, because they involve the copy of a tagged value, as
discussed in Section 3. So, the register architecture both avoids excessive copy-
ing of values and reduces the total number of instructions per function. Davis
et al. [6] argue in defense of register-based virtual machines and provide hard
data on the improvement of Java bytecode. Some authors also defend register-
based virtual machines based on their suitability for on-the-fly compilation (see
[24], for instance).

There are two problems usually associated with register-based machines: code
size and decoding overhead. An instruction in a register machine needs to specify
its operands, and so it is typically larger than a corresponding instruction in a
stack machine. (For instance, the size of an instruction in Lua’s virtual machine
is four bytes, while the size of an instruction in several typical stack machines,
including the ones previously used by Lua, is one or two bytes.) On the other
hand, register machines generate less opcodes than stack machines, so the total
code size is not much larger.

Most instructions in a stack machine have implicit operands. The correspond-
ing instructions in a register machine must decode their operands from the in-
struction. Such decoding adds overhead to the interpreter. There are several
factors that ameliorate this overhead. First, stack machines also spend some
time manipulating implicit operands (e.g., to increment or decrement the stack
top). Second, because in a register machine all operands are inside the instruc-
tion and the instruction is a machine word, the operand decoding involves only
cheap operations, such as logical operations. Moreover, instructions in stack ma-
chines frequently need multi-byte operands. For instance, in the Java VM, goto
and branch instructions use a two-byte displacement. Due to alignment, the in-
terpreter cannot fetch such operands at once (at least not with portable code,
where it must always assume worst-case alignment restrictions). On a register
machine, because the operands are inside the instruction, the interpreter does
not have to fetch them independently.

There are 35 instructions in Lua’s virtual machine. Most instructions were
chosen to correspond directly to language constructs: arithmetic, table creation
and indexing, function and method calls, setting variables and getting values.
There is also a set of conventional jump instructions to implement control struc-
tures. Figure 5 shows the complete set, together with a brief summary of what
each instruction does, using the following notation: R(X) means the Xth register.
K(X) means the Xth constant. RK(X) means either R(X) or K(X-k), depending
on the value of X — it is R(X) for values of X smaller than k (a build parame-
ter, typically 250). G[X] means the field X in the table of globals. U[X] means
the Xth upvalue. For a detailed discussion of Lua’s virtual machine instructions,
see [14, 22].

Registers are kept in the run-time stack, which is essentially an array. Thus,
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MOVE A B R(A) := R(B)
LOADK A Bx R(A) := K(Bx)
LOADBOOL A B C R(A) := (Bool)B; if (C) PC++
LOADNIL A B R(A) := ... := R(B) := nil
GETUPVAL A B R(A) := U[B]
GETGLOBAL A Bx R(A) := G[K(Bx)]
GETTABLE A B C R(A) := R(B)[RK(C)]
SETGLOBAL A Bx G[K(Bx)] := R(A)
SETUPVAL A B U[B] := R(A)
SETTABLE A B C R(A)[RK(B)] := RK(C)
NEWTABLE A B C R(A) := {} (size = B,C)
SELF A B C R(A+1) := R(B); R(A) := R(B)[RK(C)]
ADD A B C R(A) := RK(B) + RK(C)
SUB A B C R(A) := RK(B) - RK(C)
MUL A B C R(A) := RK(B) * RK(C)
DIV A B C R(A) := RK(B) / RK(C)
POW A B C R(A) := RK(B) ^ RK(C)
UNM A B R(A) := -R(B)
NOT A B R(A) := not R(B)
CONCAT A B C R(A) := R(B) .. ... .. R(C)
JMP sBx PC += sBx
EQ A B C if ((RK(B) == RK(C)) ~= A) then PC++
LT A B C if ((RK(B) < RK(C)) ~= A) then PC++
LE A B C if ((RK(B) <= RK(C)) ~= A) then PC++
TEST A B C if (R(B) <=> C) then R(A) := R(B) else PC++
CALL A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))
TAILCALL A B C return R(A)(R(A+1), ... ,R(A+B-1))
RETURN A B return R(A), ... ,R(A+B-2) (see note)
FORLOOP A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then PC+= sBx
TFORLOOP A C R(A+2), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
TFORPREP A sBx if type(R(A)) == table then R(A+1):=R(A), R(A):=next;
SETLIST A Bx R(A)[Bx-Bx%FPF+i] := R(A+i), 1 <= i <= Bx%FPF+1
SETLISTO A Bx
CLOSE A close stack variables up to R(A)
CLOSURE A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))

Figure 5: The instructions in Lua’s virtual machine

access to registers is fast. Constants and upvalues are stored in arrays and so
access to them is also fast. The table of globals is an ordinary Lua table. It is
accessed via hashing but with good performance, because it is indexed only with
strings (corresponding to variable names), and strings pre-compute their hash
values, as mentioned in Section 2.

The instructions in Lua’s virtual machine take 32 bits divided into three or
four fields, as shown in Figure 6. The OP field identifies the instruction and takes
6 bits. The other fields represent operands. Field A is always present and takes
8 bits. Fields B and C take 9 bits each. They can be combined into an 18-bit
field: Bx (unsigned) and sBx (signed).

Most instructions use a three-address format, where A points to the register
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OP A B C

OP A Bx

OP A sBx

Figure 6: Instruction layout

function max (a,b)

local m = a 1 MOVE 2 0 0 ; R(2) = R(0)

if b > a then 2 LT 0 0 1 ; R(0) < R(1) ?

m = b 3 JMP 1 ; to 5 (4+1)

end 4 MOVE 2 1 0 ; R(2) = R(1)

return m 5 RETURN 2 2 0 ; return R(2)

end 6 RETURN 0 1 0 ; return

Figure 7: Bytecode for a Lua function

that will hold the result and B and C point to the operands, which can be either
a register or a constant (using the representation RK(X) explained above). With
this format, several typical operations in Lua can be coded in a single instruction.
For instance, the increment of a local variable, such as a = a + 1, is coded
as ADD x x y, where x represents the register holding the local variable and y
represents the constant 1. An assignment like a = b.f, when both a and b are
local variables, is also coded as the single instruction GETTABLE x y z, where x
is the register for a, y is the register for b, and z is the index of the string
constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b
indexed by the string "f".)

Branch instructions pose a difficulty because they need to specify two operands
to be compared plus a jump offset. Packing all this data inside a single instruc-
tion would limit jump offsets to 256 (assuming a signed 9-bit field). The solution
adopted in Lua is that, conceptually, a test instruction simply skips the next in-
struction when the test fails; this next instruction is a regular jump, which uses
an 18-bit offset. Actually, because a test instruction is always followed by a jump
instruction, the interpreter executes both instructions together. That is, when
executing a test instruction that succeeds, the interpreter immediately fetches
the next instruction and does the jump, instead of doing it in the next dispatch
cycle. Figure 7 shows an example of Lua code and the corresponding bytecode.
Note the structure of the conditional and jump instructions just described.

Figure 8 shows a small sample of the optimizations performed by the Lua
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local a,t,i 1: LOADNIL 0 2 0

a=a+i 2: ADD 0 0 2

a=a+1 3: ADD 0 0 250 ; 1

a=t[i] 4: GETTABLE 0 1 2

Figure 8: Register-based opcode (Lua 5.0)

local a,t,i 1: PUSHNIL 3

a=a+i 2: GETLOCAL 0 ; a

3: GETLOCAL 2 ; i

4: ADD

5: SETLOCAL 0 ; a

a=a+1 6: GETLOCAL 0 ; a

7: ADDI 1

8: SETLOCAL 0 ; a

a=t[i] 9: GETLOCAL 1 ; t

10: GETINDEXED 2 ; i

11: SETLOCAL 0 ; a

Figure 9: Stack-based opcode (Lua 4.0)

compiler. Figure 9 shows the same code compiled for Lua 4.0, which used a stack-
based virtual machine with 49 instructions. Note how the switch to a register-
based virtual machine allowed the generation of much shorter code. Each exe-
cutable statement in this example compiles to a single instruction in Lua 5.0,
but needs three or four instructions in Lua 4.0.

For function calls, Lua uses a kind of register window. It evaluates the call
arguments in successive registers, starting with the first unused register. When
it performs the call, those registers become part of the activation record of the
called function, which therefore can access its parameters as regular local vari-
ables. When this function returns, those registers are put back into the activation
record of the caller.

Lua uses two parallel stacks for function calls. (Actually, each coroutine has
its own pair of stacks, as we discussed in Section 6.) One stack has one entry
for each active function. This entry stores the function being called, the return
address when the function does a call, and a base index, which points to the
activation record of the function. The other stack is simply a large array of
Lua values that keeps those activation records. Each activation record keeps all
temporary values of the function (parameters, local variables, etc.). Actually, we
can see each entry in the second stack as a variable-size part of a corresponding
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entry in the first stack.

8 Conclusion

In this paper we have presented the most innovative aspects of the implementa-
tion of Lua 5.0: its register-based virtual machine, the new algorithm for opti-
mizing tables used as arrays, and the implementation of closures.

To our knowledge, Lua is the first language in wide use to adopt a register-
based virtual machine. The optimization for tables allows a table to be partially
implemented as an array when it is used that way (that is, when it has enough
keys in a range 1 . . . n). Its implementation of closures is also unique, combin-
ing the use of an array-based stack with lexically scoped first-order functions,
without complex control-flow analysis.

program Lua 4.0 Lua 5’ Lua 5.0

sum (2e7) 1.23 0.54 (44%) 0.54 (44%)
fibo (30) 0.95 0.68 (72%) 0.69 (73%)
ack (8) 1.00 0.86 (86%) 0.88 (88%)
random (1e6) 1.04 0.96 (92%) 0.96 (92%)
sieve (100) 0.93 0.82 (88%) 0.57 (61%)
heapsort (5e4) 1.08 1.05 (97%) 0.70 (65%)
matrix (50) 0.84 0.82 (98%) 0.59 (70%)

Figure 10: Benchmarks (times in seconds; percentages are relative to Lua 4.0)

The table in Figure 10 shows some simple performance comparisons between
the old implementation and the new one. The tests were run on an Intel Pen-
tium IV machine with 512 Mbytes running Linux 2.6, with Lua compiled with
gcc 3.3. Lua 4.0 uses neither the register-based virtual machine (its machine is
stack based) nor the table–array optimization. Lua 5’ is Lua 5.0 without table–
array optimization, tail calls, and dynamic stacks (related to coroutines); Lua 5’
is essentially Lua 4.0 with the new register-based virtual machine.

We took all test cases from The Great Computer Language Shootout [2],
except the first one (sum), which is a simple loop to add all integers from 1
to n. This first test spends most of its time in the virtual machine; it shows that
the new virtual machine can be more than twice as fast as the old one. The other
tests spend more time in other tasks (function calls, table/array access, etc.),
so the gain in the virtual machine has a smaller effect on the total time. In the
tests that use arrays (sieve, heapsort, and matrix ), the combination of the new
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virtual machine with the new optimization for arrays can reduce the running
time up to 40%.

The complete code of Lua 5.0 is available for browsing at Lua’s web site:
http://www.lua.org/source/5.0/.
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